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A genetic type-2 fuzzy C-means clustering
approach to M-FISH segmentation
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Abstract. Multiplex Fluorescent In Situ Hybridization (M-FISH) is a multi-channel chromosome image generating technique
that allows colors of the human chromosomes to be distinguished. In this technique, all chromosomes are labelled with 5 fluors
and a fluorescent DNA stain called DAPI (4 in, 6-Diamidino-2-phenylindole) that attaches to DNA and labels all chromosomes.
Therefore, a M-FISH image consists of 6 images, and each image is the response of the chromosome to a particular fluor. In
this paper, we propose a genetic interval type-2 fuzzy c-means (GIT2FCM) algorithm, which is developed and applied to the
segmentation and classification of M-FISH images. Chromosome pixels from the DAPI channel are segmented by GIT2FCM into
two clusters, and these chromosome pixels are used as a mask for the remaining five channels. Then, the GIT2FCM algorithm
is applied to classify the chromosome pixels into 24 classes, which correspond to the 22 pairs of homologous chromosomes and
two sexual chromosomes. The experiments performed using the M-FISH dataset show the advantages of the proposed algorithm.
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1. Introduction

Multiplex Fluorescent In Situ Hybridization (M-
FISH) is an important technology that was developed
for chromosome analysis. Typically, M-FISH is used
to generate a multi-channel chromosome image. This
image allows us to distinguish the color of the human
chromosomes that contain the genetic information.
Almost all human cells include 22 pairs of homolo-
gous chromosomes and two sexual chromosomes (XX:
female and XY: male). For a normal cell, chromosomes
are classified into 24 classes [1, 2]. If each class is repre-
sented by a different color, then a geneticist using color
chromosome images can easily determine which parts
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of the chromosomes are lost or rearranged and apply this
information to the study of cancer and disorder genetics.

Many algorithms have been proposed for the auto-
matic classification of chromosomes. These algorithms
were developed in two main directions: pixel-by-pixel
[10] and region-based classification [8, 9]. However,
neither the pixel-by-pixel classification algorithms nor
the region-based methods have sufficient accuracy (less
than 90%) for clinical use [8–10]. The main reason for
this low accuracy is the uncertainty or noise, which
always exists in the M-FISH image.

Thus, we propose a genetic interval type-2 Fuzzy
C-Means clustering algorithm (GIT2FCM), which is a
combination of the genetic algorithm (GA) and inter-
val type-2 Fuzzy C-Means (IT2FCM), has shown the
advantages in handling uncertainty. While the original
IT2FCM faces the difficulties of initializing the cen-
troid of the clusters and determining the number of
clusters, GIT2FCM uses the GA to produce better cen-
troids and find the optimal number of clusters. However,
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the number of clusters in the M-FISH problem is pre-
determined: it is 2 for the chromosome segmentation
and 24 for the chromosome classification. Addition-
ally, a validity index for image segmentation is used as
a fitness function for GA to obtain better results.

The GIT2FCM algorithm consists of two steps. In
the first step, we randomly initialize the population of
the GA. In the second step, a GA is used to adjust the
centroid of clusters based on a validity index, which
is determined by IT2FCM. Applying this algorithm to
the M-FISH problem, the chromosome pixels are seg-
mented into 2 clusters by the GIT2FCM algorithm, and
the chromosome pixels of the DAPI channel segmen-
tation result are used as a mask for the remaining five
channels. Then, the GIT2FCM algorithm is used to clas-
sify the chromosome pixels in the five channels into 24
classes, which correspond to 22 pairs of homologous
chromosomes and two sexual chromosomes.

Experiments are completed for the M-FISH images
and the results of the classification are compared with
the other results.

The paper is organized as follows: Section II reviews
related studies on M-FISH segmentation and classifica-
tion. Section III provides background on interval type-2
fuzzy sets, IT2FCM clustering and the genetic algo-
rithm. Section IV proposes the genetic interval type-2
Fuzzy C-Means clustering. Section V describes M-
FISH classification based on the proposed algorithm.
Section VI offers some experimental results, and Sec-
tion VII concludes the paper.

2. Literature review

Researchers have proposed many methods for
automating the process of karyotyping. We briefly
review some of the major works in this section.

The first M-FISH [3] was a semi-automated analysis
system. In this approach, a mask is created from the
DAPI channel and a threshold is applied to each pixel
in this mask to detect the absence of that pixel in the
five remaining fluors.

Almost all of the classification methods used by
researchers were developed in one of two directions:
pixel-by-pixel classification [10] or region-based clas-
sification [8, 9]. Pixel-by-pixel methods either classify
each pixel of the M-FISH image or create a binary mask
of the DAPI image using edge detection algorithms and
then classify each pixel of this mask. In region-based
methods, the regions are obtained by decomposing the
images that are classified.

Schwartzkopf et al. [12] developed new supervised
methods for automatic chromosome identification that
exploit the multi-spectral information in M-FISH chro-
mosome images and jointly perform the chromosome
segmentation and classification.

