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Abstract The purpose of this paper is to examine the notion of completely random opera-
tors and to present some results on the existence of random coincidence points of completely
random operators. Some applications to random fixed point theorems and random equations
are given.
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1 Introduction

Let (Ω,F,P ) be a probability space, X,Y be separable metric spaces, and f : Ω × X → Y

be a random operator in the sense that for each fixed x in X, the mapping f (·, x): ω �→
f (ω,x) is measurable. The random operator f is said to be continuous if for each ω in Ω ,
the mapping f (ω, ·): x �→ f (ω,x) is continuous. An X-valued random variable ξ is said to
be a random fixed point of the random operator f : Ω × X → X if f (ω, ξ(ω)) = ξ(ω) a.s.,
and an X-valued random variable ξ is said to be a random coincidence point of the random
operators f,g: Ω × X → X if f (ω, ξ(ω)) = g(ω, ξ(ω)) a.s.

The theory of random fixed points and random coincidence points is an important topic
of stochastic analysis and has been investigated by various authors (see, e.g., [2–6, 8–12]).
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For continuous random operators, in [14, Theorem 2.3], it was shown that if X,Y are
Polish spaces and f,g are continuous random operators, the random equation f (ω,x) =
g(ω,x) has a random solution if and only if the deterministic equation f (ω, ·) = g(ω, ·) has
a solution for almost all ω. From this it follows that if X is a Polish space and f,g: Ω ×X →
X are two continuous random operators, then f,g have a random coincidence point if and
only if for almost all ω, the deterministic mappings f (ω, ·) and g(ω, ·) have a coincidence
point. Therefore, the results on the random coincidence points follow immediately from the
results on the corresponding deterministic coincidence points.

In this paper, we are concerned with a mapping Φ: LX
0 (Ω) → LY

0 (Ω). Since a random
operator f can be viewed as an action that transforms each deterministic input x in X into
a random output f (x) in LY

0 (Ω), whereas Φ: LX
0 (Ω) → LY

0 (Ω) can be viewed as an action
that transforms each random input u in LX

0 (Ω) into a random output Φu in LY
0 (Ω), we call

Φ a completely random operator. In Sect. 2, we present some properties of completely ran-
dom operators. Section 3 deals with the notion of a random coincidence point of completely
random operators and gives some conditions ensuring the existence of a random coincidence
point of completely random operators. It should be noted that the existence of a random co-
incidence point of completely random operators does not follow from the existence of the
corresponding deterministic coincidence point theorem as in the case of random operators.
In Sect. 4, some applications to random fixed point theorems and random equations are
presented.

2 Some properties of completely random operators

Let (Ω,F,P ) be a complete probability space, and X be a separable Banach space. A map-
ping ξ : Ω → X is called an X-valued random variable if ξ is (F,B(X))-measurable, where
B(X) denotes the Borel σ -algebra of X. The set of all (equivalent classes) X-valued ran-
dom variables is denoted by LX

0 (Ω), and it is equipped with the topology of convergence in
probability. For each p > 0, the set of X-valued random variables ξ such that E‖ξ‖p < ∞
is denoted by LX

p (Ω).
First, recall the following (see, e.g., [13]).

Definition 1 Let X,Y be two separable Banach spaces.

1. A mapping f : Ω × X → Y is said to be a random operator if for each fixed x in X,
the mapping ω �→ f (ω,x) is measurable.

2. The random operator f : Ω ×X → Y is said to be continuous if for each ω in Ω , the map-
ping x �→ f (ω,x) is continuous.

3. Let f,g: Ω × X → Y be two random operators. The random operator g is said to be a
modification of f if for each x in X, we have f (ω,x) = g(ω,x) a.s.

Note that the exceptional set may depend on x.

The notion of a completely random operator is defined as follows.

Definition 2 Let X,Y be two separable Banach spaces.

1. A mapping Φ: LX
0 (Ω) → LY

0 (Ω) is called a completely random operator.
2. A completely random operator Φ is said to be continuous if for each sequence (un) in

LX
0 (Ω) such that limun = u a.s., we have limΦun = Φu a.s.
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3. A completely random operator Φ is said to be continuous in probability if for each se-
quence (un) in LX

0 (Ω) such that limun = u in probability, we have limΦun = Φu in
probability.

4. A completely random operator Φ is said to be an extension of a random operator
f : Ω × X → Y if for each x in X,

Φx(ω) = f (ω,x) a.s.,

where for each x in X, x denotes the random variable u in LX
0 (Ω) given by

u(ω) = x a.s.

Theorem 1 Let f : Ω ×X → Y be a random operator admitting a continuous modification.
Then there exists a continuous completely random operator Φ : LX

0 (Ω) → LY
0 (Ω) such that

Φ is an extension of f .

Proof Let g be a continuous modification of f . Define Φ: LX
0 (Ω) → LY

0 (Ω) by

Φu(ω) = g
(
ω,u(ω)

)
(1)

for each random variable u in LX
0 (Ω). This mapping is well defined. Indeed, by [7, Theo-

rem 6.1], g: Ω × X → Y is measurable, and hence ω �→ g(ω,u(ω)) is measurable. Next,
we have to show that if h is another continuous modification of f , then

g
(
ω,u(ω)

) = h
(
ω,u(ω)

)
a.s.

By the separability of X there exists a sequence (xn) dense in X. For each xn, there exists a
set Ωn of probability one such that g(ω,xn) = h(ω,xn) for all ω in Ωn. Let Ω0 = ∩∞

n=1Ωn.
Clearly, Ω0 has probability one, and we have

g(ω,xn) = h(ω,xn) ∀ω ∈ Ω0 ∀n. (2)

Fix ω in Ω0. By the density of (xn) in X, there exists a subsequence (xnk
) converging to

u(ω). By the continuity of the mappings x �→ g(ω,x) and x �→ h(ω,x) we have

lim
k→∞

g(ω,xnk
) = g

(
ω,u(ω)

)
, lim

k→∞
h(ω,xnk

) = h
(
ω,u(ω)

)
. (3)

By (2) and (3) we conclude that h(ω, ξ(ω)) = g(ω, ξ(ω)) for all ω in Ω0, as claimed.
By (1) it is easy to show that the completely random operator Φ is continuous and is an

extension of f . �

Theorem 2 Let Φ,Ψ : LX
0 (Ω) → LY

0 (Ω) be probabilistic completely random operators,
and Ψ be continuous in probability. Assume that there exists a positive random variable
k(ω) such that for each pair u,v in LX

0 (Ω) and all t > 0, we have

P
(‖Φu − Φv‖ > t

) ≤ P
(
k(ω)‖Ψ u − Ψ v‖ > t

)
. (4)

Then Φ is also continuous in probability.
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Proof For all u,v in LX
0 (Ω), we have

P
(‖Φu − Φv‖ > t

) ≤ P
(
k(ω)‖Ψ u − Ψ v‖ > t

)

= P
(
k(ω)‖Ψ u − Ψ v‖ > t,‖Ψ u − Ψ v‖ ≤ r

) + P
(‖Ψ u − Ψ v‖ > r

)

≤ P
(
rk(ω) > t

) + P
(‖Ψ u − Ψ v‖ > r

)

= P
(
k(ω) > t/r

) + P
(‖Ψ u − Ψ v‖ > r

)
.

