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Locality has long been seen as a crucial property for the efficiency of Evolutionary Algo-
rithms in general, and Genetic Programming (GP) in particular. A number of studies inves-
tigating the effects of locality in GP can be found in the literature. The majority of the
previous research on locality focuses on syntactic aspects, and operator semantic locality
has not been thoroughly tested. In this paper, we investigate the role of semantic locality
of crossover in GP. We follow McPhee in measuring the semantics of a subtree using the
fitness cases. We use this to define a semantic distance metric. This semantic distance sup-
ports the design of some new crossover operators, concentrating on improving semantic
locality. We study the impact of these semantically based crossovers on the behaviour of
GP. The results show substantial advantages accruing from the use of semantic locality.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Genetic Programming (GP) [38,28] is an evolutionary paradigm for finding solutions, often in the form of functional
expressions, for a problem. To date, research has largely focused on syntactic aspects of GP representation, bringing valuable
insights and contributions to the success of GP. However, from a programmer’s perspective, maintaining syntactic correct-
ness is just a part of program construction: programs must be correct not only syntactically, but also semantically. Thus
incorporating semantic awareness in the GP evolutionary process could potentially improve performance and extend the
applicability to problems that are difficult to deal with using purely syntactic approaches. Recently, several researchers have
taken an interest in incorporating semantic information into GP, leading to a sharp increase in related publications (e.g.
[19,21,24,2,34,49,5]).

Previous work in the broader field of evolutionary computation has shown that locality (i.e., small changes in genotype
resulting in small changes in phenotype) deeply affect search performance [16,42,41]. With current GP representations,
designing GP operators supporting this desirable property can be difficult. An important reason is the lack of a clear sepa-
ration between syntax and semantics of individuals. Most GP genetic operators have been designed based on syntax alone;
but small changes in syntax can lead to large changes in semantics. Thus ensuring semantic locality requires genetic oper-
ators that are semantically aware.
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In GP, most research on locality has focused on syntax [16,42,41]. Recently, semantic diversity has attracted some atten-
tion [2,46,13], but limited work has been conducted on semantic locality [49]. In this paper, we extend our earlier work in
[49] on incorporating semantics into GP crossover operators. The earlier paper introduced the use of semantic locality to gen-
erate controllable search. Here, we propose two improvements to the crossover operator of [49]. We also further investigate
the effects of these operators on locality. In [49], we argued that semantic locality is a desirable property of crossover. How-
ever it has previously been argued that syntactic locality is valuable [16]. Perhaps semantic locality’s value merely reflects its
correlation with syntactic locality. Here, we extend this work to show that semantic locality is substantially more beneficial
than syntactic locality. We apply these methods to two real-world problems in a time series prediction task, and in produc-
ing human-competitive approximations for the Gaussian Q-function.

The remainder of the paper is structured as follows. The next section reviews literature on semantic information in GP, on
crossover operators, and on locality. Section 3 contains a detailed descriptions of our methods. The potential effects on GP
performance of improving semantic locality in crossover are investigated in Section 4, followed by an analysis of semantic
exchange in standard crossover and semantic based crossovers (Section 5). The comparison between semantic locality and
syntactic locality is presented in Section 6. Section 7 presents two application of these ideas to two problems: time series
prediction and approximating the Gaussian Q-function. The conclusions are drawn in Section 8, leading to suggestions for
future research in Section 9.
2. Background

This section gives a brief overview of previous work on semantics in GP, on variants of GP crossover operators, and on
locality in GP.
2.1. Semantics in Genetic Programming

In GP, semantic information has generally been used to provide additional guidance to the evolutionary search. The way
semantics are exploited depends on the problem domain (Boolean or real-valued), individual representation (Grammar-,
Tree- or Graph-based), and the search algorithm components (fitness measure, genetic operators, . . .). There have been three
main approaches for representing, extracting, and using semantics to guide the evolutionary process of GP:

1. Grammar-based [52,5,6].
2. Formal methods [19,21,25].
3. GP s-tree representation [2,34,46,48,29].

The first, using attribute grammars, is the most popular. Such grammars extend context-free grammars, providing context
sensitivity through a finite set of attributes [26]. GP individuals expressed in the form of attribute grammar derivation trees
can incorporate semantic information, which can be used to eliminate bad (i.e., less fit) individuals from the population [6] or
to prevent the generation of semantically invalid individuals [52,5]. The attributes used to present semantics are generally
problem-dependent, and it is not always obvious how to determine the attributes for a given problem.

Johnson, in his recent work, has advocated formal methods as a means to incorporate semantic information into the GP
process [19,21]. In this work, semantic information, extracted by formal methods, is used to quantify the fitness of individ-
uals on some problems for which traditional sample-point-based fitness measure are unavailable or misleading.

In other work, Keijzer [25] used interval analysis to check whether an individual is defined over the whole range of input
values – if an individual is undefined anywhere, that individual can be assigned minimal fitness or simply eliminated from
the population. This allowed Keijzer to avoid discontinuities arising from protected operators, improving the evolvability of
the system. The advantage of formal methods lies in their rigorous mathematical foundations, potentially helping GP to evolve
computer programs. However they are high in complexity and difficult to implement, possibly explaining the limited number
of related publications since the advocacy of Johnson [20]. Their main application to date has been in evolving control strategies.

Methods for extracting semantics from expression trees depend on the problem domain. The finite inputs of Boolean do-
mains mean that semantics can be accurately estimated in a number of ways. Beadle and Johnson [2] checked the semantic
equivalence of the offspring produced by crossover with their parents by converting them to Reduced Ordered Binary Deci-
sion Diagrams (ROBDDs). If the conversion of the two trees leads to the same ROBDD, they are semantically equivalent. This
semantic equivalence checking is used to decide if new individuals are copied to the next generation. If offspring are equiv-
alent to their parents, they are discarded and the crossover is restarted. The authors argued that this enforces semantic diver-
sity in the evolving population, and consequently leads to improvement in GP performance [2].

By contrast, in [34], semantic information is extracted from a Boolean expression tree by enumerating all possible inputs.
Two aspects of semantics were evaluated in each tree: the semantics of subtrees and the semantics of context (the remainder
of an individual after removing a subtree). The variation of these semantic components throughout the GP evolutionary pro-
cess was experimentally measured. Special attention was paid to fixed-semantic subtrees: subtrees where the semantics of
the tree does not change when this subtree is replaced by another subtree. The authors showed that there may be many such
fixed semantic subtrees when the tree size increases during the evolutionary process. Thus it becomes increasingly difficult
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to change the semantics of trees with crossover and mutation once the trees have become large. This reduces the semantic
diversity [34].

In [46], we proposed a crossover operator, Semantics Aware Crossover (SAC), based on checking the semantic equivalence
of subtrees. SAC was tested on a family of real-valued symbolic regression problems, and shown to improve GP performance.
SAC was extended to Semantic Similarity based Crossover (SSC) in [48,49]. The performance of SSC was superior to both SC
and SAC. SAC and SSC differ from Beadle and Johnson’s approach [2] in three ways. The problem domain is real-valued rather
than Boolean; for real-valued domains, it is not generally feasible to check semantic equivalence by reducing to a canonical
form like a ROBDD. Also, the crossover operators (SAC or SSC) are guided not by the semantics of the whole program tree but
by subtrees – inspired by the recent work of [34] for calculating subtree semantics. However, for real domains, measuring
semantics by enumerating all possible inputs as in [34] is infeasible, so the semantics must be approximated. Finally, SSC
differs from [2] in targeting locality as well as diversity.