Unsupervised and semi-unsupervised classification
methods that correct misclassification, are discussed in
[6, 19, 21]. Choi et al. [19] proposed a novel unsu-
pervised classification method based on fuzzy logic
classification and a prior adjusted reclassification using
the chromosome boundaries. The initial classification
results can be improved significantly after the prior
adjusted reclassification while keeping the transloca-
tions intact. A new segmentation method that combines
spectral and edge information was also presented. This
method provides segmentation accuracy in more than
98% of cases, on average [21] also presented a new
unsupervised, non-parametric classification method for
M-FISH images that uses the feature normalization
method to reduce the difference in feature distributions
among images using the expectation maximization
(EM) algorithm. This classifier is as accurate as the
maximum-likelihood classifier, whose accuracy was
also significantly improved after the EM normaliza-
tion. Karvelis et al. [6] presented a semi-unsupervised
method for the M-FISH chromosome image classifica-
tion. First, the separation of foreground and background
is performed by using an automated thresholding proce-
dure. Then, these features are normalized. Second, the
K-Means algorithm was applied to cluster the chromo-
some pixels into the 24 chromosome classes. Although
this algorithm does not require a training, it produces a
high average accuracy. However, the tests of the algo-
rithm only used a small number of images.

Various pre-processing methods such as image regis-
tration, dimension reduction and background flattening
are discussed in [15, 16]. Wang et al. [15] used a
Bayesian classifier for multi-spectral pixel classifi-
cation with a multi-resolution registration algorithm
based on wavelets and spline approximations and indi-
cated that the proposed registration technique leads to
an increased pixel classification rate, which in turn
translate into improved accuracy in identifying sub-
tle DNA rearrangements. Choi et al. [16] presented
an automated method for the segmentation and clas-
sification of multi-spectral chromosome images and
proposed pre-processing the images using background
correction, the six-channel color compensation method
and a feature transformation method, i.e., spherical
coordinate transformation. Additionally, color compen-
sation techniques for multichannel fluorescence images
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whose specimens are combinatorially stained, which
are useful for improving the accuracy of karyotyping,
are discussed in [24].

Karvelis et al. [7, 9] proposed a region-based
watershed segmentation method applied to the DAPI
channel for multi-spectral chromosome image classifi-
cation, and a new method for the multichannel image
segmentation and region classification with the marker-
controlled watershed transform. The region Bayes
classification method which focuses on region classi-
fication, is used. The classifier was trained and tested
on non-overlapping chromosome images, and an over-
all accuracy of 89% was achieved. The superiority of
the proposed method over methods that use pixel-by-
pixel classification was demonstrated. However, only a
small number of non-overlapping testing images were
used. In their extended further work [8], the segmenta-
tion was based on the multichannel watershed transform
to define regions that have similar spatial and spectral
characteristics. Then, a Bayes classifier, task-specific
on region classification, was applied. The proposed
method achieved substantially better results than did the
other tested methods at a lower computational cost. The
combination of the multichannel segmentation and the
region-based classification was found to have a better
overall classification accuracy than were the pixel-by-
pixel approaches.

A support vector machines (SVM) classifier with a
multichannel watershed transform to perform M-FISH
karyotyping was described in [23]. The method has
been tested on images from normal cells, showing a
10.16% improvement in classification accuracy over the
Bayesian classifier.

Hua et al. [17] presented embedded M-FISH
image coding (EMIC), where the foreground objects/
chromosomes and the background objects/images are
coded separately. First, critically sampled integer
wavelet transforms were applied to both the fore-
ground and the background. Object-based bit-plane
coding was used to compress each object and generate
separate embedded bit streams that allow continuous
lossy-to-lossless compression of the foreground and the
background.

Later, Cao et al. [10] presented an adaptive fuzzy c-
means algorithm (FCM), which can be used to detect
chromosomal abnormalities for cancer and genetic dis-
ease diagnosis, and applied the algorithm to the segmen-
tation and classification of M-FISH images. Adaptive
FCM was performed using a gain field, which models
and corrects any intensity inhomogeneities caused by a
microscope imaging system, chromosomes or uneven

DNA hybridization. In addition to directly simulat-
ing the homogeneously distributed intensities over the
image, the gain field regulates centroids of each inten-
sity cluster. This algorithm provides the lowest segmen-
tation error, and the classification error is smaller than
that of the traditional FCM and AFCM methods.

Another work of Cao et al. [11] proposed the devel-
opment of a sparse representation-based classification
(SRC) algorithm based on L1-norm minimization for
classifying chromosomes from M-FISH images. The
algorithm presents a lower classification error than do
other pixel-wise M-FISH image classifiers, such as
FCM and AFCM and three different sparse representa-
tion methods, i.e., the homotopy method, orthogonal
matching pursuit (OMP), and least angle regression
(LARS).

Overlapping and touching chromosomes remain a
problem in pixel-by-pixel classification. Many stud-
ies have attempted to resolve this issue [12–14]. Choi
et al. [14] proposed a method that evaluates multi-
ple hypotheses based on geometric information, pixel
classification results, and chromosome sizes, and a
hypothesis that has a maximum-likelihood chosen as
the best decomposition of a given cluster. Approxi-
mately 90% accuracy was obtained for two or three
chromosome clusters, which include approximately
95% of all clusters with two or more chromosomes.
This approach exhibits lower computational complex-
ity than does the minimum entropy approach [12, 13],
and the good results have been reported. Barrutia et al.
[20] presented a new method, non-negative matrix fac-
torization (NMF), which blindly estimates the spectral
contributions and corrects for the overlap.

In light of this brief review , we can conclude that
region-based classification approaches are more accu-
rate and have lower computation times compared to
pixel-by-pixel approaches. Many studies have only
been tested on small sets of selected images. For practi-
cal purposes, the systems must be able to provide high
accuracy on a large data set. Thus, a study is needed to
improve the performance on large data sets which high
accuracy so that such automated systems are acceptable
for commercial karyotyping.