Suppose that p-limun = u. Then we have

P
(‖Φun − Φu‖ > t

) ≤ P
(
k(ω) > t/r

) + P
(‖Ψ un − Ψ u‖ > r

)
.

So, for each r > 0,

lim sup
n

P
(‖Φun − Φu‖ > t

) ≤ P
(
k(ω) > t/r

) + lim sup
n

P
(‖Ψ un − Ψ u‖ > t

)

= P
(
k(ω) > t/r

)
.

Letting r → 0, we get

lim sup
n

P
(‖Φun − Φu‖ > t

) = 0.

Therefore, Φ is continuous in probability. �

3 Random coincidence points of completely random operators

Let f,g: Ω × X → X be random operators. Recall (see, e.g., [1, 2, 4, 12]) that an X-valued
random variable ξ is said to be a random fixed point of the random operator f if

f
(
ω, ξ(ω)

) = ξ(ω) a.s.

An X-valued random variable u∗ is said to be a random coincidence point of two random
operators f,g if

f
(
ω,u∗(ω)

) = g
(
ω,u∗(ω)

)
a.s.

Assume that f,g are continuous. Then, by Theorem 1 the mappings Φ,Ψ : LX
0 (Ω) →

LX
0 (Ω) defined respectively by

Φu(ω) = f
(
ω,u(ω)

)
, Ψ u(ω) = g

(
ω,u(ω)

)

are completely random operators extending f and g, respectively. For each random fixed
point ξ of f , we get

Φξ(ω) = ξ(ω) a.s.,

and for each random coincidence point u∗ of two random operators f,g, we have

Φu∗(ω) = Ψ u∗(ω) a.s.

This leads us to the next definition.

Author's personal copy
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Definition 3

1. Let Φ: LX
0 (Ω) → LX

0 (Ω) be a completely random operator. An X-valued random vari-
able ξ in LX

0 (Ω) is called a random fixed point of Φ if

Φξ = ξ.

2. Let Φ1,Φ2, . . . ,Φn: LX
0 (Ω) → LX

0 (Ω) be completely random operators. An X-valued
random variable u∗ in LX

0 (Ω) is called a random coincidence point of Φ1,Φ2, . . . ,Φn if

Φ1u
∗ = Φ2u

∗ = · · · = Φnu
∗. (5)

We are going to present some conditions ensuring the existence of a random coincidence
point of completely random operators.

Theorem 3 Let Φ,Ψ : LX
0 (Ω) → LX

0 (Ω) be random operators, and f : [0,∞) → [0,∞)

be a mapping such that f (t) = 0 if and only if t = 0 and f (t) < t for all t > 0. For each
t > 0, define

h(t) = inf
s≥t

f (s)

s
. (6)

Assume that h(t) > 0 for all t > 0 and

(a) Ψ (LX
0 (Ω)) is closed in LX

0 (Ω);
(b) Φ(LX

0 (Ω)) ⊂ Ψ (LX
0 (Ω));

(c) for each pair u,v in LX
0 (Ω) and all t > 0, we have

P
(‖Φu − Φv‖ > t

) ≤ P
(‖Ψ u − Ψ v‖ − f

(‖Ψ u − Ψ v‖) > t
)
. (7)

Then Φ,Ψ have a random coincidence point if and only if there exist a random variable u0

in LX
0 (Ω) and p > 0 such that

M = E‖Φu0 − Ψ u0‖p < ∞. (8)

Proof If Φ,Ψ have a coincidence point u∗, then (8) holds with u0 = u∗ for any p > 0.
Conversely, suppose that E‖Φu0 − Ψ u0‖p < ∞ for some random variable u0 in LX

0 (Ω)

and p > 0. By assumption (b) there exists a random variable u1 in LX
0 (Ω) such that

Ψ u1 = Φu0. Again, there exists a random variable u2 in LX
0 (Ω) such that Ψ u2 = Φu1.

By induction, there exists a sequence (un) in LX
0 (Ω) such that

Ψ un = Φun−1, n = 1,2, . . . . (9)

We will show that (ξn) given by ξn = Ψ un = Φun−1 (n = 1,2, . . .) is a Cauchy sequence in
LX

0 (Ω). Define the function g(t), t > 0, by

g(t) = 1 − f (t)

t
.

So, we have

f (t) = (
1 − g(t)

)
t.
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Since f (t) > 0 for all t > 0, we get g(t) < 1 for all t > 0. For any u,v in LX
0 (Ω), we have

P
(‖Φu − Φv‖ > t

) ≤ P
(‖Ψ u − Ψ v‖ − f

(‖Ψ u − Ψ v‖) > t
)
.

Equivalently,

P
(‖Φu − Φv‖ > t

) ≤ P
(
g
(‖Ψ u − Ψ v‖)‖Ψ u − Ψ v‖ > t

)
. (10)

Fix t > 0. For all s ≥ t > 0, we have

g(s) = 1 − f (s)

s
≤ 1 − h(t) = q(t).

Since g(t) < 1, we get

{
g
(‖Ψ u − Ψ v‖)‖Ψ u − Ψ v‖ > t

} ⊂ {‖Ψ u − Ψ v‖ > t
}
.

Hence,

P
(‖Φu − Φv‖ > t

) ≤ P
(
g
(‖Ψ u − Ψ v‖)‖Ψ u − Ψ v‖ > t

)

= P
(
g
(‖Ψ u − Ψ v‖)‖Ψ u − Ψ v‖ > t,‖Ψ u − Ψ v‖ > t

)

≤ P
(
q(t)‖Ψ u − Ψ v‖ > t,‖Ψ u − Ψ v‖ > t

)

≤ P
(
q(t)‖Ψ u − Ψ v‖ > t

)

= P
(‖Ψ u − Ψ v‖ > t/q(t)

) = P
(‖Ψ u − Ψ v‖ > t/q

)
,

where q = q(t). Note that q < 1 since h(t) > 0.
Thus, for each n, we obtain

P
(‖ξn+1 − ξn‖ > t

) = P
(‖Φun − Φun−1‖ > t

)

≤ P
(‖Ψ un − Ψ un−1‖ > t/q

)

= P
(‖ξn − ξn−1‖ > t

)
.