Recently, Krawiec and Lichocki proposed a measure for the semantics of individuals based on fitness cases [29]. The
semantics is defined as a vector, of which each element is the output of the individual on one fitness case. This was used
to guide crossover in a method similar to Soft Brood Selection (SBS) [1], known as Approximating Geometric Crossover
(AGC). A number of children are generated by a crossover operation, the children semantically most similar to their parents
being added to the next generation. The experiments were conducted on both real and Boolean regression problems, with
the conclusion that AGC is no better than SC on real-valued problems, and only slightly superior on Boolean. Moraglio
et al. [35] developed AGC to proposed Geometric Semantic Genetic Programming (GSGP). In GSGP, the offspring were gen-
erated in crossover by a convex combination of their parent semantics. The experimental results shown that GSGP obtains
better performance than standard GP though it exacerbates code bloat.

2.2. Alternative crossovers in genetic programming

It is well-known that crossover is the primary operator for GP [27]. Much research has concentrated on the efficiency of
crossover, resulting in new and improved operators which might be classified into three categories as follows:

1. Crossover based on syntax (structure).
2. Crossover based on context.
3. Crossover based on semantics.

Most of the early modifications to SC were based on syntax [27,37,36]. Koza [27] proposed a crossover that is 90% biased
to function nodes and 10% to terminal nodes as crossover points. Although this method encourages the exchange of more
genetic material (bigger subtrees) between the participating individuals, it risks exacerbating bloat and thus making it more
difficult to refine solutions in later generations [2]. O’Reilly and Oppacher [36] introduced a height-fair crossover, in which all
subtree heights in the two parents are recorded, and one subtree height is randomly selected. The crossover sites in both
parents are then restricted to that particular height. Poli and Langdon [37,30] introduced one-point crossover and uniform
crossover. In these methods, when two parents are selected for crossover, they are aligned based on their shapes. By aligning
two parents, the common shape of these parents (starting from their roots) can be determined. The crossover points are then
randomly selected from the nodes that lie in the common shape region. This kind of crossover has been shown especially
effective on Boolean problems. It causes a larger exchange of genetic material in earlier generations (in these generations
the common shape is often very small), and yet can tune the solutions in later generations (when the common shapes
are bigger) [37,30]. Recently, Lin and Chen proposed a FuzzyTree crossover for multi-valued stock valuation [31]. Two cross-
over points are randomly selected from the two parents. If they are internal nodes, the standard subtree crossover is exe-
cuted. However, if they are leaf nodes, the crossover is based on the exchange two fuzzy numbers. The authors showed
that the FuzzyTree crossover is more effective than the subtree crossover in their problems.

Beside syntax, context has been used as extra information for the selection of crossover points [1,33]. This class of cross-
over operators is perhaps closest to semantic based crossovers. Altenberg [1] proposed a new crossover inspired by the
observation that in most animal species, breeding occurs more often than the number of surviving offspring might suggest.
In other words, viable offspring are not always produced as a consequence of breeding. This method is known as Soft Brood
Selection (SBS). Two parents are selected for crossover, then N random crossover operations are performed to generate a
brood of 2N children. The children are then evaluated and sorted based on their fitness. The two best children are copied
to the next generation, the rest being discarded.

Majeed and Ryan [33] proposed Context Aware Crossover (CAC). In CAC, after the two parents have been selected for
crossover, one subtree is randomly chosen in the first parent. This subtree is then crossed over into all possible locations
in the second, then all generated children are fitness evaluated. The best child (based on fitness) is selected as the result,
and copied to the next generation. This process is then repeated for the second parent. The advantage of these context-based
crossovers is the increased probability of producing better children. On the other hand, it can be very time consuming to
evaluate the context of each subtree.

To the best of our knowledge, the only previous use of semantics in crossover are those previously discussed in SubSec-
tion 2.1. They include Beadle and Johnson’s [2] Semantics Driven Crossover for Boolean problems, Krawiec and Lichocki’s
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[29] Approximating Geometric Crossover, and our previous work [46] on Semantics Aware Crossover (SAC) and on Semantic
Similarity-based Crossover (SSC) [48,49].

2.3. Locality in genetic programming

In evolutionary computation, locality (small change in genotype corresponding to small change in phenotype) plays a cru-
cial role in the efficiency of an algorithm [11,16,42,10]. Maintaining diversity is necessary but not sufficient for good algo-
rithm performance; it should be accompanied by measures to ensure locality. Previous work on locality in GP (such as [16])
has largely focused on syntactic aspects, with the exception of our recent studies [48,49].

The importance of locality was brought into full focus by Rothlauf [42]. Metrics for locality of the genotype–phenotype
mapping are derived from metrics on both genotypic and phenotypic spaces. Rothlauf distinguished high locality represen-
tations, where a small change in genotype leads to a small change in phenotype, from low locality representations (small
changes in genotype may lead to large changes in phenotype). Although not completely formalised, this corresponds to
the mathematical notion of continuity (or to the notion of uniform continuity when bounds are independent of the location
in the search space). Rothlauf argued that a high locality representation is necessary for efficient evolutionary search [42].

Although locality may be desirable for efficient search, designing such a representation is not a trivial task, and with cur-
rent GP representations, there may be no guarantee of locality. Hoai et al. [16] formally proved that their genotype–pheno-
type mapping was syntactically local, but did not investigate, or attempt to control, semantic locality.

In this paper, we extend the concept of locality of a representation [42] to the locality of a search operator. We emphasise
semantic locality rather than the syntactic locality that has dominated previous work. We study semantic locality through a
continuous domain of values rather than restricting to a two valued (low, high) metric as in [42], We demonstrate that de-
sign of crossover operators achieving higher semantic locality is feasible for tree-based GP, and that it leads to an improve-
ment in GP performance.

3. Methods

In this section, we first describe the necessary components for designing semantics-based crossovers, starting from a
measure we call subtree semantics (SS). SS is used to define a semantic distance, and then to formulate the semantic rela-
tionship (similarity). We review the semantic similarity based crossover (SSC) proposed in [49], highlighting some deficien-
cies. Finally, we detail the designs of two new semantics-based crossovers that overcome these deficiencies.

3.1. Measuring semantics

Although, an exact definition of semantics is non-trivial, in GP the semantics of an individual program is generally under-
stood as the behaviour of that program with respect to a set of input values. We use a simple way to quantify semantics in GP
based on the fitness cases of the problem, extending Mcphee’s subtree semantics [34] from Boolean to real domains. It is
defined for any (sub) tree as follows:

Let P ¼ fp1; p2; . . . ; pNg be the fitness cases of the problem on domain D and let F be a function expressed by a (sub) tree T
on D. Then the Subtree Semantics of T on domain D is the set S ¼ fs1; s2; . . . ; sNg where si ¼ FðpiÞ; i ¼ 1;2; . . . ;N.

This way of measuring subtree semantics is similar to our preliminary work in [46,48,49], where Sampling Subtree Seman-
tics was measured by sampling random points from the problem domain. The difference lies merely in which points are
used: random points or fitness cases.