3. Preliminaries

In this section, we briefly introduce the type-2 fuzzy
sets, the interval type 2 Fuzzy C-Means algorithm and
the genetic algorithm. Details can be found in [30] and
[26].
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Fig. 1. Explanation of a type-2 fuzzy set.

3.1. Type-2 fuzzy sets

Definition 1. A type-2 fuzzy set, denoted by Ã, is char-
acterized by a type-2 membership function µÃ(x, u)
where x ∈ X and u ∈ Jx ⊆ [0, 1], i.e.,

Ã ={((x, u), µÃ(x, u))|∀x ∈ X, ∀u ∈ Jx ⊆ [0, 1]} (1)

or

Ã =
∫

x∈X

∫
u∈Jx

µÃ(x, u))/(x, u), Jx ⊆ [0, 1] (2)

where 0 ≤ µÃ(x, u) ≤ 1.
At each value of x, i.e., x = x′, the 2-D plane whose

axes are u and µÃ(x′, u) is called a vertical slice of
µÃ(x, u). A secondary membership function is a verti-
cal slice of µÃ(x, u), that is, for x ∈ X and ∀u ∈ Jx′ ⊆
[0, 1], µÃ(x = x′, u) is written in the following form:

µÃ(x = x′, u) =
∫

u∈Jx′
fx′ (u)/u, Jx′ ⊆ [0, 1] (3)

where 0 ≤ fx′ (u) ≤ 1.

Type-2 fuzzy sets are called interval type-2 fuzzy sets
if the secondary membership function takes the form:
fx′ (u) = 1 ∀u ∈ Jx, i.e., an interval type-2 fuzzy set is
defined as follows:

Definition 1. An interval type-2 fuzzy set Ã is char-
acterized by an interval type-2 membership function
µÃ(x, u) = 1 where x ∈ X and u ∈ Jx ⊆ [0, 1], i.e.,

Ã = {((x, u), 1)|∀x ∈ X, ∀u ∈ Jx ⊆ [0, 1]} (4)

The uncertainty of Ã, denoted by FOU, is the union
of the primary functions, i.e., FOU(Ã) = ⋃

x∈X Jx. The
upper and lower bounds of the membership function
(UMF/LMF) are denoted by µÃ(x) and µ

Ã
(x), of Ã.

3.2. Interval type-2 fuzzy clustering algorithm

Interval type-2 fuzzy c-means (IT2FCM) is an exten-
sion of FCM clustering in which two fuzzification
coefficients, m1, m2, are used to form FOU, corre-
sponding to the upper and lower values of membership.
See [26]. The use of fuzzifiers gives rise to different
objective functions to be minimized:{

Jm1 (U, v) = ∑N
k=1

∑C
i=1(uik)m1d2

ik

Jm2 (U, v) = ∑N
k=1

∑C
i=1(uik)m2d2

ik

(5)

in which dik =‖ xk − vi ‖ is the Euclidean distance
between the pattern xk and the centroid vi, C is the
number of clusters, N is the number of patterns and
xk, vi ∈ RM .

The upper and lower degrees of membership uik and
uik are similar to those produced by the FCM algorithm,
but they are formed by involving two fuzzification coef-
ficients m1, m2 (m1 < m2) as follows:

uik =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1∑C
j=1

(
dik/djk

)2/(m1−1) if
1∑C

j=1

(
dik/djk

) <
1

C

1∑C
j=1

(
dik/djk

)2/(m2−1) if
1∑C

j=1

(
dik/djk

) ≥ 1

C

(6)

uik =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1∑C
j=1

(
dik/djk

)2/(m1−1) if
1∑C

j=1

(
dik/djk

) ≥ 1

C

1∑C
j=1

(
dik/djk

)2/(m2−1) if
1∑C

j=1

(
dik/djk

) <
1

C

(7)

in which i = 1, ..., C and k = 1, ..., N.
Because each pattern takes the membership interval

bounded by the upper u and the lower u, each centroid
of the cluster is represented by the interval between vL
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and vR. The centroids are computed in the same way as
FCM, as follows:

vi =
∑N

k=1(uik)mxk∑N
k=1(uik)m

(8)

in which i = 1, ..., C and m is arbitrary and is usually
given the value 2.

After obtaining vR
i , vL

i ,the centroid of clusters are
defined as follows:

vi = (vR
i + vL

i )/2 (9)

for membership grades

ui(xk) = (uR
i (xk) + uL

i (xk))/2, j = 1, ..., C (10)

in which

uL
i =

M∑
l=1

uil/M, uil =
{

ui(xk) if xil uses ui(xk) for vL
i

ui(xk) otherwise

(11)

uR
i =

M∑
l=1

uil/M, uil =
{

ui(xk) if xil uses ui(xk) for vR
i

ui(xk) otherwise

(12)
Defuzzification is made for IT2FCM as if ui(xk) >

uj(xk) for j = 1, ..., C and i /= j, then xk is assigned to
cluster i.

3.3. Genetic algorithm

The genetic algorithm (GA) [42] is an artificial sys-
tem based on the principle of natural selection. As
a stochastic algorithm, GA is a robust and powerful
optimization method for solving problems with a large
search space which are not easily solved by exhaustive
methods. In particular, each potential solution is seen
as an individual and as appropriate encryption called
a chromosome. Genetic algorithms simulate evolution
on a population of chromosomes to find a solution to
the problem.

In GA applications, the parameters are encoded in
chromosomes. A chromosome is encoded with binary,
integer or real numbers in an artificial genetic algo-
rithm. Usually, a basic GA consists of three operators:
selection, crossover, and mutation [41].