By induction and the Chebyshev inequality we get

P
(‖ξn+1 − ξn‖ > t

) ≤ P
(‖ξn − ξn−1‖ > t/q

)

≤ · · ·
≤ P

(‖ξ2 − ξ1‖ > t/qn−1
)

= P
(‖Φu1 − Φu0‖ > t/qn−1

)

≤ P
(‖Ψ u1 − Ψ u0‖ > t/qn

)

= P
(‖Φu0 − Ψ u0‖ > t/qn

)

≤ E‖Φu0 − Ψ u0‖p (qn)p

tp
= M

(qn)p

tp
.
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Let r = x
q

, where q < x < 1. Then r > 1 and

(r − 1)

(
1

r
+ 1

r2
+ · · · + 1

rm

)
+ 1

rm
= 1 ∀m ≥ 1.

Thus, for any t > 0 and m,n in N , we have

P
(‖ξn+m − ξn‖ > t

) ≤ P
(‖ξn+m − ξn‖ >

(
1 − 1/rm

)
t
)

≤ P
(‖ξn+m − ξn+m−1‖ > t(r − 1)/rm

) + · · ·
+ P

(‖ξn+1 − ξn‖ > t(r − 1)/r

)

≤ M

[(r − 1)t]p
[(

rm
)p(

qn+m−1
)p + · · · + rp

(
qn

)p]

= M

[(r − 1)t]p
(
qn

)p
rp

[
(qr)p(m−1) + · · · + (qr)p + 1

]

= M

[(r − 1)t]p
(
qn

)p
rp 1 − (qr)mp

1 − (qr)p

<
Mrp

[(r − 1)t]p[1 − (qr)p]
(
qp

)n
,

which tends to 0 as n → ∞. It follows that (ξn) is a Cauchy sequence in LX
0 (Ω). Hence,

there exists ξ in LX
0 (Ω) such that p-lim ξn = ξ . By assumption (a), there exists u∗ in LX

0 (Ω)

such that Ψ u∗ = ξ . So we have

P
(∥∥ξn+1 − Φu∗∥∥ > t

) = P
(∥∥Ψ un+1 − Φu∗∥∥ > t

)

= P
(∥∥Φun − Φu∗∥∥ > t

)

≤ P
(∥∥Ψ un − Ψ u∗∥∥ − f

(∥∥Ψ un − Ψ u∗∥∥)
> t

)

≤ P
(∥∥Ψ un − Ψ u∗∥∥ > t

) = P
(‖ξn − ξ‖ > t

)
.

Consequently,

P
(∥∥ξ − Φu∗∥∥ > t

) ≤ P
(‖ξ − ξn+1‖ > t/2

) + P
(∥∥ξn+1 − Φu∗∥∥ > t/2

)

≤ P
(‖ξ − ξn+1‖ > t/2

) + P
(‖ξn − ξ‖ > t/2

)
.

Letting n → ∞, we get P (‖ξ − Φu∗‖ > t) = 0 for all t > 0, which implies that Φu∗ =
ξ = Ψ u∗. Hence, u∗ is a random coincidence point of Φ,Ψ . �

Corollary 1 Let Φ,Ψ be completely random operators satisfying conditions (a) and (b)
stated in Theorem 3. Assume that there exists a number q in (0,1) such that

P
(‖Φu − Φv‖ > t

) ≤ P
(‖Ψ u − Ψ v‖ > t/q

)
(11)

for all random variables u,v in LX
0 (Ω) and t > 0. Then Φ,Ψ have a random coincidence

point if and only if there exist a random variable u0 in LX
0 (Ω) and p > 0 such that (8) holds.
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Proof Consider the functions f (t) = (1 − q)t and h(t) = 1 − q > 0. Then f (t) satisfies the
conditions stated in Theorem 3. �

Remark 1 The next example shows that a random coincidence point of Φ and Ψ in Theo-
rem 3 needs not to be unique.

Example 1 Define two completely random operators Φ,Ψ : LR
0 (Ω) → LR

0 (Ω) by

Φu = q|u| + η, Ψ u = |u|,
where η is a positive random variable, and q is in (0,1). It is easy to check that Φ,Ψ satisfy
all assumptions of Theorem 3 with f (t) = (1 − q)t . On the other hand, Φ and Ψ have two
random coincidence points u∗

1 = 1
1−q

η and u∗
2 = − 1

1−q
η.

Theorem 4 Let f : [0,∞) → [0,∞) be a function such that f (0) = 0 and f (t) < t . Put

h(t) = inf
s≥t

f (s)

s
∀t > 0. (12)

Assume that h(t) > 0 for all t > 0, Φ,Ψ , and Θ are three probabilistic completely random
operators satisfying the following conditions

(a) Θ(LX
0 (Ω)) is closed in LX

0 (Ω);
(b) Φ(LX

0 (Ω)) ⊂ Θ(LX
0 (Ω)), Ψ (LX

0 (Ω)) ⊂ Θ(LX
0 (Ω));

(c) for any random variables u,v in LX
0 (Ω) and t > 0, we have

P
(‖Φu − Ψ v‖ > t

) ≤ P
(‖Θu − Θv‖ − f

(‖Θu − Θv‖) > t
)
. (13)

Then Φ,Ψ , and Θ have a random coincidence point if and only if there exist a random
variable u0 in LX

0 (Ω) and p > 0 such that

M = E‖Φu0 − Θu0‖p < ∞. (14)

Proof If Φ,Ψ , and Θ have a random coincidence point u∗, then (14) holds with u0 = u∗ for
any p > 0.

Conversely, suppose that E‖Φu0 − Θu0‖p < ∞ for some random variable u0 in LX
0 (Ω)

and p > 0. By assumption (b) there exists a random variable u1 in LX
0 (Ω) such that Θu1 =

Φu0. Again, there exists a random variable u2 in LX
0 (Ω) such that Θu2 = Ψ u1. By induction

there exists a sequence (un) in LX
0 (Ω) such that

Θu1 = Φu0, Θu2 = Ψ u1, . . . , Θu2n+1 = Φu2n,

Θu2n+2 = Ψ u2n+1, n = 1,2, . . . .
(15)

We will show that (ξn) given by ξn = Θun−1 (n = 2,3, . . .) in (15) is a Cauchy sequence
in LX

0 (Ω). Define the function g(t), t > 0, by

g(t) = 1 − f (t)

t
.