Based on SS we define the Subtree Semantics Distance (SSD) between two subtrees. Previously [46,48], we defined the
Sampling Semantics Distance as the sum of the absolute differences. While the experiments in [46,48] showed that this
semantic distance is beneficial, its value depends on the number of sampling points N. To remedy this, we normalise, defin-
ing the SSD as the mean of the absolute differences between subtrees. In other words, let P ¼ fp1; p2; . . . ; pNg and
Q ¼ fq1; q2; . . . ; qNg be the SS of Subtree1ðSt1Þ and Subtree2ðSt2Þ, the SSD between St1 and St2 is defined as:
1 The
mathem
SSDðS1; S2Þ ¼
PN

i¼1jpi � qij
N

ð1Þ
3.2. Semantic relationships

As in [46,48], we next define a semantic relationship between subtrees: Semantic Similarity (SSi).1 The intuition behind
semantic similarity is that exchange of subtrees is most likely to be beneficial if the subtrees are semantically not identical,
but also not too dissimilar. Two subtrees, St1 and St2, are semantically similar if their SSD lies within a positive interval – formally:
SSiðSt1; St2Þ ¼ if a < SSDðSt1; St2Þ < b
word ‘similarity’ is used here in its ordinary English meaning, where A is similar to B implies that A is not the same as B, as opposed to a common
atical convention in which similarity includes equivalence.
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here a and b are two predefined constants, known as the lower and upper bounds for semantic sensitivity (LBSS and UBSS).
Conceivably, the best values for a and b might be problem dependent, and might also be self-adapted as in Section 3.4.

We note that there is a biological motivation for this approach. In mammals, the Major Histocompatibility Complex
(MHC) genes (on chromosome 6 in humans) play a major role in the immune response, and thus are a key part of our de-
fences against disease, and subject to strong and rapidly-changing evolutionary pressures. However they also play an impor-
tant role both in mate selection (partners in the same species, but with dissimilar MHC genes, are preferred) [4]), and in
speciation, because too-great differences in MHC may cause an immune response from the mother to the foetus [9]. Thus
in this case at least, biology also appears to favour crossovers with semantic similarity lying in a specific range.

We conclude this section by highlighting some important differences between semantics and fitness. Firstly, fitness re-
flects how good (close to the target function) an individual is, while the SS of a subtree only reflects how the subtree behaves
on specific input values from the environment. Second, fitness is measured for the whole individual, while SS is mainly used
to encapsulate the semantics of subtrees. The last and most important difference is the objective: fitness is used for individ-
ual selection while SS is used to guide crossover.

3.3. Improving semantic locality using semantic similarity-based crossover

Previous research [42,16] showed the crucial role of locality (of representation and operators) in EC and GP, but focused
purely on syntactic locality. In [48], we proposed a semantics based crossover, called Semantic Similarity based Crossover
(SSC),2 that achieves higher locality than SC. SSC is an extension of the semantic diversity crossover, Semantic Aware Crossover
[46], in two directions. First, when two subtrees are selected for crossover, their semantic similarity (SS), rather than semantic
equivalence (SE), is checked. Since SS is usually more difficult to satisfy than semantic inequivalence, repeated failures may oc-
cur. Therefore SSC uses multiple trials to find semantically similar pairs, only reverting to random selection after passing a
bound on the number of trials. The number of trials to find a semantically similar pair is called Max_Trial (MT). Algorithm 1
shows how SSC works in detail [48,49].

Algorithm 1.
The motivation for SSC is to encourage exchange of semantically different, but not substantially different, subtrees. In
other words, while forcing a change in the semantics of the individuals in the population, we want to keep this change rel-
atively small. SSC was detailed and thoroughly analysed in [49]. The results in [49] showed that SSC helps GP to find the
solution more reliably and quickly than SC and other fitness based crossovers (Soft Brood Selection, No Same Mate Selection)
and the semantic (diversity) aware crossover (SAC). The deeper analysis in [49] showed that the main reason for the superior
performance of SSC over these crossovers is that SSC causes smoother semantic change from parents to children, which cre-
ates higher constructive effect and less bloat.

However, these advantages of SSC over other crossover operators come at a cost, especially when compared with SC: it
has extra parameters to tune, namely the lower and upper bounds for semantic sensitivity (LBSS and UBSS). The analysis of
SSC’s parameter sensitivity in [49] has shown that while the performance of SSC is only slightly sensitive to LBSS,3 it is quite
2 Table A.13 in Appendix A provides a list of abbreviations in the paper.
3 Since in practice, we usually keep LBSS fixed at a rather small positive value such as 10�3.
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sensitive to UBSS, perhaps in a problem dependent way. In the following subsections, we propose two methods to overcome
these problems, resulting in two new operators.

3.4. Self-adaptation of upper bound on semantic sensitivity

The first approach to fix the problem of tuning UBSS for SSC is to self-adapt it during evolution. It has been long known
that finding appropriate values for evolutionary parameters is challenging. Self-adaptation has been used right from the
start. Most previous work focused on controlling operator application rates or step sizes [15], or adjusting population size
[17] or individual size [43].

In this subsection, we present a method for self-adjusting semantic sensitivity in SSC. The motivation is to ensure that as
many as possible SSC operations exchange semantically similar subtrees. If the UBSS is too small (e.g. 10�2), SSC may not
work, because it is very difficult to select subtrees pairs that can be swapped. Conversely, if it is too large (e.g. 100) SSC would
behave much the same as SC, with almost all pairs satisfying the condition. We introduce Self-Adaptive Successful Execution
(SASE), whose aim is to ensure that a large enough portion, but not all, SSC operations exchange similar subtree pairs. For-
mally, the UBSS is controlled by the following equation:
btþ1 ¼

ci � bt; if pt
s < w;

cd � bt; if pt
s > w;

bt ; if pt
s ¼ w;

8>><
>>: ð2Þ
where bt is the UBSS at generation t, and pt
s is the proportion of SSC operations that successfully exchange at generation t. ci is

the size increment, and cd the decrement. The LBSS at generation t þ 1 is calculated from the UBSS as: atþ1=10�3 � btþ1. The
initial value of UBSS was set at 0.4 in these experiments. w is a threshold presents for the percentage of SSC we expect to
successfully exchange to semantic similar subtrees. Several values of w will be investigated in the following sections.

3.5. Most semantically similar crossover

The second method for handling the problem of UBSS tuning for SSC is simply to remove UBSS. Instead, we use compe-
tition of possible crossover points within each parent to ensure the likelihood of maintaining small change in semantics. The
resultant new semantic similarity based crossover is called Most Semantically Similar Crossover (MSSC) and it works as fol-
lows: N subtree pairs are randomly selected from the two parents. The subtree semantic distance (SSD) of the subtrees in
each pair is calculated. SSD-equivalent pairs are excluded, then the pair having the smallest SSD is chosen for crossover.
Algorithm 2 shows how MSSC works in detail. In the experiments with MSSC, several values of Max_Trial was tested, and
Extremal_Value was set to 106.

Algorithm 2.
4. The impact of semantic locality of crossover on GP performance

In previous work [49], we showed that a crossover improving semantic locality (SSC) favourably compares with standard
crossover. In addition, it outperforms the crossover for promoting semantic diversity [46], and fitness-based crossovers such
as No Same Mate Selection [14] and Soft Brood Selection [1]. This section compares SASE and MSSC with SSC. We first de-
scribe the experimental settings and then present a performance comparison.



