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• An optical analogue of Dirac solitons in nonlinear binary waveguide arrays is suggested.
• Analytical solutions to pseudo-relativistic solitons are presented.
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a b s t r a c t

We study analytically and numerically an optical analogue of Dirac
solitons in binary waveguide arrays in the presence of Kerr non-
linearity. Pseudo-relativistic soliton solutions of the coupled-mode
equations describing dynamics in the array are analytically derived.
We demonstrate that with the found soliton solutions, the coupled
mode equations can be converted into the nonlinear relativistic
1D Dirac equation. This paves the way for using binary waveguide
arrays as a classical simulator of quantum nonlinear effects arising
from the Dirac equation, something that is thought to be impossi-
ble to achieve in conventional (i.e. linear) quantum field theory.
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1. Introduction

Waveguide arrays have been used intensively to simulate the evolution of nonrelativistic quantum
mechanical particles in a periodic potential. Many fundamental phenomena in nonrelativistic classi-
cal and quantum mechanics, such as Bloch oscillations [1,2], Zener tunneling [3,4], optical dynamical
localization [5], and Anderson localization in disordered lattices [6] have been simulated both theoret-
ically and experimentally with waveguide arrays. In recent studies it was shown that, rather surpris-
ingly, most of nonlinear fiber optics features (such as resonant radiation and soliton self-wavenumber
shift) can also take place in specially excited arrays [7,8]. Recently, binary waveguide arrays (BWAs)
have also been used to mimic relativistic phenomena typical of quantum field theory, such as Klein
tunneling [9,10], the Zitterbewegung (trembling motion of a free Dirac electron) [11,12], and fermion
pair production [13], which are all based on the properties of the Dirac equation [14]. Although there
is as yet no evidence for fundamental quantum nonlinearities, nonlinear versions of the Dirac equa-
tion have been studied for a long time. One of the earlier extensions was provided by Heisenberg [15]
in the context of field theory and was motivated by the question of mass. In the quantummechanical
context, nonlinear Dirac equations have been used as effective theories in atomic, nuclear and grav-
itational physics [16–19] and, more recently, in the study of ultracold atoms [20,21]. In this regard,
BWAs can offer a rather unique model system to simulate nonlinear extensions of the Dirac equation
when probed at high light intensities. The discrete gap solitons in BWAs in the classical context have
been investigated both numerically [22–24] and experimentally [25]. In particular, in Ref. [23] soliton
profiles with even and odd symmetry were numerically calculated and a scheme with two Gaussian
beams, which are tuned to the Bragg angle with opposite inclinations, was proposed to efficiently
generate gap solitons. In Ref. [25] solitons were experimentally observed when the inclination angle
of an input beam is slightly above the Bragg angle.

Inspired by the importance of BWAs as a classical simulator for relativistic quantum phenomena,
and also by past achievements in the investigation of discrete gap solitons in BWAs, in this work we
present analytical soliton solutions of the discrete coupled-mode equations (CMEs) for a BWA and
construct Dirac solitons of a nonlinear relativistic 1D Dirac equation in the quasicontinuous limit.
This paves the way for using BWAs to simulate nonlinear extensions of the Dirac equation that violate
Lorentz invariance [26], aswell as other solitonic andnonsolitonic effects of nonlinearDirac equations.

2. Analytical soliton solutions

Light propagation in a discrete, periodic binary array of Kerr nonlinear waveguides can be de-
scribed, in the continuous-wave regime (CW), by the following dimensionless CMEs [9,22]:

i
dan(z)
dz

= −κ[an+1(z) + an−1(z)] + (−1)nσan − γ |an(z)|2an(z), (1)

where an is the electric field amplitude in the nth waveguide, z is the longitudinal spatial coordinate,
2σ and κ are the propagation mismatch and the coupling coefficient between two adjacent waveg-
uides of the array, respectively, and γ is the nonlinear coefficient of waveguides, which is positive for
self-focusing, but negative for self-defocusing media. For simplicity, here we suppose all waveguides
have the same nonlinear coefficient, but even if these nonlinear coefficients are different (provided
they are comparable), then analytical soliton solutions shown later will not be changed, because as
explained later, one soliton component is much weaker than both unity and the other component,
and thus one can eliminate the nonlinear term associated with this weak soliton component. In the
dimensionless form, in general, one can normalize variables in the above equation such that γ and κ
are equal to unity. However, throughout this work we will keep these parameters explicitly in Eq. (1).
Before proceeding further, it is helpful to analyze the general properties of the general solutions of
Eq. (1). First of all, let us assume that (a2n, a2n−1)

T
= i2n(ϕ2n, ϕ2n−1)