3.3.1. Selection
In our method, the Roulette wheel selection is used

and briefly described as follows:

Calculate the adaptability of the population

F =
NP∑
i=1

fi (13)

where NP is the number of individuals in the popu-
lation and fi is the fitness of the ith individual in the
population.

Calculate the probability of an individual:

pi = fi

F
(14)

Calculate cumulative probability (qi) for the ith indi-
vidual:

qi =
i∑

j=1

pi (15)

In selection process, roulette wheel spins NP times
equal to the population size. Each time an individual is
selected for a new population. In fact, this step can be
done each time as follows:

1. Generate a random number r from the range [0, 1].
2. If r < p1, then select the first individual, otherwise

select the ith individual such that q(i−1) < r < qi.

3.3.2. Crossover
The purpose of the crossover operation is to cre-

ate two new individuals from two existing individuals
selected randomly from the current population. Typical
crossover operations are one-point crossover, two-point
crossover, cycle crossover and uniform crossover. In
this research, the one-point crossover is used with a
fixed crossover probability of µc.

For the one-point crossover, two individuals are ran-
domly selected from the population. Assuming the
length of an individual to be m, this process randomly
selects a point between 1 and m − 1 and swaps the con-
tent of the two individuals beyond the crossover point to
obtain the offspring. For example, two individuals x =
(x1...xm) and y = (yi, ..., ym), with the crossover point
k, will be two individuals: x

′ = (x1...xk, yk+1...ym) and
y

′ = (y1...yk, xk+1...xm).
A crossover between a pair of chromosomes is

affected by the crossover probability.

1. Generate a random number r from the range [0, 1].
2. If r < µc, then do crossover operator.
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3.3.3. Mutation
After crossover, for each gene of each individual

chromosome we generate a random number r[0, 1]. If
r < µm, the gene is mutated where µm ∈ [0, 1] is a
fixed probability. All values of a specific gene may be
randomly changed. In this paper, a mutation operator
with uniform distribution is used as follows:

If xk gene of chromosome x = (x1...xm) is mutated,
we get a new x

′
is: if i = k then x

′
i = xi + σ ∗

xi with xi > 0 or x
′
i = xi + σ with xi = 0 else x

′
i = xi

4. Genetic type-2 FCM clustering

The objective of the general clustering algorithms is
to minimize the objective function. Hence, the objective
function may be different for different problems. This
paper proposes genetic type-2 fuzzy c-means cluster-
ing, which combines type-2 fuzzy c-means clustering
method, a good method for handling uncertainty, with
a genetic algorithm to find the optimal solution for the
objective function.

To apply the genetic algorithm to the clustering
problems, we need to model the problems with the chro-
mosomes and evaluate these chromosomes. Here, each
chromosome is a centroid of a cluster and the length of
the chromosome, K, is equivalent to the number of clus-
ters in the clustering problem. K is in the range [Kmin,
Kmax], where Kmin is usually set to 2 and Kmax is the
maximum number cluster centroids, which describes
the maximum number of chromosomes for the human
species.

Therefore, Kmax must be selected according to expe-
rience. Without assigning the number of clusters in
advance, a variable string length is used. Invalid (non-
existing) clusters are represented by a negative integer,
specifically "-1". The values of the chromosomes are
changed in an iterative process to determine the cor-
rect number of clusters (the number of valid units in
the chromosomes) and the actual cluster centroids for
a given clustering problem.

However, the M-FISH problem has the previously
determined number of cluster which is 24 for the M-
FISH classification. Therefore, we do not need to find
the optimal number of clusters. Thus, the length of
the chromosome K is unchanged. We will have K =
Kmin = Kmax, and we do not randomly initialize the
cluster centroids with "-1".

4.1. Population initialization

In this study, a chromosome is encoded with a unit
that represents a potential centroid, and the population

size is NP . For population initialization, all values of
the chromosomes are chosen randomly from the data
space meaning that each chromosome is encoded as the
cluster centroid results, which are randomly selected
from the input data space.

If a chromosome belongs to the so-called parent gen-
eration then its size is K and it is a potential solution
of the IT2FCM algorithm. The size of the population,
NP , is selected in the experiment.

4.2. The Turi’s validity index

In [5, 40] the Turi’s validity index is introduced to
evaluate the quality of the image clustering problems
and proves to be more effective than do the previous
used validity indexes such as the Davies-Bouldin index,
DunneâĂŹs index and the PC index. Therefore, for
image clustering applications, this paper uses this index
as the objective function of the clustering algorithm;
refer to [5, 40].

The Turi’s validity index is given by the following
function:

VT = α × intra

inter
(16)

where the term intraofVT is the average of the distances
to each pixel x within the cluster Ci from centroid zi,
as defined in the following:

intra = 1

N

K∑
i=1

∑
x∈Ci

(di)
2 (17)

in which di = ||x − zi||
The inter is the minimum distance between the clus-

ter centroids and is defined as follows:

inter = min(‖ vi − vj ‖2) (18)

where α is a weighting factor, given as

α = c × N(2, 1) + 1 (19)

where c is a user-specified parameter and N(2, 1) is a
normal distribution function with a mean of 2 and a
standard deviation of 1.