Table 1
Symbolic regression functions.

Functions Fitcases

F1 ¼ x4 þ x3 þ x2 þ x 20 Random points # ½�1;1�
F2 ¼ x5 þ x4 þ x3 þ x2 þ x 20 Random points # ½�1;1�
F3 ¼ sinðxÞ þ sinðxþ x2Þ 20 Random points # ½0;1�
F4 ¼ sinðx2ÞcosðxÞ � 1 20 Random points # ½0; p2�
F5 ¼ logðxþ 1Þ þ logðx2 þ 1Þ 20 Random points # ½0;2�
F6 ¼

ffiffiffi
x
p

20 Random points # ½0;4�
F7 ¼ sinðxÞ þ sinðy2Þ 100 Random points # ½0;1� � ½0;1�
F8 ¼ 2sinðxÞcosðyÞ 100 Random points # ½0;1� � ½0;1�

Table 2
Parameter setting.

Parameters Value

Population size 500
Generation 50
Selection Tournament
Tournament size 3
Crossover probability 0.9
Mutation probability 0.05
Initial Max depth 6
Max depth 15
Max depth of mutation tree 5
Non-terminals +, �, �, / (Protected versions),

sin, cos, exp, log (protected versions)
Terminals X, 1 for single variable problems,

and X, Y for bivariable problems
Raw fitness Sum of absolute error on all fitness cases
Trials per treatment 100 Independent runs for each value
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4.1. Experimental settings

To compare the effects of these operators on GP performance, we tested them on eight real-valued symbolic regression
problems. These problems are divided into three groups: polynomial functions; trigonometric, logarithm and square-root
functions; and bivariate functions. Two, F1; F2 have been previously used in [46,48] for testing SAC and SSC. Most of the rest
are taken from Keijzer [25], and Johnson [22]. These functions are shown in Table 1, and the basic parameters used for our
experiments are given in Table 2. The parameter settings are similar to our previous work [46,48,49]. Although these exper-
iments study crossover, we have retained mutation at a low rate, to put crossover in the context of a normal GP run. Note
that the raw fitness function is the sum of the absolute error over all fitness cases.

The semantic sensitivities for the tested crossover were set as follows. For SSC, LBSS was fixed at 10�3, and we used three
values for UBSS: 0.4, 0.5, and 0.6 (the same values were used in [49]).4 The value of Max_Trial for SSC was set at 12. This was
calibrated from preliminary experiments as a suitable value, though again it is not a particularly sensitive parameter. The three
tested configurations of SSC are denoted as SSCX with X = 04, 05, 06.

For SASE, the size of decrement (cd) was fixed at 0.9 and the size of increment was set as 1=ci. Four configurations of SASE
were tested. In the first three configurations, different cutoff ratios for successful exchanges were tested: 65%, 75%, and 85%.
These configurations of SASE are called SASEX (X = 65, 75, 85). In the final version of SASE, the rate of successful SSC is itself
adapted. The motivation is that, at the beginning of the search process, GP needs to be exploratory, so the rate of successful
SSC in earlier generations should be low. Later, SSC should be encouraged to be more exploitative, so the rate of successful
SSC should increase. The change was scheduled using the following equation:
4 Sim
R SSC ¼ aþ ðb� aÞ � Current Gen
Max Gen

ð3Þ
where Current Gen is the current generation and Max Gen is the maximum number of generations set for the algorithm.
R SSC is the rate of successful SSC in the current generation. In our experiments, a was set at 65% and b was set at 85%. This
version of SASE is referred to as SASES.

For MSSC, the lower bound semantic sensitivity was set as in SSC at 10�3. Three values of Max_Trial: 12, 16, 20 were
tested resulting in three configurations of MSSC referred as MSSCX with X = 12, 16, 20.
ilarly, the performance of SSC is robust to any sufficiently small value of LBSS.



Table 3
Comparison of SASE and MSSC with SSC and SC in mean best fitness.

Xovers F1 F2 F3 F4 F5 F6 F7 F8

SC 0.30 0.40 0.11 0.27 0.15 0.25 1.67 1.19

SSC04 0.16 0.20 0.06 0.16 0.08 0.13 1.06 0.62
SSC05 0.15 0.21 0.06 0.17 0.10 0.12 1.13 0.71
SSC06 0.20 0.21 0.06 0.18 0.08 0.12 0.97 0.61

SASE65 0.13 0.20 0.03 0.14 0.08 0.09 0.58 0.37
SASE75 0.14 0.20 0.04 0.16 0.07 0.10 0.62 0.46
SASE85 0.13 0.21 0.05 0.17 0.06 0.10 0.07 0.44
SASES 0.13 0.19 0.03 0.14 0.07 0.09 0.55 0.38

MSSC12 0.14 0.17 0.04 0.12 0.07 0.10 0.31 0.28
MSSC16 0.15 0.17 0.04 0.12 0.07 0.09 0.54 0.51
MSSC20 0.14 0.18 0.03 0.12 0.06 0.09 0.50 0.47
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4.2. Results and discussion

For all systems, a classic performance metric, mean best fitness, was recorded. Table 3 shows the best fitness found, aver-
aged over all 100 runs of each GP system.5 We tested the statistical significance of the results in Table 3 using a Wilcoxon
signed-rank test with the confidence level of 95%. The results in Table 3 can be interpreted as follows:

1. If a run of SSC, SASE, or MSSC is not significantly better than SC, it is printed in plain face.
2. If a run of SSC, SASE, or MSSC is significantly better than SC, its is printed in italic face.
3. If a run of SASE or MSSC is significantly better than both SC and SSC, it is printed bold and italic.

It can be seen from Table 3 that both SASE and MSSC help to further improve GP performance. This is reflected by the
better fitness of solutions found by SASE and MSSC compared with SSC. In both cases, there was little variation with param-
eter settings – i.e. the parameter values are robust.

The improvement is particularly striking for the two bivariate functions, F7 and F8. The Wilcoxon signed-rank test results
confirm that all SSC based crossovers are significantly better than SC, and that in many cases, SASE and MSSC were signif-
icantly better than SSC, while MSSC was slightly better than SASE. To conclude, the results confirm that both these improve-
ment not only overcome a weakness of SSC (by eliminating manual tuning of extra parameters) but also further improve SSC
performance.6

5. Semantic locality of crossover operators

In previous work, we provided analyses of some important properties of SSC [49]. The semantic locality and constructive
effect of SSC were argued to be the main reason behind the superior performance of SSC. In this section we further analyse
semantic locality in SSC and MSSC to shed light on its impact on semantic based crossovers.7 We start with an analysis of the
semantic exchange between two subtrees in SC, investigating its constructive and semantic locality effects. We then look at the
semantic exchange of subtrees in SSC and MSSC. Finally, we investigate the effects of semantic locality on other aspects of GP.