We have

f (t) = (
1 − g(t)

)
t.
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Since f (t) > 0 for all t > 0, we get g(t) < 1 for all t > 0. For any random variables u,v in
LX

0 (Ω), we have

P
(‖Φu − Ψ v‖ > t

) ≤ P
(‖Θu − Θv‖ − f (‖Θu − Θv‖) > t

)
.

Equivalently,

P
(‖Φu − Ψ v‖ > t

) ≤ P
(
g
(‖Θu − Θv‖)‖Θu − Θv‖ > t

)
. (16)

Fix t > 0. For all s ≥ t > 0, we have

g(s) = 1 − f (s)

s
≤ 1 − h(t) = q(t).

Since g(t) < 1, we get

{
g
(‖Θu − Θv‖)‖Θu − Θv‖ > t

} ⊂ {‖Θu − Θv‖ > t
}
.

Hence,

P
(‖Φu − Ψ v‖ > t

) ≤ P
(
g
(‖Θu − Θv‖)‖Θu − Θv‖ > t

)

= P
(
g
(‖Θu − Θv‖)‖Θu − Θv‖ > t,‖Θu − Θv‖ > t

)

≤ P
(
q(t)‖Θu − Θv‖ > t,‖Θu − Θv‖ > t

)

≤ P
(
q(t)‖Θu − Ψ v‖ > t

)

= P
(‖Θu − Θv‖ > t/q(t)

) = P
(‖Θu − Θv‖ > t/q

)
,

where q = q(t). Note that q < 1 since h(t) > 0.
Then, for each n, we obtain

P
(‖ξ2n+2 − ξ2n+1‖ > t

) = P
(‖Φu2n − Ψ u2n−1‖ > t

)

≤ P
(‖Θu2n − Θu2n−1‖ > t/q

)

= P
(‖ξ2n+1 − ξ2n‖ > t/q

)

and

P
(‖ξ2n+1 − ξ2n‖ > t

) = P
(‖Φu2n−2 − Ψ u2n−1‖ > t

)

≤ P
(‖Θu2n−2 − Θu2n−1‖ > t/q

)

= P
(‖ξ2n − ξ2n−1‖ > t/q

)
.

By induction and by the Chebyshev inequality we get

P
(‖ξn+1 − ξn‖ > t

) ≤ P
(‖ξn − ξn−1‖ > t/q

)

≤ · · ·
≤ P

(‖ξ3 − ξ2‖ > t/qn−2
)

= P
(‖Ψ u1 − Φu0‖ > t/qn−1

)
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≤ P
(‖Θu1 − Θu0‖ > t/qn−1

)

= P
(‖Φu0 − Θu0‖ > t/qn−1

)

≤ E‖Φu0 − Θu0‖p (qn−1)p

tp
= M

(qn−1)p

tp
.

Let r = x
q

, where q < x < 1. Then r > 1 and

(r − 1)

(
1

r
+ 1

r2
+ · · · + 1

rm

)
+ 1

rm
= 1 ∀m ≥ 1.

Thus, for any t > 0, n ≥ 2, and m in N , we have

P
(‖ξn+m − ξn‖ > t

) ≤ P

(
‖ξn+m − ξn‖ >

(
1 − 1

rm

)
t

)

≤ P
(‖ξn+m − ξn+m−1‖ > t(r − 1)/rm

)

+ · · · + P
(‖ξn+1 − ξn‖ > t(r − 1)/r

)

≤ M

[(r − 1)t]p
[(

rm
)p(

qn+m−2
)p + · · · + rp

(
qn−1

)p]

= M

[(r − 1)t]p
(
qn−1

)p
rp

[
(qr)p(m−1) + · · · + (qr)p + 1

]

= M

[(r − 1)t]p
(
qn−1

)p
rp 1 − (qr)m−1p

1 − (qr)p

<
Mrp

[(r − 1)t]p[1 − (qr)p]
(
qp

)n−1
,

which tends to 0 as n → ∞. It implies that (ξn) is a Cauchy sequence in LX
0 (Ω). Hence,

there exists ξ in LX
0 (Ω) such that p-lim ξn = ξ . By assumption (a) there exists u∗ in LX

0 (Ω)

such that Θu∗ = ξ . So we have

P
(∥∥Θu2n+1 − Ψ u∗∥∥ > t

) = P
(∥∥Φu2n − Ψ u∗∥∥ > t

)

≤ P
(∥∥Θu2n − Θu∗∥∥ > t

)

≤ P
(∥∥Θu2n − Θu∗∥∥ − f

(∥∥Θu2n − Θu∗∥∥)
> t

)

≤ P
(∥∥Θu2n − Θu∗∥∥ > t/q

)

= P
(‖ξ2n+1 − ξ‖ > t/q

)
.

Letting n → ∞, we get P (‖ξ − Ψ u∗‖ > t) = 0, which implies that Ψ u∗ = ξ a.s. By the
same proof we have Φu∗ = ξ a.s. Hence, u∗ is a random coincidence point of Φ,Ψ ,
and Θ . �

Theorem 5 Let Φ,Ψ : LX
0 (Ω) → LX

0 (Ω) be completely random operators, f : [0,∞) →
[0,∞) be a continuous, increasing function such that f (0) = 0 and limt→∞ f (t) = ∞, and
q be a positive number in (0,1). Assume that
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(a) Ψ (LX
0 (Ω)) is closed in LX

0 (Ω);
(b) Φ(LX

0 (Ω)) ⊂ Ψ (LX
0 (Ω));

(c) for any u,v in LX
0 (Ω) and t > 0, we have

P
(‖Φu − Φv‖ > f (t)

) ≤ P
(‖Ψ u − Ψ v‖ > f (t/q)

)
. (17)

The following assertions are valid:

1. If Φ,Ψ have a random coincidence point, then there exist a random variable u0 in
LX

0 (Ω) and p > 0 such that

M = sup
t>0

tpP
(‖Φu0 − Ψ u0‖ > f (t)

)
< ∞. (18)

2. If there exists a number c in (q,1) such that

∞∑

n=1

f
(
cn

)
< ∞, (19)

then condition (18) is sufficient for Φ,Ψ to have a random coincidence point.
3. If for all t, s > 0,

f (t + s) ≥ f (t) + f (s), (20)

then condition (18) is also sufficient for Φ,Ψ to have a random coincidence point.