N(2, 1) = 1√
2π × 12

e
− (k−2)2

2×12 = 1√
2π

e− (k−2)2

2 (20)

where k is the number of clusters (details in [40]).
This validity measure serves the dual purpose of min-

imizing cluster spread and maximizing the separation
of the clusters. However, this value is influenced by the
geometry of the cluster centroids.
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4.3. The fitness of chromosomes

Because the GA is used to find the optimal solution
or minimize the objective function, we need to deter-
mine the fitness of chromosomes. In this research, Turi’s
validity index is used as the objective function because it
has the proven ability to obtain high clustering quality
for the image processing problem [40]. The chromo-
somes are encoded as the cluster centroid results. The
fitness for chromosomes is computed in the following
three steps.

Step 1: The pixel dataset is clustered according to the
centroid encoded in the focal chromosome such that
each pattern xi, i = 1, ..., N is assigned to cluster with
centroid vj, j = 1, ..., K according to equations (6), (7)
and (10) in IT2-FCM.

Step 2: This step adjusts the values of the cluster cen-
troids encoded in the chromosome, replacing these
values with the mean points of the respective clusters.
In IT2FCM, the new center v∗

i for the cluster Ci is given
as

v∗
i = vR

i + vL
i

2
(21)

Step 3: The validity index VT is calculated using (16).
Because the goal of the problem is to achieve a proper
clustering by minimizing VT , the fitness value for chro-
mosome j is defined as 1/V

j
T , which is equivalent to the

clustering with the smallest inner-cluster scatter and the
largest cluster separation.

Therefore, the fitness of chromosomes is calculated
as follows:

f = 1

VT

(22)

4.4. Genetic type-2 fuzzy C-Means clustering
algorithm

The performance of this algorithm is given by a
sequence of steps:

The proposed algorithm performs the iterative pro-
cesses from steps 2 to 4 until a stopping criterion is met.
In every generation cycle, the fittest chromosome is pre-
served until the last generation. Thus, on termination,
this chromosome gives us the best solution encountered
during the search.

To handle the uncertainty of the M-FISH image, the
IT2FCM algorithm is used to evaluate the population
in step 2. After calculating the fitness of each chromo-

Algorithm 1. Genetic Type-2 FCM
1. Initializing a population of NP chromosomes

which each chromosome contains the cluster cen-
troids are randomly selected from the input image.

2. Evaluate on the population by the fitness function
(22).

3. Perform GA operators such as: Selection,
Crossover and Mutation.

4. Reinsert the new individual chromosomes into the
population.

5. Termination criterion: the predetermined number
of iterations is achieved or the difference between
these two best fitness values lies below a pre-
defined threshold.

6. Output: A chromosome which has the best fitness.
It means that the solution with the the cluster cen-
troids is the output of this algorithm.

some of the given population, the best chromosome is
compared to the best chromosome of the previous gen-
eration (iteration). The best selected chromosome is the
result of the problem with the proper number of clusters.

5. M-FISH classification

M-FISH is a multi-channel chromosome image gen-
erated technique that allows the color of the human
chromosomes to be distinguished. By analyzing the
color images, a geneticist can easily determine which
parts are lost or rearranged in the chromosomes, and
use this information in the study of cancer and disorders
genetics. M-FISH images were taken using a fluores-
cence microscope with optical filters. Each of the fluors
can be observed in one of the spectral channels. An M-
FISH image consists of six images, and each image is
the response of the chromosome to the particular fluor,
as shown in Fig. 2.

In the M-FISH classification method, we can use
the pixel values in all of 6-image sets of image chan-
nels for classification, but this requires a training stage
[35]. However, in the M-FISH technique, all chromo-
somes are labelled with 5 fluors and a fluorescent DNA
stain called DAPI (4 in,6-diamidino-2-phenylindole)
that attaches to DNA and labels all chromosomes. DAPI
is usually used to create binary masks to classify chro-
mosomes [6, 10, 19]. Thus, in our work, a binary mask
of the DAPI image is first created, and the chromosome
pixels in the five remain channels are then classified
through this mask.
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Fig. 2. Six-channels of M-FISH image data

With the M-FISH image segmentation problem,
our mission is to use information from the 6-channel
image to classify the chromosomes into 24 classes, as
described above. Because the original DAPI image con-
tains nuclei and debris along with the chromosomes,
we must remove the noise based on the size and density
before segmentation. Figure 3 shows the image before
and after noise removal.

Based on the proposed algorithm (GIT2FCM), we
performed M-FISH classification in two main stages:

Stage 1: the DAPI channel is segmented into two clus-
ters (background and chromosomes). Segmentation is
implemented with the following parameters set for
GIT2FCM: the value of the parameter C, for the valid-
ity index referred from [40], is set to 25; the number
of iterations G is the terminating condition; the size
of the population is NP ; the GA selection method is
Roulette Wheel; crossover rate µc = 0.9 and mutation
rate µm = 0.01. By implementing many experiments,
the values are set with stable results of G = 20 and
NP = 30.

Although the GIT2FCM exhibits the ability to find
the optimal number of clusters, the M-FISH problem is
applied with a determined number of clusters, 2 for the

segmentation stage (one for background and one for
the chromosome pixels) and 24 for the classification
stage. Thus, in this stage, the chromosome length is the
number of clusters, i.e., K = Kmin = Kmax = 2.