5.1. Semantic exchange in the standard subtree crossover

To investigate the semantic exchange in crossover, we collected data from the runs in the previous section. Let SSD be the
subtree semantic distance between the two subtrees exchanged by SC. We divide SC crossovers into seven groups, as
follows:

1. SC0 if SSD< 10�3.
2. SC1 if 10�3

6SSD<0.1.
3. SC2 if 0.1 6 SSD < 0.2.
4. SC3 if 0.2 6 SSD < 0.4.
5. SC4 if 0.4 6 SSD < 0.8.
6. SC5 if 0.8 6 SSD < 1.6.
7. SC6 if 1.6 6 SSD.
5 For the better comparison, the performance of standard crossover (SC) is also presented in this table.
6 in Figs. 2 and 3 in Appendix B we draw the mean best fitness by generations and some properties of these crossovers that support for the results in this

section.
7 Since SASE works similarly to SSC except for using a dynamic UBSS, we do not analyse it further in the remainder of this paper.



Table 4
The percentage of standard crossover (SC) events falling into each group.

Xovers F1 F2 F3 F4 F5 F6 F7 F8

SC0 14.3 14.7 17.1 13.2 14.0 14.3 12.3 12.7
SC1 2.74 2.79 4.59 0.95 1.13 0.06 4.77 5.43
SC2 3.22 3.06 5.62 3.75 3.71 2.43 4.85 4.35
SC3 4.69 4.50 10.9 11.5 6.27 2.85 28.9 24.7

SC4 21.9 22.3 31.5 25.4 11.7 11.3 28.7 30.0
SC5 38.3 38.4 17.6 24.6 34.0 35.2 14.2 15.8
SC6 14.7 14.1 12.4 20.6 29.0 33.3 6.21 6.79

Table 5
The change in semantics from parents to children using standard crossover.

Xovers F1 F2 F3 F4 F5 F6 F7 F8

SC0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SC1 0.22 0.21 0.15 0.06 0.11 0.15 0.08 0.04
SC2 0.21 0.19 0.21 0.11 0.16 0.17 0.10 0.06
SC3 0.36 0.35 0.31 0.21 0.18 0.33 0.13 0.14

SC4 0.58 0.59 0.49 0.36 0.32 0.58 0.21 0.21
SC5 0.73 0.91 0.71 0.49 0.45 0.74 0.36 0.43
SC6 2.07 2.21 1.43 0.71 1.23 1.38 0.98 1.04

Table 6
Constructive events of standard crossover.

Xovers F1 F2 F3 F4 F5 F6 F7 F8

SC0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SC1 9.41 9.39 8.39 8.04 9.40 7.83 12.1 12.1
SC2 6.75 6.94 5.01 5.43 7.70 6.03 7.40 7.34
SC3 4.46 4.49 3.58 3.54 5.81 3.82 5.81 5.63

SC4 2.54 2.71 2.59 2.54 3.96 2.81 4.33 4.15
SC5 1.82 1.95 1.42 1.60 1.98 1.94 2.98 2.87
SC6 1.31 1.39 1.22 1.27 1.63 1.52 2.32 2.17
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The intermediate ranges are those which would be accepted by SSC.
We first recorded the proportion of crossovers (using SC) that fell into each group, averaged over runs and generations;

the results are shown in Table 4. We can see that the proportion of crossover events with small semantic distance was very
low. Most crossovers either exchange semantically identical subtrees (12–15%), resulting in wasted effort, or exchange
highly dissimilar subtrees (50–70%). Smoother crossovers, exploring the search space locally, are comparatively rare.

We next recorded the SSD between parents and children in standard crossover, averaged over generations and runs. The
results are shown in Table 5. We see that when SC exchanges equivalent subtrees, there is generally no change in the seman-
tics between parents and children. When SC exchanges semantically similar subtrees, the change in semantics between par-
ents and children is relatively smooth, by comparison with the exchange of dissimilar subtrees. Hence small semantic
changes leads to smooth movement in the search space. This is important because it is difficult to achieve semantic locality
through syntactic controls.

This smooth semantic movement leads to more constructive crossovers, as we can see from Table 6, which records the
percentage of constructive events.8 Constructive events were overwhelmingly concentrated in SC1–SC3 (4–12%), SC4. . .SC6
contributing much lower percentages, and SC0 contributing none.9
5.2. Semantic exchange in semantic based crossovers and its effects

The previous subsection showed that only a tiny portion of SC crossovers exchange semantically similar subtrees. Since
SSC and MSSC aim to increase this exchange, we now examine how successful SSC and MSSC are in achieving their aim. As
before, the upper bound semantic sensitivity of SSC was set at 0.4 and Max_Trial of MSSC was set at 12. SSC and MSSC were
8 A crossover is considered constructive if both children have better fitness than their parents.
9 Fig. 4 in Appendix B presents the contructive rate of SC1, SC3 and SC5 over the course of the evolutionary process.



Table 7
The percentage of SSC events falling into each group.

Xovers F1 F2 F3 F4 F5 F6 F7 F8

SSC0 3.16 3.24 2.98 1.79 2.45 4.87 0.57 0.35

SSC1 24.1 24.1 24.5 6.36 12.1 8.71 20.5 11.7
SSC2 26.4 25.2 24.1 20.5 30.3 26.9 12.8 12.0
SSC3 30.8 31.1 41.5 60.7 43.3 30.2 64.5 74.5

SSC4 4.61 4.66 3.43 3.87 1.98 4.26 0.73 0.63
SSC5 8.08 8.50 1.91 3.44 5.54 12.7 0.53 0.48
SSC6 2.82 3.17 1.56 3.23 5.27 12.2 0.31 0.25

Table 8
The percentage of MSSC events falling into each group.

Xovers F1 F2 F3 F4 F5 F6 F7 F8

MSSC0 1.42 1.51 2.16 1.85 3.15 2.40 0.93 1.08

MSSC1 40.3 40.9 51.3 16.1 22.7 13.3 57.0 50.4
MSSC2 21.1 20.3 20.0 31.7 27.4 25.3 18.2 17.4
MSSC3 20.4 19.6 17.4 35.5 22.3 24.4 20.3 25.8

MSSC4 10.9 11.3 5.90 8.8 7.7 16.3 2.31 3.23
MSSC5 4.77 5.17 1.98 3.69 11.1 13.0 0.87 1.22
MSSC6 0.97 1.17 1.16 2.24 5.42 5.30 0.44 0.69

Table 9
Some properties of SC, SSC and MSSC.

Properties Xovers F1 F2 F3 F4 F5 F6 F7 F8

Dif SC 68.3 67.9 65.8 63.2 71.6 61.5 81.0 81.4
SSC 83.1 84.5 81.7 81.4 87.3 79.2 93.5 94.1
MSSC 86.2 87.3 83.2 84.9 90.1 91.3 95.8 95.2

Sem SC 0.93 1.05 0.72 0.61 0.68 1.07 0.23 0.26
SSC 0.48 0.44 0.26 0.25 0.27 0.50 0.11 0.10
MSSC 0.42 0.41 0.22 0.21 0.22 0.43 0.09 0.08

Fit SC 9.21 10.5 7.27 6.23 8.31 9.36 11.6 13.1
SSC 4.23 4.49 2.74 2.82 3.12 4.32 5.58 6.40
MSSC 3.81 4.23 2.58 2.65 3.02 4.16 5.37 6.18

Cons SC 2.27 2.23 2.28 1.98 2.82 1.88 4.36 4.19
SSC 5.12 5.16 4.87 4.36 5.43 4.60 6.73 6.40
MSSC 6.25 6.62 6.14 5.96 6.84 6.14 8.04 8.12
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divided into seven groups. The percentage of SSC and MSSC events that lie in each of the seven groups, averaged over all
generations and runs, are shown in Tables 7 and 8.