Proof Let g = f −1 be the inverse function of f . Then g: [0,∞) → [0,∞) is increasing
with g(0) = 0 and limt→∞ g(t) = ∞. Condition (17) is equivalent to

P
(
g
(‖Φu − Φv‖) > t

) ≤ P
(
g
(‖Ψ u − Ψ v‖) > t/q

)
. (21)

Let u0 be a random variable in LX
0 (Ω) such that (18) holds. By assumption (b) there exists a

random variable u1 in LX
0 (Ω) such that Ψ u1 = Φu0. Again, there exists a random variable

u2 in LX
0 (Ω) such that Ψ u2 = Φu1. By induction there exists a sequence (un) in LX

0 (Ω)

such that

Ψ un = Φun−1, n = 1,2, . . . . (22)

Put ξn = Ψ un = Φun−1, n = 1,2, . . .. From (21) it follows that

P
(
g
(‖ξn+1 − ξn‖

)
> t

) = P
(
g
(‖Φun − Φun−1‖

)
> t

)

≤ P
(
g
(‖Ψ un − Ψ un−1‖

)
> t/q

)

= P
(
g
(‖ξn − ξn−1‖

)
> t/q

)
.

By induction, for each n, we obtain

P
(
g
(‖ξn+1 − ξn‖

)
> t

) ≤ P
(
g
(‖Ψ u1 − Ψ u0‖

)
> t/qn

)

= P
(
g
(‖Φu0 − Ψ u0‖

)
> t/qn

)
. (23)
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1. Suppose that Φ,Ψ have a random coincidence point u∗. Then taking u0 = u∗, we obtain
M = 0.

2. From (18) we have

P
(
g
(‖Φu0 − Ψ u0‖

)
> s

) = P
(
g
(‖Ψ u1 − Ψ u0‖

)
> s

) ≤ M

sp
. (24)

From (23) and (24) we get

P
(
g
(‖ξn+1 − ξn‖

)
> t

) ≤ Mqnp

tp
. (25)

Taking t = cn, from (25) we get

P
(
g
(‖ξn+1 − ξn‖

)
> cn

) ≤ M
qnp

cnp
, (26)

i.e.,

P
(‖ξn+1 − ξn‖ > f

(
cn

)) ≤ M
qnp

cnp
. (27)

Since

∞∑

n=1

P
(‖ξn+1 − ξn‖ > f

(
cn

)) ≤ M

∞∑

n=1

qnp

cnp
< ∞,

by the Borel–Cantelli lemma there is a set D with probability one such that for each ω

in D, there is N(ω) satisfying

∥∥ξn+1(ω) − ξn(ω)
∥∥ ≤ f

(
cn

) ∀n > N(ω).

By (19) we conclude that
∑∞

n=1 ‖ξn+1(ω) − ξn(ω)‖ < ∞ for all ω in D, which implies
that there exists lim ξn(ω) for all ω in D. Consequently, the sequence (ξn) converges a.s.
to ξ in LX

0 (Ω). By assumption (a), there exists u∗ in LX
0 (Ω) such that Ψ u∗ = ξ . So we

have

P
(∥∥Ψ un+1 − Φu∗∥∥ > f (t)

) = P
(∥∥Φun − Φu∗∥∥ > f (t)

)

≤ P
(∥∥Ψ un − Ψ u∗∥∥ > f (t/q)

)

= P
(‖ξn − ξ‖ > f (t/q)

)
.

Letting n → ∞, we get P (‖ξ − Φu∗‖ > f (t)) = 0 for all t > 0; hence, Φu∗ = ξ = Ψ u∗

a.s. Thus, u∗ is a random coincidence point of Φ,Ψ .
3. It is easy to see that, for any t, s > 0,

g(s + t) ≤ g(t) + g(s).

Hence, for a = ∑m

i=1 si , we have
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P
(
g
(‖ξn+m − ξn‖

)
> a

) ≤ P

(

g

(
m∑

i=1

‖ξn+i − ξn+i−1‖
)

> a

)

≤ P

(
m∑

i=1

g
(‖ξn+i − ξn+i−1‖

)
> a

)

≤
m∑

i=1

P
(
g
(‖ξn+i − ξn+i−1‖

)
> si

)
.

From (25) it follows that

P
(
g
(‖ξn+i − ξn+i−1‖

)
> si

) ≤ Mq(n+i−1)p

s
p

i

. (28)

Put r = x
q

, where q < x < 1 and si = s(r − 1)/ri . An argument similar to that in
the proof of Theorem 3 yields

lim
n→∞P

(
g
(‖ξn+m − ξn‖

)
> s

) = 0 ∀s > 0,

so

lim
n→∞P

(‖ξn+m − ξn‖ > f (s)
) = 0 ∀s > 0.

Thus, we obtain

lim
n→∞P

(‖ξn+m − ξn‖ > t
) = 0 ∀t > 0.

Consequently, the sequence (ξn) converges in probability to ξ in LX
0 (Ω). By assump-

tion (a), there exists u∗ in LX
0 (Ω) such that Ψ u∗ = ξ . So, we have

P
(∥∥Ψ un+1 − Φu∗∥∥ > f (t)

) = P
(∥∥Φun − Φu∗∥∥ > f (t)

)

≤ P
(∥∥Ψ un − Ψ u∗∥∥ > f (t/q)

)

= P
(‖ξn − ξ‖ > f (t/q)

)
.

Letting n → ∞, we get P (‖ξ − Φu∗‖ > f (t)) = 0 for all t > 0 implying Φu∗ = ξ =
Ψ u∗ a.s. Hence, u∗ is a random coincidence point of Φ,Ψ . �

Theorem 6 Let Φ,Ψ,Θ: LX
0 (Ω) → LX

0 (Ω) be completely random operators,
f : [0,∞) → [0,∞) a continuous increasing function such that f (0) = 0, limt→∞ f (t) =
∞, and q be a positive number in (0,1). Assume that

(a) Θ(LX
0 (Ω)) is closed in LX

0 (Ω);
(b) Φ(LX

0 (Ω)) ⊂ Θ(LX
0 (Ω)),Ψ (LX

0 (Ω)) ⊂ Θ(LX
0 (Ω));

(c) for any random variables u,v in LX
0 (Ω) and t > 0, we have

P
(‖Φu − Ψ v‖ > f (t)

) ≤ P
(‖Θu − Θv‖ > f (t/q)

)
. (29)

Then
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1. If Φ,Ψ , and Θ have a random coincidence point, then there exist a random variable u0

in LX
0 (Ω) and p > 0 such that

M = sup
t>0

tpP
(‖Φu0 − Θu0‖ > f (t)

)
< ∞. (30)

2. Assume that there exists a number c in (q,1) such that

∞∑

n=1

f
(
cn

)
< ∞. (31)

Then condition (30) is sufficient for Φ,Ψ , and Θ to have a random coincidence point.
3. Assume that for any t, s > 0

f (t + s) ≥ f (t) + f (s). (32)

Then condition (30) is also sufficient for Φ,Ψ , and Θ to have a random coincidence
point.