Stage 2: After the segmentation of the DAPI image,
a cluster contains the pixels belonging to the chro-
mosomes. Suppose that this cluster contains N pixels.
Each pixel I(x, y) in this cluster possesses the inten-
sity values of five M-FISH channels, i.e., I(x, y) =
[x1, x2, x3, x4, x5] ∈ R5, where xi is the intensity value
of the ith M-FISH channel at pixel (x, y). If the ranges
of the features in each dimension vary considerably, the
performance of the classification phase may be affected
[3]. Thus, the features are normalized as follows:

yi = x
j
i − zj

sj
(23)

where x
j
i is the intensity of the ith pixel of channel jth,

zj and sj are the mean and standard deviation of channel
jth, respectively.

zj = 1

N

N∑
i=1

(xi)
j (24)
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Fig. 3. Noise removal of the DAPI image.

sj =
√√√√ 1

N

N∑
i=1

(xj
i − zj)2 (25)

Now, each pixel in N pixels of the chromosome cluster
of the DAPI channel is represented by a feature vector
Yi = [y1

i , y
2
i , y

3
i , y

4
i , y

5
i ], i = 1, ..., N, where y

j
i is the

normalized intensity of channel jth.
Our purpose is to classify the data set Y = [Yi], i =

1, ..., N into 24 classes, which correspond to 22 pairs of
homologous chromosomes and 2 sexual chromosomes
(X and Y ) or, more specifically to cluster the data into 24
clusters. The classifications are implemented with the
following parameters of the GIT2FCM: the parameter
C, the validity index described in [40], is set to 25;
the number of iterations G is the terminating condition

of the proposed algorithm; the size of the population
is NP ; the GA selection method is Roulette Wheel;
crossover rate µc = 0.9 and mutation rate µm = 0.01.
In the segmentation phase, the values of G = 20 and
NP = 50 are obtained through experiments with stable
results. In a similar way, the chromosome length is set
to 24 (K = Kmin = Kmax = 24).

The performance of the segmentation and classifica-
tion are evaluated using the correct detection rate (CR),
false detection rate (FR) and classification ratio (CT)
[4], which are defined by the following equations:

CR = pixels correctly segmented

total chromosome pixels
(26)

FR = background pixels segmented as chromosome

chromosome pixels
(27)

CT = chromosome pixels correctly classified

total chromosome pixels
(28)

6. Experimental results

The images used for testing are taken from the M-
FISH database [46]. This database contains 20 M-FISH
image sets and each M-FISH image set consist of
5 mono-spectral images recorded at different wave-
lengths, DAPI and its "ground truth" image according
to ISCN (International System for Human Cytogenetic
Nomenclature) for each M-FISH image. The ground
truth image used to determine the accuracy of the M-
FISH images classification is labeled based on the gray
level of each pixel so that each gray level represents a
chromosome type; the value of the background pixels
is set to zero, and the value of pixels in the overlapping
regions is 255.

We performed the image segmentation and calcu-
lated CR and FR according to Equation (26) and
Equation (27) from 120 images using IT2FCM [26]
and the GIT2FCM method.

In Table 1, the results were summarized by Karvelis
et al. [8, 9] for the ADIR M-FISH database [45],
which contains the test database [46] with 200 M-
FISH images. In this work, the CR was 83.59%±9.89%
for only 15 non-overlapping M-FISH images and
82%±12% when fusing 183 M-FISH images (exclud-
ing 17 images, which were marked as extreme (EX) for
"difficult to karyotype", from the set of 200).

The segmentation results of Otsu’s method in [25]
and the results of IAFCM, AFCM and FCM methods
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Table 1
Segmentation results for the GIT2FCM, IT2FCM, IAFCM, AFCM, FCM, Otsu and region [9], and watershed [8] methods

Methods GIT2FCM IT2FCM IAFCM AFCM FCM Otsu Region Watershed

CR(%) 92.5 ± 3.5 92.2 ± 6.5 89.5 ± 10.5 96.5 ± 4.6 92.0 ± 8.4 89.1 ± 9.2 83.6 ± 9.9 82 ± 12
FR(%) 1.4 ± 0.6 3.7 ± 2.3 3.6 ± 2.8 20.9 ± 12.9 9.7 ± 7.7 11.7 ± 8.7 NA NA

a b

c d

Fig. 4. a) a DAPI channel; b) a DAPI channel after segmentation; c) the ground truth; d) GIT2FCM classification with 24 classes.

in [10], which were tested on the same database, are
also listed and have a higher CR than does Karvelis’s
method. However, with the lowest false detection ratio
(FR), our experiments showed that the segmentation
results of the proposed GIT2FCM algorithm are better
than those of the others. In addition, the chromosome
segmentation accuracy (CR) is also higher than that of
the other methods, except the AFCM algorithm.

After the segmentation stage, we conducted a clas-
sification stage to classify M-FISH images into 24
classes, which correspond to 22 pairs of homologous
chromosomes and two sexual chromosomes. A sample
classification result is shown in Fig. 4.

In Fig. 4, (a) is for the DAPI channel image, (b) is
for the DAPI channel image after segmentation, (c) is
for the ground truth image and (d) is for the image

classification result GIT2FCM algorithm where each
class is shown as a different color.

We calculated the CT values using Equation (28)
from 20 M-FISH image classification results with the
IT2FCM [26] and GIT2FCM methods. In Equation
(28), the number of the correctly classified chromosome
pixels is determined in reference to the "ground truth"
image. Although the overlapping regions of chromo-
somes are not labelled in the "ground truth" image and
these regions can belong to any overlapping chromo-
somes, they are considered as the correctly classified
chromosome pixels in the classification results.