We see from Tables 7 and 8 that the proportion of exchanges of semantically similar subtrees is substantially higher than
for SC; 80–90% of SSC and MSSC exchanges lie in SSC1, SSC2 or SSC3. Exchange of semantically equivalent subtrees, and of
semantically dissimilar subtrees, are both virtually eliminated. Thus SSC and MSSC achieve their design objective, of ensur-
ing limited semantic change. Comparing SSC and MSSC, we see that they are quite similar. However, as will be seen below,
MSSC is often better than SSC on some important aspects of GP.

The increase in the proportion of exchanges of semantically similar subtrees in SSC and MSSC results in a number of
potentially valuable impacts. Table 9 shows that SSC and MSSC generated substantially more children that differed seman-
tically from their parents (Dif row), often 20% higher. However even SC was generally able to change the semantics (60–80%),
in strong contrast to McPhee’s results on Boolean problems [34], where 60–70% of SC operation did not change semantics.
This may help to explain why SAC and NSM (which only promote semantic diversity) showed only intermittent improve-
ment on the results of SC.

Semantic locality of the crossover operator also leads to smoother movement in the search space. The Sem row of the
table shows the average SSD between parents and children for SC, SSC and MSSC; the latter is generally substantially smaller,
so that SSC and MSSC move more smoothly in the semantic space than SC. Row Fit of the table shows the average change of
fitness before and after executing SC, SSC and MSSC – these values are smaller for SSC and MSSC. This substantially increases
the constructive effect of crossover. Row Cons shows the percentage of these constructive events; SSC and MSSC were sub-
stantially more constructive than SC on all functions. The table also shows that MSSC is often better than SSC.

In summary, controlling crossover to ensure semantic locality results in a number of changes in GP dynamics. These shed
light on the reasons for the performance gains seen in Section 4.



Table 10
The mean best fitness of SC, SySC, and SSC.

Xovers F1 F2 F3 F4 F5 F6 F7 F8

SC 0.30 0.40 0.11 0.27 0.15 0.25 1.67 1.19
SySC6 0.33 0.43 0.15 0.30 0.16 0.21 1.69 1.17
SySC8 0.31 0.43 0.15 0.31 0.15 0.28 1.87 0.95
SySC10 0.33 0.45 0.14 0.30 0.13 0.24 1.40 1.18
SSC04 0.16 0.20 0.06 0.16 0.08 0.13 1.06 0.62
SSC05 0.15 0.21 0.06 0.17 0.10 0.12 1.13 0.71
SSC06 0.20 0.21 0.06 0.18 0.08 0.12 0.97 0.61
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6. Semantic locality versus syntactic locality

The previous section have shown that improving semantic locality of genetic operators leads to a significant improvement
in GP performance. This raises the question: which of semantic and syntactic locality is more important? In [16], it was
shown that syntactic locality is important in a problem where the syntax of an individual effectively defines its fitness. Here,
we investigate the effects of syntactic and semantic locality on more typical test problems (where syntax is only loosely cor-
related with fitness). First we define a syntactic version of SSC. Then we compare its effects on performance and search space
with the semantically-based crossovers.
6.1. Syntactic similarity-based crossover

To define our syntactic crossover, we need a syntactic distance. We use the Ekart–Nemeth distance [8], using their algo-
rithm to compute it.10 From this, a syntactic similarity relationship between two (sub) trees is defined in a similar way to the
semantic counterpart, the only difference being the use of syntactic (Ekart–Nemeth) distance rather than semantic distance. In
other words, two subtrees are said to be syntactically similar if the syntactic distance (SyD) between them lies in a specific
range. Formally, two subtrees S1 and S2 are syntactically similar (SySi) if
10 The
content

11 We
SySiðS1; S2Þ ¼ if a < SyDðS1; S2Þ < b
where a and b are two predefined constants, the lower and upper bounds for syntactic sensitivity. Here, a was set to 0, and
several values of b were tested. Based on SySi, a syntactic similarity based crossover is proposed. The crossover for improving
syntactic locality, Syntactic Similarity based crossover (SySC), is based on SSC, being computed the same except for the differ-
ent similarity measure. Based on preliminary trials, we set the Max Trial of SySC to 4.
6.2. Performance analysis

This subsection compares the performance of SySC, SSC and SC.11 The problems are as in the previous sections. The basic GP
parameter settings are given in Table 2. For SSC, three configurations similar to those in Section 4 are used. They are abbreviated
as SSCX with X = 04, 05 and 06. For SySC, the the upper syntactic sensitivities were set at 6, 8, 10. These three values were cal-
ibrated from our experiments as good values for the performance of SySC. In total, three configurations of SySC were tested,
denoted as SySCX with X = 6, 8, 10.

To compare the performance of the three operators, we used the mean best fitness. The results are shown in Table 10.
Syntactically-bounded crossover (SySC) does not improve GP performance. The mean best fitness of SySC is generally equal
to SC. In some cases SySC is better than SC and in other cases SC is better than SySC. The differences are not statistically sig-
nificant. Conversely, SSC performs much better than both SC and SySC. This is consistent with the results in the previous
section.

We also statistically tested the performance of SSC versus SC and SySC using the Wilcoxon signed-rank test with a con-
fidence level of 95% (Table 10). If the improvement of SSC over SC and SySC is significant, the results of SSC are printed in
italic face. The results in this table confirm the significant improvement of SSC over both SC and SySC. Thus despite some
advantages for SySC in simplicity of implementation, SSC is a better bet than SySC in improving GP performance.
6.3. Fitness landscape analysis

Section 6.2 showed that improving semantic locality is more important than syntactic locality in improving GP perfor-
mance. This subsection further investigates semantic versus syntactic locality of operators by analysing their fitness
landscapes.
basic idea in calculating the Ekart–Nemeth distance is to overlay the two trees on the same shape, and count the number of positions having different
as the tree distance.
used SSC rather than MSSC for comparison, because of the closer analogy between it and SySC.
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6.3.1. Experimental settings
To experimentally investigate the fitness landscape in the preceding problems we use a method proposed by Weinberger

[51] known as an autocorrelation function.12 Most previous work studied the fitness landscape of mutation [50,23], where a
random walk can easily be generated by applying the mutation operator. Since this research focuses on crossover, we followed
Riley and Ciesielski [39] in creating a random walk of N steps using Algorithm 3.

Algorithm 3.
We set Pcrossover ¼ 0:9 and Pmutation ¼ 0:05 as before. We compare the fitness landscapes of SC, SySC, SSC and MSSC. For each,
a random walk of 10000 steps was generated. 500 random walks were conducted for each problem. The lower semantic sen-
sitivity used for SSC was 10�3 and the upper 0.4. The Max_Trial of SSC was set to 12. For MSSC we set Max_Trial = 12; for SySC
we set the upper syntactic sensitivity to 8.
6.3.2. Results and dicussion
The results of the autocorrelation analysis are shown in Table 11.13 Improving syntactic locality has limited impact on the

fitness landscape. The autocorrelation value for SySC is only slightly better than for SC, with the only exceptions being for h ¼ 1
and h ¼ 2;4 on function F5. A Wilcoxon signed-rank test with confidence level 95% gives mixed results, only some values for
SySC are significantly greater than for SC with h ¼ 16 and h ¼ 32. That is why SySC does not improve much on SC.