Proof Let g = f −1 be the inverse function of f . Then, g: [0,∞) → [0,∞) is increasing
with g(0) = 0 and limt→∞ g(t) = ∞. Condition (29) is equivalent to

P
(
g(‖Φu − Ψ v‖) > t

) ≤ P
(
g(‖Θu − Θv‖) > t/q

)
. (33)

Let u0 be a random variable in LX
0 (Ω) such that (30) holds. By assumption (b) there exists a

random variable u1 in LX
0 (Ω) such that Θu1 = Φu0. Again, there exists a random variable

u2 in LX
0 (Ω) such that Θu2 = Ψ u1. By induction there exists a sequence (un) in LX

0 (Ω)

with

Θu1 = Φu0, Θu2 = Ψ u1, . . . , Θu2n+1 = Φu2n,

Θu2n+2 = Ψ u2n+1, n = 1,2, . . . .
(34)

Put ξn = Θun−1, n = 2,3, . . .. From (33), for each n, we obtain

P
(
g
(‖ξ2n+2 − ξ2n+1‖

)
> t

) = P
(
g
(‖Φu2n − Ψ u2n−1‖

)
> t

)

≤ P
(
g
(‖Θu2n − Θu2n−1‖

)
> t/q

)

= P
(
g
(‖ξ2n+1 − ξ2n‖

)
> t/q

)

and

P
(
g
(‖ξ2n+1 − ξ2n‖

)
> t

) = P
(
g
(‖Φu2n−2 − Ψ u2n−1‖

)
> t

)

≤ P
(
g
(‖Θu2n−2 − Θu2n−1‖

)
> t/q

)

= P
(
g
(‖ξ2n − ξ2n−1‖

)
> t/q

)
.

By induction we obtain that, for each n,

P
(
g
(‖ξn+1 − ξn‖

)
> t

) ≤ P
(
g
(‖Θu1 − Θu0‖

)
> t/qn

)

= P
(
g
(‖Φu0 − Θu0‖

)
> t/qn

)
. (35)
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1. Suppose that Φ,Ψ , and Θ have a random coincidence point u∗. Then taking u0 = u∗, we
obtain M = 0.

2. From (30) we have

P
(
g
(‖Φu0 − Θu0‖

)
> s

) = P
(‖Φu0 − Θu0‖ > f (s)

) ≤ M

sp
. (36)

From (35) and (36) we get

P
(
g
(‖ξn+1 − ξn‖

)
> t

) ≤ Mqnp

tp
. (37)

Taking t = cn, from (37) we get

P
(
g
(‖ξn+1 − ξn‖

)
> cn

) ≤ M
qnp

cnp
, (38)

i.e.,

P
(‖ξn+1 − ξn‖ > f

(
cn

)) ≤ M
qnp

cnp
. (39)

Since

∞∑

n=1

P
(‖ξn+1 − ξn‖ > f

(
cn

)) ≤ M

∞∑

n=1

qnp

cnp
< ∞,

by the Borel–Cantelli lemma, there is a set D with probability one such that for each ω

in D, there is N(ω) with

∥
∥ξn+1(ω) − ξn(ω)

∥
∥ ≤ f

(
cn

) ∀n > N(ω).

By (31) we conclude that
∑∞

n=1 ‖ξn+1(ω) − ξn(ω)‖ < ∞ for all ω in D, which im-
plies that there exists lim ξn(ω) for all ω in D. Consequently, the sequence (ξn) con-
verges a.s. to ξ in LX

0 (Ω). By assumption (a) there exists u∗ in LX
0 (Ω) with Θu∗ = ξ .

So we have

P
(∥∥ξ2n+2 − Ψ u∗∥∥ > f (t)

) = P
(∥∥Φu2n − Ψ u∗∥∥ > f (t)

)

≤ P
(∥∥Θu2n − Θu∗∥∥ > f (t/q)

)

= P
(‖ξ2n+1 − ξ‖ > f (t/q)

)
.

Letting n → ∞, we get P (‖ξ − Ψ u∗‖ > f (t)) = 0 for all t > 0 implying Ψ u∗ =
ξ = Θu∗ a.s. By the same proof we have Φu∗ = ξ a.s. Hence, u∗ is a random coinci-
dence point of Φ,Ψ , and Θ .

3. It is easy to see that, for any t, s > 0,

g(s + t) ≤ g(t) + g(s).

Hence, for a = ∑m

i=1 si , we have
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P
(
g
(‖ξn+m − ξn‖

)
> a

) ≤ P

(

g

(
m∑

i=1

‖ξn+i − ξn+i−1‖
)

> a

)

≤ P

(
m∑

i=1

g
(‖ξn+i − ξn+i−1‖

)
> a

)

≤
m∑

i=1

P
(
g
(‖ξn+i − ξn+i−1‖

)
> si

)
.

From (30) we have

P
(
g
(‖ξn+i − ξn+i−1‖

)
> si

) ≤ Mq(n+i−1)p

s
p

i

. (40)

Put r = x
q

, where q < x < 1 and si = s(r − 1)/ri . An argument similar to that in the
proof of Theorem 3 yields

lim
n→∞P

(
g
(‖ξn+m − ξn‖

)
> s

) = 0 ∀s > 0,

so

lim
n→∞P

(‖ξn+m − ξn‖ > f (s)
) = 0 ∀s > 0.

Thus, we obtain

lim
n→∞P

(‖ξn+m − ξn‖ > t
) = 0 ∀t > 0.

Consequently, the sequence (ξn) converges in probability to ξ in LX
0 (Ω). By assump-

tion (a) there exists u∗ in LX
0 (Ω) satisfying Θu∗ = ξ . So, we have

P
(∥∥ξ2n+2 − Ψ u∗∥∥ > f (t)

) = P
(∥∥Φu2n − Ψ u∗∥∥ > f (t)

)

≤ P
(∥∥Θu2n − Θu∗∥∥ > f (t/q)

)

= P
(‖ξ2n+1 − ξ‖ > f (t/q)

)
.