The classification results from 20 tested cells with
120 M-FISH images are listed in Table 2. In addition to
the classification result of the GIT2FCM (the proposed
algorithm), the classification results were performed on
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Table 2
Classification results for the GIT2FCM, IT2FCM, IAFCM, AFCM, FCM and the k-means methods

Results GIT2FCM IT2FCM IAFCM AFCM FCM K-Mean

Average 90.3 86.3 88.5 84.2 84.1 72.48
Standard deviation 3.6 6.2 5.5 5.6 8.5 7.01

the same database [46] for the IT2FCM [26], IAFCM,
AFCM and FCM algorithms [10] and the k-means algo-
rithm [6] are shown in the table for comparison with the
proposed algorithm.

In Table 2, the classification results (the CT values)
show that the proposed algorithm (GIT2FCM) is better
than the others because the former has the highest aver-
age classification ratio (CT) and the lowest standard
deviation values.

7. Conclusions

This paper presented a clustering algorithm based
on a genetic technique that determines a good initial
value for the centroid and realized image segmen-
tation based on IT2FCM and Turi’s validity index
(GIT2FCM) to improve the results. The experimental
results obtained using the M-FISH images showed a
more accurate chromosome segmentation (CR) value
and a lower false detection ratio (FR) than did the
"conventional" algorithms, including FCM, IAFCM
and k-means. Additionally, the M-FISH classification
results have higher average CT values than do the other
FCM, such as IAFCM, AFCM and FCM.

The next goal is to perform research related
to speeding-up the algorithms for processing large
datasets based on the parallel architecture of GPU com-
puting.

References

[1] M.W. Thompson, R.B. McInnes and H.G. Willard, Genetics in
Medicine, 5th Edition, (2001), WB Saunders Company.

[2] B. Dave and W. Sanger, Role of cytogenetics and molecular
cytogenetics in the diagnosis of genetic imbalances, Seminars
in Pediatric Neurology 14(1) (2007), 2–6.

[3] M.R. Speicher, S.G. Ballard and D.C. Ward, Karyotyping
human chromosomes by combinatorial multi-fluor fish, Nature
Genetics 12(4) (1996), 368–375.

[4] E. Schrock, S. du Manoir and T. Veldman, Multicolor spec-
tral karyotyping of human chromosomes, Science 273(5274)
(1996), 494–497.

[5] A. Halder and S. Pramanik, An unsupervised dynamic image
segmentation using fuzzy hopfield neural network based
genetic algorithm, International Journal of Computer Science
Issues 9 (2012), 525–532.

[6] P. Karvelis, A. Likas and D.I. Fotiadis, Semi unsupervised M-
FISH chromosome image classification, 10th IEEE Int Cont on
Digital Object Identifier (2010), 1–4.

[7] P.S. Karvelis, D.I. Fotiadis, M. Syrrou and I. Georgiou, A
watershed based segmentation method for multispectral chro-
mosome images classification, 28th IEEE Ann Intern Conf
(EMBS) (2006), 3009–3012.

[8] P.S. Karvelis, A.T. Tzallas, D.I. Fotiadis and I. Georgiou, A
multichannel watershed based segmentation method for multi-
spectral chromosome classification, IEEE T on Medical Image,
27(5) (2008), 697–708.

[9] P.S. Karvelis, D.I. Fotiadis and A. Tzall, Region based segmen-
tation and classification of multi-spectral chromosome images,
20th Int Symposium on Digital Object Identifier Computer-
Based Medical Systems, CBMS 09, (2009), 251–256.

[10] H.B. Cao, H.W. Deng and Y.P. Wang, Segmentation of M-FISH
images for improved classification of chromosomes with an
adaptive fuzzy C-means clustering algorithm, IEEE T on Fuzzy
Systems 20(1) (2012), 1–8.

[11] H.B. Cao, H.W. Deng and Y.P. Wang, Classification of mul-
ticolor fluorescence in situ hybridization (M-FISH) images
with sparse representation, IEEE T on NanoBioScience 11(2)
(2012), 112–118.

[12] W.C. Schwartzkopf, B.L. Evans and A.C. Bovik, Minimum
entropy segmentation applied to multi-spectral chromosome
images, Proc IEEE Int Conf on Image Processing, II (2001),
865–868.

[13] W.C. Schwartzkopf, B.L. Evans and A.C. Bovik, Entropy esti-
mation for segmentation of multi-spectral chromosome images,
IEEE Southwest Symposium on Image Analysis and Interpre-
tation (2002), 234–238.

[14] H. Choi, A.C. Bovik and K.R. Castleman, Maximum-
likelihood decomposition of overlapping and touching M-FISH
chromosomes using geometry, size and color information, the
28th IEEE EMBS Int’ Conference (2006), 3130–3133.

[15] Y.P. Wang, M-FISH image registration and classification, IEEE
Int, Symp Biomedicine Image: Nano to Macro 1 (2004), 57–60.

[16] H. Choi, K.R. Castleman and A.C. Bovik, Joint segmentation
and classification of M-FISH chromosome images, in Proc 26th
IEEE Annu Int Conf (EMBS) 1 (2004), 1636–1639.

[17] J. Hua, Z. Xiong, Q. Wu and K.R. Castleman, wavelet-based
compression of M-FISH images, IEEE T on Biomedical Engi-
neering 52(5) (2005), 890–900.

[18] W.C. Schwartzkopf, A.C. Bovik and B.L. Evans, Maximum-
likelihood techniques for joint segmentation-classification of
multispectral chromosome images, IEEE T Medical Imaging
24(12) (2005), 1593–1610.