T is one solution of Eq. (1) with ϕ2n
and ϕ2n−1 being appropriate functions. In this case, if we change the sign of γ while keeping the other
two parameters constant, one can easily show that a new solution of Eq. (1) will be (a2n, a2n−1)

T
=

i2n(ϕ∗

2n−1, ϕ
∗

2n)
T , where ∗ denotes the complex conjugation. Secondly, if the sign of σ is changed
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while the other parameters are kept constant, then a new solution of Eq. (1) will be (a2n, a2n−1)
T

=

i2n(ϕ2n−1, ϕ2n)
T . Of course, when σ changes sign, we still have the same physical system, but with a

shift of the wavenumber position n in Eq. (1) by one. The above simple rules allow us to quickly find
other solutions and their symmetries if one particular solution is known, as will be shown later.

In the specific case when all three parameters γ , κ , and σ are kept positive, we look for analytical
solutions of motionless solitons of Eq. (1) in the following form:


a2n(z)

a2n−1(z)


=

 i2nd
2
n0

sech

2n
n0


eifz

−i2n−1b sech

2n − 1

n0


tanh


2n − 1

n0


eifz

 , (2)

where n0 ∈ R characterizes the beam width (i.e. the average number of waveguides on which the
beam extends), and coefficients b, d and f are still unknown. In the system without any loss or gain
of energy (i.e., when κ, σ and γ are all real), the coefficient f must also be real, but b and d can be
complex in general. Inserting the ansatz (2) into Eq. (1), assuming a priori that the component a2n−1 is
muchweaker than both unity and the other component a2n, such that one can eliminate the nonlinear
term for a2n−1, and also assuming that the quasicontinuous limit is valid (i.e. n0 is large enough), after
some lengthy algebra one gets:

fd = κbi − σd, (3)

iκb = 2γ |d|2d/n2
0, (4)

fb = σb + 4dκ i/n2
0. (5)

Extracting f and b from Eqs. (3) and (4), respectively, then inserting them into Eq. (5) we will get one
quadratic equation for d2, and thus can find the values for b, d and f . Note that one needs to keep only
solutions which satisfy the above assumption that |a2n−1| ≪ |a2n|. The final solution in the case when
γ , κ, σ > 0 is:


a2n(z)

a2n−1(z)


=


i2n

2κ
n0

√
σγ
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iz
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sech
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n0


e
iz


2κ2

n20σ
−σ


 . (6)

It is worth mentioning that the analytical soliton solution in the form of Eq. (6) is derived under
two conditions: (i) the beam must be large enough such that one can operate in the quasicontinuous
limit instead of the discrete one; and (ii) n0|σ | ≫ 2κ . The latter condition is easily satisfied if (i) is held
true and if σ is comparable to κ [12]. If condition (ii) is not valid, one can still easily get the analytical
solution for b, d and f from Eqs. (3)–(5), but they are a bit cumbersome and for brevity we do not
show it here. The solution in form of Eq. (6) represents a one-parameter family of discrete solitons in
BWAswhere the beamwidth parameter n0 can be arbitrary, provided that n0 & 4, a surprisingly small
number for the quasicontinuous approximation to be valid.

In Fig. 1(a) we plot the soliton profile with even symmetry calculated by using Eq. (6) at z = 0
with full circles marking the field amplitudes across BWAs, for the parameters given in the caption.
Note that the soliton profile in Fig. 1(a) consists of two components: one strong component a2n and
anothermuchweaker component a2n−1 (see also Fig. 2(c)). Oncewe get the soliton solution in Fig. 1(a),
we can construct another soliton solution of the same physical system by changing the sign of σ
and following the rules explained in the previous section. In that way we obtain the odd symmetry
soliton profile depicted in Fig. 1(b). It is important to mention that in the case of self-focusing media
(γ > 0), for both even and odd symmetries the strong component is always located at waveguides
with smaller propagation constants (channels with +|σ | in Eq. (1)), whereas the weak component
is located at waveguides with larger propagation constants (channels with −|σ | in Eq. (1)). We are
also able to construct the soliton solutions for the self-defocusing media, which also possess soliton
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Fig. 1. (Color online) Discrete soliton profiles (a,b) for even and odd symmetry, respectively. Full circles mark the field
amplitudes across the BWA. Parameters in (a): κ = 1; γ = 1; σ = −1.2; and n0 = 5. After getting the even symmetry profile
in (a), we construct the odd profile in (b) by switching the sign of σ and following the symmetry transformations explained in
the text.

solutionswith even and odd symmetries. The only difference from the self-focusingmedia is that now
the strong (weak) component is located atwaveguideswith larger (smaller) propagation constants. To
estimate the real physical parameters of the calculated solitonweuse typical parameters inwaveguide
arrays made of AlGaAs [2], where the coupling coefficient and nonlinear parameter in physical units
are K = 1240 m−1 and Γ = 6.5 m−1 W−1, respectively. In this case, the power scale will be
P0 = K/Γ = 190.8 W, thus the peak power of the soliton shown in Fig. 1 will be around 25.5 W
and the length scale in the propagation direction will be z0 = 1/K = 0.8 mm. Instead of using CW
beams, a common practice is to use short optical pulses with high peak power but wide enough such
that the dispersion effects are not important.