Letting n → ∞, we get P (‖ξ − Ψ u∗‖ > f (t)) = 0 for all t > 0, implying Ψ u∗ =
ξ = Θu∗ a.s. By the same proof we have Φu∗ = ξ a.s. Hence, u∗ is a random coinci-
dence point of Φ,Ψ , and Θ .

�

4 Applications to random fixed point theorems and random equations

In this section, we present some applications of the obtained results to random fixed point
theorems and random equations.

Theorem 7 Let Φ: LX
0 (Ω) → LX

0 (Ω) be a completely random operator, f : [0,∞) →
[0,∞) be a continuous, increasing function such that f (0) = 0, limt→∞ f (t) = ∞, and
q be a positive number. Assume that

P
(‖Φu − Φv‖ > f (t)

) ≤ P
(‖u − v‖ > f (t/q)

)
(41)
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for each pair u,v in LX
0 (Ω). Then

1. If Φ has a random fixed point, then the random fixed point is unique. Moreover, there
exist a random variable u0 in LX

0 (Ω) and p > 0 such that

M = sup
t>0

tpP
(‖Φu0 − u0‖ > f (t)

)
< ∞. (42)

2. Assume that there exists a number c in (q,1) satisfying

∞∑

n=1

f
(
cn

)
< ∞. (43)

Then condition (42) is sufficient for Φ to have a unique random fixed point.
3. Assume that, for any t, s > 0,

f (t + s) ≥ f (t) + f (s). (44)

Then condition (42) is also sufficient for Φ to have a unique random fixed point.

Proof Let ξ, η be two random fixed points of Φ . Then, for each t > 0, we have

P
(‖ξ − η‖ > f (t)

) = P
(‖Φξ − Φη‖ > f (t)

) ≤ P
(‖ξ − η‖ > f (t/q)

)
.

By induction it follows that

P
(‖ξ − η‖ > f (t)

) ≤ P
(‖ξ − η‖ > f

(
t/qn

)) ∀n.

Since limn→∞ f (t/qn) = +∞, we conclude that P (‖ξ − η‖ > f (t)) = 0 for each t > 0.
Hence, g(‖ξ − η‖) = 0 a.s., with g being the inverse function of f . So we have ξ = η a.s.
as claimed.

Suppose that Φ has a random fixed point ξ . Then, taking u0 = ξ , we obtain M = 0.
Conversely, consider the completely random operator Ψ given by Ψ u = u. According to

Theorem 5, Φ and Ψ have a random coincidence point ξ , which is exactly the random fixed
point of Φ . �

Theorem 8 Let Φ,Ψ : LX
0 (Ω) → LX

0 (Ω) be completely random operators, and f :
[0,∞) → [0,∞) be a mapping such that f (t) = 0 if and only if t = 0 and f (t) < t for
all t > 0. For each t > 0, define

h(t) = inf
s≥t

f (s)

s
. (45)

Assume that h(t) > 0 for all t > 0 and

(a) Ψ (LX
0 (Ω)) is closed in LX

0 (Ω);
(b) Φ(LX

0 (Ω)) ⊂ Ψ (LX
0 (Ω));

(c) for each pair u,v in LX
0 (Ω) and all t > 0, we have

P
(‖Φu − Φv‖ > t

) ≤ P
(‖Ψ u − Ψ v‖ − f

(‖Ψ u − Ψ v‖) > t
)
. (46)

(d) Φ,Ψ commute, i.e., ΦΨ u = Ψ Φu for any random variable u in LX
0 (Ω).
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Then Φ and Ψ have a unique common random fixed point if and only if there exist a random
variable u0 in LX

0 (Ω) and p > 0 such that

M = E‖Φu0 − Ψ u0‖p < ∞. (47)

Proof If Φ and Ψ have a common random fixed point ξ , then (47) holds with u0 = ξ and
any p > 0. Conversely, suppose that (47) holds. By Theorem 3 there exists u∗ such that
Φu∗ = Ψ u∗ = ξ . For t > 0, we have

P
(‖Φξ − ξ‖ > t

) = P
(‖Φξ − Φu∗‖ > t

) ≤ P
(‖Ψ ξ − Ψ u∗‖ > t/q

)

= P
(‖Ψ Φu∗ − ξ‖ > t/q

) = P
(‖ΦΨ u∗ − ξ‖ > t/q

)

= P
(‖Φξ − ξ‖ > t/q

)
.

By induction it follows that P (‖Φξ −ξ‖ > t) ≤ P (‖Φξ −ξ‖ > t/qn) for any n ∈ N . Letting
n → ∞, we have P (‖Φξ − ξ‖ > t) = 0 for any t > 0. Thus, Φξ = ξ , i.e., ξ is a random
fixed point of Φ . We have Ψ ξ = Ψ Φu∗ = ΦΨ u∗ = Φξ = ξ . Hence, ξ is also a random
fixed point of Ψ .

Let ξ1 and ξ2 be two common random fixed points of Φ and Ψ . For each t > 0, we have

P
(‖ξ1 − ξ2‖ > t

) = P
(‖Φξ1 − Φξ2‖ > t

) ≤ P
(‖Ψ ξ1 − Ψ ξ2‖ > t/q

)

= P
(‖ξ1 − ξ2‖ > t/q

) ≤ · · · ≤ P
(‖ξ1 − ξ2‖ > t/qn

)
.

Letting n → ∞, we have P (‖ξ1 − ξ2‖ > t) = 0 for all t > 0. Hence, ξ1 = ξ2. �

Corollary 2 Let Φ: LX
0 (Ω) → LX

0 (Ω) be a probabilistic q-contraction completely random
operator in the sense that there exists a number q in (0,1) such that

P
(‖Φu − Φv‖ > t

) ≤ P
(‖u − v‖ > t/q

)

for all random variables u,v in LX
0 (Ω) and t > 0. Then Φ has a unique random fixed point

if and only if there exist a random variable u0 in LX
0 (Ω) and p > 0 such that

E‖Φu0 − u0‖p < ∞.

Proof Consider the operator Ψ : LX
0 (Ω) → LX

0 (Ω) given by Ψ u = u, the functions f (t) =
(1 − q)t and h(t) = 1 − q > 0. It is clear that Φ,Ψ , and f (t) satisfy the conditions stated in
Theorem 8 and Φ,Ψ commute. Thus, Φ and Ψ have a common random fixed point ξ , i.e.,
Φ has a random fixed point ξ . �

Theorem 9 Let Φ,Ψ : LX
0 (Ω) → LX

0 (Ω) be probabilistic completely random operators
such that

P
(‖Φu − Φv‖ > f (t)

) ≤ P
(‖Ψ u − Ψ v‖ > f (t/q)

)
(48)

for all u,v in LX
0 (Ω), t > 0, where f : [0,∞) → [0,∞) is a continuous increasing function

such that f (0) = 0 and limt→∞ f (t) = ∞ satisfying either (43) or (44), and q is a positive
number. Consider a random equation of the form

Φu − λΨ u = η, (49)

Author's personal copy



ON RANDOM COINCIDENCE POINTS 181

where λ is a real number, and η is a random variable in LX
0 (Ω).