Conversely, improving semantic locality of crossover smooths out the fitness landscape. The autocorrelation values for
SSC and MSSC are always much greater than for SC and SySC. In all cases, SSC/MSSC differences from SC/SySC are significant
at the 95% level (Wilcoxon signed-rank). MSSC is always more autocorrelated than SSC, providing an explanation for the dif-
ferent performance of these two operators.

7. Application of semantics based crossovers

This section presents two applications of semantics-based crossovers. The first applies semantics-based crossovers to a
time series prediction problem and the second uses them in approximating the Gaussian Q-function.

7.1. Solving a time series prediction problem

In this subsection we test the usefulness of semantically based crossover on a realistic-scale application, Mackey–Glass
time series prediction.14 We compare the ability of GP to solve this problem with SC, SSC, SASE and MSSC.

7.1.1. Experimental settings
The requirement in time series prediction is to estimate the future values of a series based on its past values. In other

words, it is to find a function F such that:
12 App
13 We
14 App
xðt þ 1Þ ¼ FðxðtÞ; xðt � aÞ; . . . ; xðt � NaÞÞ ð4Þ
This problem is generally considered quite tough, as there is no exact closed form solution [17]. We follow the approach
of [12] in setting a ¼ 6 and N ¼ 8. That is, our task is to estimate the value of the series at time t þ 1 given the 8 values at
times t; t � 6; . . . ; t � 42 in the past.
endix C gives a detailed description of the autocorrelation function.
omit the similar results of F3; F4; F7 and F8 to save space.
endix D gives a detailed description of the Mackey–Glass time series.



Table 11
Autocorrelation analysis (larger values are better).

Distance (h) Crossovers F1 F2 F5 F6

SC 0.604 0.605 0.651 0.639
1 SySC 0.600 0.599 0.648 0.638

SSC 0.660 0.661 0.699 0.685
MSSC 0.694 0.695 0.717 0.699
SC 0.477 0.478 0.549 0.539

2 SySC 0.484 0.484 0.527 0.550
SSC 0.551 0.552 0.599 0.599
MSSC 0.593 0.594 0.631 0.625
SC 0.345 0.346 0.417 0.416

4 SySC 0.354 0.354 0.409 0.437
SSC 0.423 0.425 0.479 0.484
MSSC 0.469 0.471 0.525 0.527
SC 0.219 0.219 0.278 0.283

8 SySC 0.234 0.234 0.293 0.321
SSC 0.285 0.286 0.341 0.355
MSSC 0.333 0.334 0.410 0.409
SC 0.111 0.112 0.159 0.160

16 SySC 0.127 0.127 0.179 0.185
SSC 0.165 0.166 0.214 0.218
MSSC 0.207 0.208 0.288 0.291
SC 0.048 0.049 0.081 0.071

32 SySC 0.066 0.066 0.099 0.101
SSC 0.088 0.088 0.125 0.131
MSSC 0.108 0.109 0.177 0.175

Table 12
Training and test set accuracy and size for SC and other crossovers in Mackey–Glass prediction.

Xovers Training Test 0 Test 1 Test 2 Test 3 Size

SC 0.27 0.29 1.21 1.48 2.94 61.3
SSC 0.20 0.22 1.05 1.26 1.85 58.2
SASE 0.19 0.21 1.01 0.99 1.88 55.4
MSSC 0.17 0.19 0.94 0.79 1.84 51.9

N.Q. Uy et al. / Information Sciences 235 (2013) 195–213 207
The experimental settings are as in Table 2, the only difference being the terminal set, which here consists of one constant
(1) and 8 variables (X1;X2; . . . ;X8) representing the time series values at xðtÞ; xðt � 6Þ; . . . ; xðt � 42Þ. The semantic sensitivities
of SSC were a ¼ 10�3 and b ¼ 0:4. Max_Trial for SSC, and MSSC was set to 12. For SASE we used SASES.

We took the first 2320 points of Mackey–Glass time series as the data set. The first 1320 points were used for constructing
the training set. These points are divided into 30 blocks of 44 consecutive points (indexed from 0 to 43). For each block, a
fitness case for the training set is extracted as follows. The point at position 43 is the output and the 8 points at positions
42, 36, 30, . . ., 0 are the inputs. Four test sets were designed and they will be referred to as Test k with k ¼ 0, 1, 2, 3 in
the following subsection. Each test set is extracted from the set of 1320 points which is comprised of the last 1320� 10k

points of the first 1320 points of the series and the first 10k points of the remaining 1000 points of the series, with k ¼ 0,
1, 2, 3. For example, with k ¼ 3, the set of points, upon which the test set is extracted, is built from the last 320 points of
the first 1320 points (used for extracting the training set) and the remaining 1000 points of the whole data set. For each
set of these 1320 points, a test set is extracted in a similar way as for the training set.
7.1.2. Results and discussion
For each run, we used the training set to provide the fitness function, selecting at the end the most accurate individual.

This individual was tested on the four test sets. The results were averaged over 100 runs. We also measured the average size
(number of nodes) of the fittest individual, again averaged over 100 runs. The overall results are shown in Table 12.

In this problem, semantic locality promotion (SSC, SASE and especially MSSC) had a positive effect, especially on longer
horizons. That is, more local search helps to generate more general solutions (but also more accurate on the training set –
this is not an issue of over-fitting).

We tested the statistical significance of differences from SC using the Wilcoxon signed-rank test with a confidence level of
95% (Table 12). If a method is significantly better than SC, the value is printed italic face. It can be seen from the table that
most differences arising from locality promotion are significant.

Overall, locality-promotion not only enhances the accurate fitting of this time series, but also promotes good generalisa-
tion, especially for longer timescales.
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Fig. 1. Relative errors of the approximation found by GP and of OPBCS.
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7.2. Approximating the Gaussian Q-function

This subsection illustrates another application of MSSC, in approximating the Gaussian Q-function.15 These improved
approximations to the Q-function have been previously reported in [7]; here we focus on the effects of MSSC.16

7.2.1. Experimental settings
For Q-function approximation, we follow previous work in the literature in using absolute relative error (ARE), so that the

fitness function is:
15 Sin
16 App
ARE ¼ 1
N

XN

i¼1

jfi � yij
fi

ð5Þ
where N is the number of data samples (fitness cases), fi is the value of the Q-function, and yi is the function value of the
individual at the ith point in the sample set. We used a sample set of 400 equidistant points in the interval [0,8], together
with the function values computed from Eq. (E.1). We used fþ;�; �; =; sqrt; exp; logg as nonterminals, and fX;p;ERCg as the
terminal set, with protected versions of/, sqrt and log. ERC was an ephemeral random constant from (�1,1). Population size
was 3000, tournament size 9, and there were 50 trials.