3. Soliton propagation and generation

Eq. (6) and the associated solutions obtained by the above symmetry transformations provide the
analytical forms of the two discrete gap soliton branches numerically found in [23]. We note that the
propagation constant f of the two solitons, given by f = −σ + 2κ2/(n2

0σ), falls in the minigap of
the superlattice, near the edge of the lower miniband (because 2κ2/(n2

0σ) ≪ σ ), and thus they are
expected to be stable [23]. As an example, in Fig. 2(a) we show the soliton propagation along z as ob-
tained by numerically solving Eq. (1) with an input soliton taken from Eq. (6) at z = 0, demonstrating
that the soliton profile is well preserved during propagation. The parameters used for Fig. 2 are the
same as in Fig. 1(a). The evolution of the Fourier transform of the field an in Fig. 2(a) along z is shown
in Fig. 2(b), where the wavenumber k represents the phase difference between adjacent waveguides.
Due to the periodic nature of BWAs, within the coupledmode approximation, it suffices to investigate
k in the first Brillouin zone −π ≤ k ≤ π [27]. One very important feature of the wavenumber evolu-
tion in Fig. 2(b) is the fact that there are two components ofwavenumber centered at k = ±π/2which
correspond to two Bragg angles [12] with opposite inclinations. These two wavenumber components
are generated at the input and preserve their shapes during propagation along z. This feature of k
indicates that the soliton operates in the region where CMEs could potentially be converted into the
relativistic Dirac equations describing the evolution of a freelymoving relativistic particle [11,12].We
will come back to this important point again later. Fig. 2(c) shows the two components of the soliton
profile at odd and even waveguide positions n. The strong component with solid curves and square
markers represents the field profile |a2n| at even waveguide positions, whereas the weak component
with dashed–dotted curves and round markers represents the field profile |a2n−1| at odd waveguide
positions. Field profiles in Fig. 2(c) are taken at four values of propagation distance z = 0 (red curves);
50 (blue curves); 140 (green curves); and 200 (black curves) – only the black curves are actually visible
since the profile is perfectly preserved during propagation with a very high precision. The soliton pro-
file also perfectly preserves its phase pattern across the array (Fig. 2(d)). From Eq. (6), one can easily
see that as the waveguide position variable n runs, the phase pattern of the soliton must be periodic
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Fig. 2. (Color online) (a,b) Soliton propagation in the (n, z)-plane (a) and its Fourier transform in the (k, z)-plane (b) with
an even symmetry profile at the input. (c) Absolute values of the field amplitudes for intense (|a2n| with solid line and square
markers) andweak (|a2n−1|with dashed–dotted curves and roundmarkers) soliton components at four different values of z = 0
(red curves); 50 (blue curves); 140 (green curves); and 200 (black curves). The soliton profile is so well preserved that all these
curves just stay on top of each other and one can see only the output black curves. (d) Phase pattern δ/π of soliton profiles at
the four above values of z. Colors of curves in (d) have the same meaning as in (c). Parameters: κ = 1; γ = 1; σ = −1.2; and
n0 = 5. All contour plots are shown on a logarithmic scale.

as follows: δn = · · · (ρ, ρ), (ρ + π, ρ + π), (ρ, ρ) . . . where ρ also changes with z. This pattern is
only broken at the soliton center point where the function tanh in Eq. (6) changes its sign. This phase
pattern is shown in Fig. 2(d), where different colors with meanings as in Fig. 2(c) depict pattern at
different values of z. The sequence in the phase is important because it allows us to convert Eq. (1)
into the nonlinear Dirac equation, as we shall show shortly. Note that the soliton whose propagation
is shown in Fig. 2 is the one with even symmetry in Fig. 1 (a). Our simulations similarly show that the
profile of solitons with odd symmetry in Fig. 1 (b) is also well preserved during propagation, and we
have checked that this is true even in the presence of quite a strong numerical noise, demonstrating
the robustness and the stability of our solutions.