[19] H. Choi, K.R. Castleman and A.C. Bovik, Segmentation and
fuzzy-logic classification of M-FISH chromosome images,
Proc IEEE Int Conf Image Process (ICIP 2006), 69–72.

[20] A.M. Barrutia, J.G. Munoz, B. Ucar, I.F. Garcia and C.O.
Solorzano, Blind spectral unmixing of M-FISH images by non-
negative matrix factorization, the 29th Int’ Conference of the
IEEE EMBS (2007), 6247–6250.

[21] H. Choi, A.C. Bovik and K.R. Castleman, Feature nor-
malization via expectation maximization and unsupervised



3122 D.D. Nguyen et al. / A genetic type-2 fuzzy C-means clustering approach to M-FISH segmentation

nonparametric classification For M-FISH chromosome images,
IEEE T on Medical Imaging 27(8) (2008), 1107–1119.

[22] Y.P. Wang, Detection of chromosomal abnormalities with
multi-color fluorescence in situ hybridization (M-FISH) imag-
ing and multi-spectral wavelet analysis, 30th International
IEEE EMBS Conference (2008), 1222–1225.

[23] I. Georgiou, P. Sakaloglou, P.S. Karvelis and D.I. Fotiadis,
Enhancement of the classification of multichannel chromo-
some images using support vector machines, 31st International
Conference of the IEEE EMBS (2009), 3601–3604.

[24] H. Choi, K.R. Castleman and A.C. Bovik, Color compensation
of multicolor FISH images, IEEE T on Medical Imaging 28(1)
(2009), 129–136.

[25] N. Otsu, A threshold selection method from gray-level his-
tograms, IEEE T on System, Man, Cybernetic 9(1) (1979),
62–66.

[26] C. Hwang and F.C.H. Rhee, Uncertain fuzzy clustering: Interval
type-2 fuzzy approach to C-means, IEEE T on Fuzzy Systems
15(1) (2007), 107–120.

[27] T. Kanungo, D.M. Mount, N.S. Netanyahu, C.D. Piatko, R.
Silverman and A.Y. Wu, An efficient k-means clustering
algorithm: Analysis and implementation, IEEE T on Pattern
Analysis and Machine Intelligence 24(7) (2002), 881–892.

[28] M.C. Hung, J. Wu, J.H. Chang and D.L. Yang, An efficient k-
means clustering algorithm using simple partitioning, J of Info
Science and Engineering 21(6) (2005), 1157–1177.

[29] K.R. Zalik, An efficient k’-means clustering algorithm, Pattern
Recognition Letters 29(9), 1385–1391.

[30] J. Mendel and R. John, (2002), Type-2 fuzzy set made simple,
IEEE T on Fuzzy Systems 10(2) (2008), 117–127.

[31] N.N. Karnik and J.M. Mendel, Operations on type-2 fuzzy sets,
Fuzzy Sets and Systems 122(2) (2001), 327–348.

[32] M.R. Rezaee, B.P.F. Lelieveldt and J.H.C. Reiber, A new cluster
validity index for the fuzzy c-mean, Pattern Recognition Letter
19(3) (1998), 237–246.

[33] J. Bezdek, Pattern Recognition with Fuzzy Objective Function
Algorithms, (1981), New York: Plenum.

[34] J. Ma and B. Cao, The Mahalanobis distance based rival
penalized competitive learning algorithm, Lect Note Compute
Science 3971 (2006), 442–447.

[35] M.P. Sampat, K.R. Castleman and A.C. Bovik, Pixel-by-pixel
classification of MFISH images, Engineering in Medicine and
Biology 2 (2002), 999–1000.

[36] L. Xu, Bayesian Ying-Yang machine, clustering and number of
clusters, Pattern Recognition Letter 18(11) (1997), 1167–1178.

[37] D. Steinley and M.J. Brusco, Initialization k-means batch clus-
tering: A critical evaluation of several techniques, Journal of
Classification 24(1) (2007), 99–121.

[38] Y.M. Cheug, On rival penalization controlled competitive learn-
ing for clustering with automatic cluster number selection,
IEEE T on Knowledge and Data Engineering 17(11) (2005),
1583–1588.

[39] S.J. Robert, R. Everson and I. Rezek, Maximum certainty data
partitioning, Pattern Recognition 33(5) (2000), 833–839.

[40] R.H. Turi, Clustering-Based Color Image Segmentation, PhD
Thesis, Monash University (2001), Australia.

[41] S. Haykin, Neural Networks: A Comprehensive Foundation
(1999), Prentice-Hall, Inc.

[42] J.H. Holland, Adaptation in Natural and Artificial Systems
(1975), MIT Press.

[43] Y.G. Tang, F.C. Sun and Z.Q. Sun, Improved Validation Index
for Fuzzy Clustering, American Control Conference (2005),
1120–1125.

[44] W. Wang and Y. Zhang, On fuzzy cluster validity indices, Fuzzy
Sets and Systems 158(3) (2007), 2095–2117.

[45] The ADIR M-FISH Image Database (2008), http://www.
adires.com/05/Project/MFISH DB/MFISH DB.shtml

[46] M-FISH data (2010), http://sites.google.com/site/xiaobaocao
006/database-for-download.

http://www.adires.com/05/Project/MFISH_DB/MFISH_DB.shtml
http://sites.google.com/site/xiaobaocao006/database-for-download


Copyright of Journal of Intelligent & Fuzzy Systems is the property of IOS Press and its
content may not be copied or emailed to multiple sites or posted to a listserv without the
copyright holder's express written permission. However, users may print, download, or email
articles for individual use.