7.2.2. Results and discussion
We aimed to find better solutions than the most accurate form found to date [3], known as OPBCS, so we accepted the

best solution resulting from a run only if its ARE was less than that of OPBCS: 0.001747. With SC, we were unable to find
any better solutions. However with MSSC, we found 3 runs yielding better solutions. The best solution found with SC had
an ARE of 0.001923; with MSSC, the best solution had an ARE of 0.000863. Its form was:
Best Solution ¼ f ðxÞ
gðxÞðh1ðxÞh2ðxÞ þ xÞ ð6Þ
where
f ðxÞ ¼ 0:283673x� 0:000547 ð7Þ
and
gðxÞ ¼
ffiffiffiffiffiffi
ex2

p
ð0:767402x� ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xþ 3:141592

p
þ 0:998554Þ ð8Þ
and
h1ðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnðaxÞ � x� lnjb� xþc

dxþe j
ex2

����
����

s
ð9Þ
with a ¼ 0:014896; b ¼ 2:382099; c ¼ 0:148960; d ¼ 1:316667; e ¼ 0:329776 and
h2ðxÞ ¼
0:058918x� 0:000929
1:316667xþ 0:332324

ð10Þ
ce the previous results show that MSSC is generally better than SSC and SASE, we omit the latter two.
endix E gives a detailed description of the Gaussian Q-function.
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We visually show the performance of this approximation by plotting the relative error (along with that of OPBCS) in Fig. 1.
The approximation found by MSSC is almost uniformly better than OPBCS, especially when x > 1:5. This demonstrates the
practical effectiveness of GP with MSSC.

8. Conclusions

In this paper, we have extended the work in [49], further exploring the role of semantic locality in GP crossover. We pro-
posed two improvements, SASE and MSSC, of SSC, and provided a deeper analysis of the semantic exchange generated by
these operators. We also showed that semantic locality is more beneficial in GP crossover than syntactic locality. Together
with the evidence in [49], that semantic locality is more beneficial than semantic diversity, we conclude that semantic local-
ity is a truly important property that should be considered in designing GP crossover operators. Finally, we showed that
MSSC improves GP performance on two difficult real-world problems: time series prediction problem and approximating
the Gaussian Q-function.

9. Future work

In the near future, we plan to extend this work in a number of ways. Firstly our problem domain so far has been mainly
real-valued symbolic regression. However this is not a serious limitation of the method, as any classification problem could
be recast as a real-valued regression problem (e.g. see [18] and references therein). We are planning to apply semantic sim-
ilarity based crossovers to classification problems. We also plan to work on Boolean problems. Even though we could treat
boolean problems as binary classification problems with binary data attributes, and could therefore solve them directly,
semantic similarity calibrated for a Boolean domain could potentially be a better solution (see [47] for some preliminary
results).

At a more theoretical level, we would like to investigate the relationship between improving semantic locality and GP
bloat. Previous work has shown that semantics-based crossovers reduce GP bloat and improve generalisation capacity
[45]. We would like to understand why.

Finally, we plan to further investigate the relationship between syntactic and semantic change in semantically-based
crossover.
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Appendix A. The list of abbreviations

See Table A.13.

Appendix B. Some additional figures

This appendix presents some additional figures for the results in Sections 4 and 5. For all Figures in this appendix, we use
SSC with the upper bound semantic sensitivity set to 0.4 (SSC04). With SASE we use the version where the rate of successful
SSC is adapted (SASES) and with MSSC, the Max Trial was set as 12.

Fig. 2 shows the mean best fitness of four crossovers over the course of the evolutionary process on some function includ-
ing F3, F4, F7 and F8. It can be seen from this figure that the improvement of SSC, SASE and MSSC over standard crossover are
maintained over the whole evolutionary process, none of these crossovers becoming trapped in local optima.
Table A.13
Abbreviations in the paper.

Abbreviation Meaning

GP Genetic Programming
SS Sampling Semantics
SSD Subtree Semantic Distance
SC Standard Crossover
SAC Semantic Aware Crossover
SSC Semantic Similarity based Crossover
LBSS The lower bound semantic sensitivity
UBSS The upper bound semantic sensitivity
SASE Self-Adaptive Successful Execution
MSSC The Most Semantic Similarity based Crossover
SySC Syntactic Similarity based Crossover
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Fig. 2. Mean best fitness of four methods over generations on some functions.
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Some detailed properties of the semantics-based crossover on function F3 are plotted in Fig. 3. It shows that semantics-
based crossovers maintain better diversity (Fig. 3a), and higher locality (Fig. 3b), generate less bloat (except for SSC), (Fig. 3c)
and have a better constructive ratio (Fig. 3d) on this problem.

Fig. 4 presents the constructive rates of three levels (SC1, SC3 and SC5) of standard crossover. It can be observed that SC1
has a much higher constructive ratio than SC3 and SC5. Thus greater locality (smaller changes as in SC1) leads to higher con-
structivity in crossover.

Appendix C. Autocorrelation function

The autocorrelation function was proposed by Weinberger [51]. For a given fitness landscape f (the fitness function), a
starting point s0 is randomly selected. Random sampling is used to generate a random walk of N steps F ¼ ff ðsiÞgN

i¼0. The
autocorrelation function is:
qðhÞ ¼ RðhÞ
s2

f

ðC:1Þ
where h is the distance between two points in the random walk, and s2
f is the variance of the sequence, calculated as:
s2
f ¼

PN
i¼0ðf ðsiÞ �mFÞ2

N þ 1
ðC:2Þ
and RðhÞ is the auto-covariance function of sequence F. For each h;RðhÞ is estimated by:
RðhÞ ¼
PN�h

i¼0 ðf ðsiÞ �mFÞ � ðf ðsiþhÞ �mFÞ
N � hþ 1

ðC:3Þ
where mF is mean of fitness sequence F;mF ¼ 1
Nþ1

PN
i¼0ðf ðsiÞÞ. The autocorrelation function indicates the correlation between

points that are separated by a distance h. A smooth landscape is highly correlated, as the fitness difference between a point
and its neighbours is small. In this case the autocorrelation function is greater. Conversely, if a fitness landscape is rugged,
the fitness difference between neighbouring points is high, and the autocorrelation function is smaller.
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Fig. 3. The diversity, locality, average of population size and constructive ratio of four methods on functions F3 over generations.
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Appendix D. The Mackey–Glass time series

Mackey and Glass introduced their time series in 1977 [32]. It has been widely used as a benchmark for the generalisation
ability of a variety of machine learning methods. The Mackey–Glass equation is:
xðt þ 1Þ ¼ xðtÞ � bxðtÞ þ a
xðt � sÞ

1þ xðt � sÞ10 ðD:1Þ
With a ¼ 0:2; b ¼ 0:1 and s ¼ 17, the time series is aperiodic, non-convergent, and completely chaotic. Fig. 5 plots the first
2000 points.
Appendix E. The Gaussian Q-function

The Gaussian Q-function is important across of a wide range of fields, because of the generally accepted assumption, that
unknown system noise is Gaussian [44]. Thus computing expectations implies integrating over the tail of the Gaussian, so
that we need to compute the function QðxÞ defined by:
QðxÞ ¼
Z 1

x

1ffiffiffiffiffiffiffi
2p
p e�y2=2 dy ðE:1Þ
A detailed discussion of the importance of the Q function, of the difficulties in approximating it, and of previous work on
this problem, are included in [7]. As with Mackey–Glass, there can be no closed form solution [40]. The most accurate form
found to date [3], is:
QðxÞ � 1
ð1� aÞxþ a

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ b
p � e�

x2
2ffiffiffiffiffiffiffi

2p
p ðE:2Þ
with a = 0.339, b = 5.510; it is known as the OPBCS approximation.
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