Although the soliton solutions given by Eq. (6) are exact, it is important to consider the possibility to
generate the new gap solitons by an input beamwith a simpler (and more experimentally accessible)
profile. Due to the wavenumber structure shown in Fig. 2(b), one can interpret the soliton as a
combination of two beams launched under two Bragg angles with opposite tilts k = ±π/2, similarly
to what was suggested in Ref. [23]. Here we propose to generate the soliton by an input with a simple
phase pattern where the phase difference between adjacent waveguides is equal to π/2 across the
array. The input condition is taken to be An = anexp(inπ/2), where an is given by Eq. (6) at z = 0,
but without the term i2n. Note that, since |a2n−1| ≪ |a2n|, this input condition can be approximately
achieved by exciting the BWA with a broad beam tilted at the Bragg angle, with the odd waveguides
in the structure being realized at some spatial delay ∆z inside the sample (so as they are not excited
at the input plane); see the scheme shown in Fig. 3(f). In the linear regime, the beam broadens and
undergoes Zitterbewegung [11,12], whereas in the nonlinear regime soliton formation is expected to
take place with suppression of both beam broadening and Zitterbewegung. This is clearly shown in
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Fig. 3. (Color online) (a,b) Propagation in the (n, z)-plane of the even and odd components of the beam with an initial
phase difference equal to π/2 between adjacent waveguides. (c) Fourier transform of field amplitudes in the (k, z)-plane. (d)
Absolute values of the field amplitudes for an intense component |a2n| with solid curves and a weak component |a2n−1| with
dashed–dotted curves at four different values of z = 0 (red curves); 50 (blue curves); 140 (green curves); and 200 (black curves).
(e) Phase pattern δ/π of field amplitudes for the same values of z as in (d). Colors of curves in (e) have the same meaning as in
(d). (f) Scheme of the BWA structure for generating discrete solitons. Parameters: κ = 1; γ = 1; σ = −1.2; and n0 = 5.

Fig. 3, which indicates the formation of the soliton during propagation with parameters as in Fig. 2.
The evolution of field profiles |a2n| and |a2n−1| at even and odd waveguide positions is depicted in
Fig. 3(a) and (b), respectively. The evolution of the Fourier transform of the field an of Fig. 3(a,b)
along z is shown in Fig. 3(c). One can see that the strong component a2n in Fig. 3(a) does not change
much during propagation, whereas the weak component a2n−1 in Fig. 3(b) is dramatically altered
during propagation. As seen from Fig. 3(b), at the beginning of the propagation the beam undergoes
the Zitterbewegung. After reaching z ≃ 70, the profile |a2n−1| becomes stable. Fig. 3(d) shows the
strong component |a2n| of the soliton profile with solid curves and the weak component |a2n−1| with
dashed–dotted curves. As in Fig. 2(c,d) field profiles are taken at four values of propagation distance
z = 0 (red curves); 50 (blue curves); 140 (green curves); and 200 (black curves). One can also see
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that the strong component |a2n| is stable, whereas the weak component first gets distorted (see blue
and green curves), but eventually the output curve (black color) relaxes to the input curve (red color).
Fig. 3(e) depicts the phase pattern of the field amplitudes across the array calculated at different z with
corresponding colors as in Fig. 3(d). At the input (red curve)we have the phase difference equal toπ/2
between adjacent waveguides, but this phase pattern quickly transforms into the phase pattern of the
soliton solution given by Eq. (6), i.e., δn = · · · (ρ, ρ), (ρ + π, ρ + π), (ρ, ρ) · · · (see blue, green and
black curves in Fig. 3(e)). Therefore, here one can make a local conclusion: a beam with the intensity
profiles of the soliton solution given by Eq. (6), but with a phase difference equal to π/2 between
adjacent waveguides, will first undergo Zitterbewegung, but eventually its intensity profile and phase
pattern will relax to those of the soliton solution given by Eq. (6).