Assume that

Ψ
(
LX

0 (Ω)
)

is closed in LX
0 (Ω), (50)

Φ
(
LX

0 (Ω)
) ⊂ λΨ

(
LX

0 (Ω)
) + η, (51)

|λ| ≥ sup
t>0

f (
q

q ′ t)

f (t)
, (52)

where q ′ is in (0,1). Then Eq. (49) has a unique random solution if and only if there exist a
random variable u0 in LX

0 (Ω) and a number p > 0 such that

M = sup
t>0

tpP
(‖Φu0 − λΨ u0 − η‖ > |λ|f (t)

)
< ∞. (53)

Proof Suppose that Eq. (49) has a solution ξ . Then condition (53) holds for u0 = ξ .
Conversely, suppose that condition (53) holds. Define the completely random operator Θ

by

Θu = Φu − η

λ
.

From (51) and (53) it follows that

Θ
(
LX

0 (Ω)
) ⊂ Ψ

(
LX

0 (Ω)
)
, M = sup

t>0
tpP

(‖Θu0 − Ψ u0‖ > f (t)
)
< ∞.

Let g = f −1 be the inverse function of f . Then g: [0,∞) → [0,∞) is a continuous in-
creasing function with g(0) = 0 and limt→∞ g(t) = ∞. For each t > 0, there exists t ′ with
f (t ′) = |λ|f (t), i.e., t ′ = g(|λ|f (t)). So we have

P
(‖Θu − Θv‖ > f (t)

) = P
(‖Φu − Φv‖ > |λ|f (t)

)

= P
(‖Φu − Φv‖ > f

(
t ′
))

≤ P
(‖Ψ u − Ψ v‖ > f

(
t ′/q

))

= P

(
‖Ψ u − Ψ v‖ > f

(
t

q ′
q ′t ′

qt

))
.

From (52) we get |λ|f (t) ≥ f (
q

q ′ t). Then we deduce that g(|λ|f (t)) ≥ q

q ′ t . So t ′ ≥ q

q ′ t

and q ′t ′
qt

≥ 1. Hence, we get

P

(
‖Ψ u − Ψ v‖ > f

(
t

q ′
q ′t ′

qt

))
≤ P

(‖Ψ u − Ψ v‖ > f
(
t/q ′)),

which implies

P
(‖Θu − Θv‖ > f (t)

) ≤ P
(‖Ψ u − Ψ v‖ > f

(
t/q ′)).

Consequently, Θ and Ψ satisfy conditions (a)–(c) stated in Theorem 5. Thus, Θ and Ψ has
a random coincidence point ξ , i.e., Eq. (49) has a random solution ξ . �
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Corollary 3 Let Φ: LX
0 (Ω) → LX

0 (Ω) be a completely random operator satisfying the
condition

P
(‖Φu − Φv‖ > f (t)

) ≤ P
(‖u − v‖ > f (t/q)

)
(54)

for all u,v in LX
0 (Ω), t > 0, where f : [0,∞) → [0,∞) is a continuous increasing function

such that f (0) = 0 and limt→∞ f (t) = ∞ satisfying either (43) or (44), and q is a positive
number. Consider a random equation of the form

Φu − λu = η, (55)

where λ is a real number, and η is a random variable in LX
0 (Ω).

Assume that

|λ| ≥ sup
t>0

f (
q

q ′ t)

f (t)
, (56)

where q ′ is in (0,1). Then Eq. (55) has a unique random solution if and only if there exist a
random variable u0 in LX

0 (Ω) and a number p > 0 such that

M = sup
t>0

tpP
(‖Φu0 − λu0 − η‖ > |λ|f (t)

)
< ∞. (57)

Proof It suffices to apply Theorem 9 for the completely random operator Ψ given
by Ψ u = u. �

Corollary 4 Let Φ,Ψ : LX
0 (Ω) → LX

0 (Ω) be two completely random operators satisfying
the condition

P
(‖Φu − Φv‖ > t

) ≤ P
(‖Ψ u − Ψ v‖ > t/q

)
. (58)

Consider the random equation

Φu − λΨ u = η, (59)

where λ is a real number, and η is a random variable in LX
p (Ω), p > 0.

Assume that

Ψ
(
LX

0 (Ω)
)

is closed in LX
0 (Ω),

Φ
(
LX

0 (Ω)
) ⊂ λΨ

(
LX

0 (Ω)
) + η,

|λ| > q.

Then the random equation (59) has a solution if and only if there exists a random variable
u0 in LX

0 (Ω) such that

E‖Φu0 − λΨ u0‖p < ∞. (60)

Proof Suppose that Eq. (59) has a solution ξ . Then condition (60) holds for u0 = ξ .
Conversely, suppose that there exists a random variable u0 in LX

0 (Ω) such that (60) holds.
So Φ and Ψ satisfy (54), where f (t) = t . Take q < s < |λ| and observe that q ′ = q/s < 1,

|λ| > s = q

q ′ = f (
q

q ′ t)

f (t)
.
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Moreover, for each t > 0,

tpP
(‖Φu0 − λΨ u0 − η‖ > |λ|t) ≤ E‖Φu0 − λΨ u0 − η‖p

|λ|p < ∞

since

E
(‖Φu0 − λΨ u0 − η‖p

) ≤ CpE
(‖Φu0 − λΨ u0‖p

) + CpE‖η‖p < ∞,

where Cp is a constant. Hence condition (53) is satisfied. By Theorem 9 we conclude that
Eq. (59) has a random solution. �

Considering the completely random operator Ψ given by Ψ u = u, we obtain the follow-
ing:

Corollary 5 Let Φ: LX
0 (Ω) → LX

0 (Ω) be a completely random operator satisfying the
condition

P
(‖Φu − Φv‖ > t

) ≤ P
(‖u − v‖ > t/q

)
. (61)

Consider the random equation

Φu − λu = η, (62)

where λ is a real number satisfying |λ| > q , and η is a random variable in LX
p (Ω), p > 0.

Then the random equation (62) has a unique random solution if and only if there exists a
random variable u0 in LX

0 (Ω) such that

E‖Φu0 − λu0‖p < ∞. (63)
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