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Abstract We propose algorithms for finding the projection of a given point onto the so-
lution set of the pseudomonotone variational inequality problem. This problem arises in
the Tikhonov regularization method for pseudomonotone variational inequality. Since the
solution set of the variational inequality is not given explicitly, the available methods of
mathematical programming and variational inequalities cannot be applied directly.
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1 Introduction

Variational inequality (VI) is a fundamental topic in applied mathematics. VIs are used for
formulating and solving various problems arising in mathematical physics, economics, en-
gineering and other fields. Theory, methods and applications of VIs can be found in some
comprehensive books and monographs (see e.g. [8, 9, 15, 16]). Mathematical programs with
variational inequality constraints can be considered as one of the further development direc-
tions of variational inequality [18]. Recently, these problems have received much attention
of researchers due to their vast applications.

In this paper, we are concerned with a special case of VIs with variational inequality
constraints. Namely, we consider the bilevel variational inequality problem (BVI):{

min{‖x − xg‖ : x ∈ S},
where xg ∈ C and S = {u ∈ C : 〈F(u), y − u〉 ≥ 0 ∀y ∈ C} (1.1)
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i.e., S is the solution set of the variational inequality VI(C,F ) defined as

Find x∗ ∈ C such that
〈
F

(
x∗), y − x∗〉 ≥ 0 ∀y ∈ C. (1.2)

Throughout the paper, we suppose that C is a nonempty closed convex subset in the Eu-
clidean space R

n and F : Rn → R
n. We call problem (1.1) the upper problem and (1.2) the

lower one.
It should be noticed that the solution set S of the lower problem (1.2) is convex whenever

F is pseudomonotone on C. However, the main difficulty is that, even if the constrained set
S is convex, it is not given explicitly as in a standard mathematical programming problem,
and therefore the available methods of convex optimization and variational inequality cannot
be applied directly to problem (1.1).

In the literature, there exist several solution methods that can be used to solve bilevel
variational inequality problem (1.1) (see e.g. [1, 3, 6, 7, 14, 19, 20, 22, 28, 30] and the ref-
erences cited therein): penalty function methods, regularization methods and hybrid fixed
point-projection methods. Most of these methods can be used only when F is monotone.
In the penalty function and regularization methods [6, 7, 14, 22, 28, 30], main subproblems
to be solved are variational inequalities whose cost operators are the sum of F and some
strongly monotone operator depending on a parameter. These cost operators are strongly
monotone when F is monotone, but they may not be pseudomonotone when F is pseu-
domonotone, and therefore the subproblems cannot be solved by available algorithms. In
hybrid fixed point methods with projections, the main subproblems to be solved are strongly
convex programs; however for convergence some additional assumptions on nonexpansive-
ness of the operators involved are needed (see e.g. [1, 6, 19, 28, 30]). For problem (1.1), the
required nonexpansiveness is satisfied when F is monotone, but it may fail to hold when F

is pseudomonotone.
The Tikhonov regularization is a fundamental method for monotone variational inequal-

ity problems. Hao in [11] studied the Tikhonov method for pseudomonotone VIs and an-
swered in the affirmative a question posed in [8, p. 1229]. It is shown in [11] (see also
[12, 26]) that every Tikhonov trajectory defined by the regularized problem VI(C,Fε ),
where Fε := F + εI with ε > 0 and I being the identity operator, tends to the least norm
solution of the pseudomonotone variational inequality VI(C,F ) as ε → 0. So the problem
of finding the limit in the Tikhonov method applying to pseudomonotone VIs leads to the
problem of the form (1.1) with S being the solution set of the original problem and xg = 0.
It is well known that if F is monotone, then F + εI is strongly monotone for every ε > 0.
However, when F is pseudomonotone, the operator F + εI may not be strongly monotone,
even not pseudomonotone for any ε > 0 (see the Counterexample 2.1 in [26]). This example
raises further an interesting question posed in [26] for the Tikhonov regularization method
“Why one has to replace the original pseudomonotone VI by the sequence of auxiliary prob-
lems VI(C,Fε ), ε > 0, none of which is pseudomonotone?”. This question suggests to us
to develop algorithms for solving bilevel problem (1.1). Namely, in this paper, we propose
algorithms for solving bilevel variational inequality problem (1.1) when the lower problem
is pseudomonotone with respect to its solution set. The latter property is somewhat more
general than the pseudomonotonicity. The proposed algorithms can be considered as a com-
bination of the well-known extragradient method using the auxiliary problem principle with
the cutting plane technique previously used in some papers (see e.g. [28] and the references
cited therein). The proposed algorithms show that with the help of the auxiliary problem
VI(C,Tε ), the same limit point of every Tikhonov trajectory can be obtained by solving the
bilevel problem (1.1).
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2 Preliminaries

As usual, by PC we denote the projection operator onto the closed convex set C with the
norm ‖.‖, that is,

PC(x) ∈ C : ∥∥x − PC(x)
∥∥ ≤ ‖x − y‖ ∀y ∈ C.

The following well-known results on the projection operator will be used in the sequel.

Lemma 2.1 [8, Lemma 12.1.13] Suppose that C is a nonempty closed convex set in R
n.

Then

(i) PC(x) is singleton and well-defined for every x;
(ii) π = PC(x) if and only if π ∈ C, 〈x − π,y − π〉 ≤ 0 ∀y ∈ C;

(iii) ‖PC(x) − PC(y)‖2 ≤ ‖x − y‖2 − ‖PC(x) − x + y − PC(y)‖2 ∀x, y ∈ C.