4. Dirac solitons

Asmentioned in the introduction, BWAs have been used tomimic phenomena in both nonrelativis-
tic and relativistic quantummechanics. To the best of our knowledge so far all these phenomenawhich
have been simulated by BWAs are linear. In this section we will report on the simulation of nonlinear
relativistic Dirac solitons in BWAs. As shown in [11,12], linear CMEs (Eq. (1)) for a beam with phase
difference equal to π/2 can be converted into the linear one-dimensional relativistic Dirac equation
(DE). Note that Eq. (1) can be converted into the DE only for beams with special phase patterns; for
instance, at normal beam incidence Eq. (1) cannot be converted into the DE. It turns out that with the
soliton solution given by Eq. (6), one can also successfully convert Eq. (1) into the nonlinear relativis-
tic Dirac equation (NDE). Thus, one can use BWAs to mimic the relativistic Dirac solitons, and soliton
solutions in BWAs given by Eq. (6) can be used to construct directly the Dirac soliton. Although the
solution of Eq. (6) does not possess a phase difference equal to π/2 between adjacent waveguides
(see Fig. 2(d)), the fact that it exhibits twowavenumbers k = ±π/2 (see Fig. 2(b)) gives us some hope
that the NDE can also be obtained in this case. Indeed, this is the case, as shown below. In general,
suppose that [a2n(z), a2n−1(z)]T = i2n[g(2n, z), q(2n − 1, z)]T , where the two functions g and q are
smooth and their derivatives ∂ng and ∂nq exist in the quasicontinuous limit (Eq. (6) satisfy these re-
quirements). After setting Ψ1(n) = (−1)na2n and Ψ2(n) = i(−1)na2n−1, and following the standard
approach developed in [11,12], we can introduce the continuous transverse coordinate ξ ↔ n and
the two-component spinor Ψ (ξ , z) = (Ψ1, Ψ2)

T which satisfies the 1D NDE:

i∂zΨ = −iκα∂ξΨ + σβΨ − γG, (7)

where the nonlinear terms G ≡ (|Ψ1|
2Ψ1, |Ψ2|

2Ψ2)
T ; β = diag(1, −1) is the Pauli matrix σz ; and α

is the Pauli matrix σx with diagonal elements equal to zero, but off-diagonal elements equal to unity.
Note that Eq. (7) is identical to the DE obtained in [11,12], with the only difference that now we have
the nonlinear term G in Eq. (7). Similar soliton solutions have been found for the NDE in Ref. [28], but
with a different and more complicated kind of nonlinearity, in the context of quantum field theory.
Note that the nonlinearity thatwe have in Eq. (7) violates Lorentz invariance [26], and is similar to that
of the Dirac equations in Bose–Einstein condensates [20]. Using the soliton solution given by Eq. (6)
and the above relation between an and Ψ one can easily obtain the Dirac soliton solution of Eq. (7) as
follows:


Ψ1(ξ , z)
Ψ2(ξ , z)


=


2κ

n0
√

σγ
sech


2ξ
n0


e
iz


2κ2

n20σ
−σ



i
2κ2

n2
0σ

√
σγ

sech

2ξ − 1

n0


tanh


2ξ − 1

n0


e
iz


2κ2

n20σ
−σ


 . (8)

The above solution is obtained for σ > 0 and γ > 0. One can use the symmetry properties of Eq. (1)
to construct other Dirac soliton solutions of Eq. (7), with different sign combinations between σ and
γ . The expressions given by Eq. (8) give the main result of this work, and the only physically real-
izable way that we are aware of to produce and observe Dirac solitons with a table-top experiment.
In future investigations we are planning to carefully study the dynamics and the stability of Dirac
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solitons in BWAs, on which we will report in a separate publication. Our BWA classical simulator of
the Dirac equation could be extended to mimic the two-body Dirac model, i.e. the Dirac equation
for two interacting relativistic particles, which has been of interest since the early days of quantum
mechanics [29,30]. The associated time-independent relative equation is sometimes called the Kem-
mer–Fermi–Yang equation [31,32]. To implement the two-body Dirac model, a square lattice of op-
tical waveguides should be considered, interaction is mimicked by introduction of a defect line on
the lattice diagonal [33]. As compared to other quantum simulators (based, for example, on trapped
ions [34,35]), our optical setting lacks the scalability and cannot easily be extended to simulate many-
particle systems. However, like for quantum simulators based on trapped ions [35], our BWA setting
can be exploited to simulate other quantum field theoretical models, for example the Majorana equa-
tion [36].

5. Conclusions

In this workwe have provided analytical expressions for the non-moving gap solitons in BWAs and
shown their connection to Dirac solitons in a nonlinear extension of the relativistic 1D Dirac equation
describing the dynamics of a freely moving relativistic particle. Our results suggest that BWAs can
be used as a classical simulator to investigate relativistic Dirac solitons, enabling one to realize an
experimentally accessible model system of quantum nonlinearities that have been so far a subject of
speculation in the foundation of quantum field theories. The analysis of analogues of quantum field
theory effects such as those described in this work is applicable to virtually any nonlinear discrete
periodic system supporting solitons, either classical or quantum, therefore making our results very
general and of relevance to different systems beyond optics, such as ultracold atoms in optical lattices
and trapped ions where analogues of linear relativistic effects, such as Zitterbewegung, have been
studied and observed [37–39].
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