We recall some well-known definitions on monotonicity (see e.g. [8, 16]).

Definition 2.1 An operator φ :Rn →R
n is said to be

(a) strongly monotone on C with modulus γ , if〈
φ(x) − φ(y), x − y

〉 ≥ γ ‖x − y‖2 ∀x, y ∈ C;
(b) monotone on C if 〈

φ(x) − φ(y), x − y
〉 ≥ 0 ∀x, y ∈ C;

(c) pseudomonotone on C if〈
φ(y), x − y

〉 ≥ 0 =⇒ 〈
φ(x), x − y

〉 ≥ 0 ∀x, y ∈ C;
(d) pseudomonotone on C with respect to x∗ ∈ C if〈

φ
(
x∗), x − x∗〉 ≥ 0 =⇒ 〈

φ(x), x − x∗〉 ≥ 0 ∀x ∈ C.

The operator φ is pseudomonotone on C with respect to a set A ⊆ C if it is pseudomono-
tone on C with respect to every point x∗ ∈ A.

From the definitions it follows that (a) ⇒ (b) ⇒ (c) ⇒ (d) ∀x∗ ∈ C.
In what follows we need the following assumptions on F :

(A1) F is continuous on its domain;
(A2) F is pseudomonotone on C with respect to every solution of problem VI(C,F ).

Lemma 2.2 Suppose that assumptions (A1), (A2) are satisfied and that the variational
inequality (1.2) admits a solution. Then the solution set of (1.2) is closed, convex.

The proof of this lemma when F is pseudomonotone on C can be found in [8, 16, 24].
When F is pseudomonotone with respect to its solution set, the proof can be done in the
same way.

Following the auxiliary problem principle [5, 21], let us define a bifunction L : C ×C →
R such that
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(B1) L(x, x) = 0,∃β > 0 : L(x, y) ≥ β

2 ‖x − y‖2 ∀x, y ∈ C;
(B2) L is continuous, L(x, .) is differentiable, strongly convex on C for every x ∈ C and

∇2L(x, x) = 0 for every x ∈ C.

An example for such a bifunction is the Bregman distance (see e.g. [4])

L(x, y) := g(y) − g(x) − 〈∇g(x), y − x
〉

with g being any differentiable, strongly convex function on C with modulus β > 0, for
instance, g(x) = 1

2 ‖x‖2. The following lemma is well known from the auxiliary problem
principle for VIs [21]. Since this lemma was not proved in [21], we give here a short proof
for it.

Lemma 2.3 [21] Suppose that F satisfies (A1), (A2) and L satisfies (B1), (B2). Then, for
every ρ > 0, the following statements are equivalent:

(a) x∗ is a solution to VI(C,F );
(b) x∗ ∈ C : 〈F(x∗), y − x∗〉 + 1

ρ
L(x∗, y) ≥ 0 ∀y ∈ C;

(c) x∗ = argmin{〈F(x∗), y − x∗〉 + 1
ρ
L(x∗, y) : y ∈ C};

(d) x∗ ∈ C : 〈F(y), y − x∗〉 ≥ 0 ∀y ∈ C.

Proof First we show that (a), (b) and (c) are equivalent. Indeed, since L(x, y) ≥ 0 for every
x, y ∈ C, so (a) follows (b). However, (b) holds if and only if (c) holds, that is,

x∗ = argmin

{〈
F

(
x∗), y − x∗〉 + 1

ρ
L

(
x∗, y

) : y ∈ C

}
.

In fact, by necessary and sufficient optimality condition for convex programming, the latter
is equivalent to

0 ∈ F
(
x∗) + 1

ρ
∇2L

(
x∗, x∗) + NC

(
x∗) = F

(
x∗) + NC

(
x∗),

which is equivalent to (a).
To see that (d) implies (a), we suppose on the contrary that there exists some w ∈ C such

that 〈F(x∗),w − x∗〉 < 0. Then take yt := (1 − t)x∗ + tw with 0 < t < 1. By the continuity
of F we have 〈F(yt∗),w − x∗〉 < 0 for some 0 < t∗ < 1. Then it follows from (d) that

0 ≤ 〈
F(yt∗), yt∗ − x∗〉 = 〈

F(yt∗), t∗x
∗ + (1 − t∗)w − x∗〉 = (1 − t∗)

〈
F(yt∗),w − x∗〉 < 0;

a contradiction.
The fact that (a) implies (d) is immediate from the pseudomonotonicity of F . �

3 The algorithms and their convergence

In what follows we suppose that the solution set S of the lower variational inequality (1.2)
is nonempty and that F is continuous, pseudomonotone on C with respect to S. In this case,
S is closed and convex. The following algorithm can be considered as a combination of
the extragradient method [8, 13, 17, 25] and the cutting techniques [27, 28] to the bilevel
problem (1.1).
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Algorithm 1 Choose ρ > 0 and η ∈ (0,1). Starting from x1 := xg ∈ C (xg plays the role of
a guessed solution).

Iteration k (k = 1,2, . . .) Having xk , perform the following steps:
Step 1. Solve the strongly convex program

min

{〈
F

(
xk

)
, y − xk

〉 + 1

ρ
L

(
xk, y

) : y ∈ C

}
CP

(
xk

)

to obtain its unique solution yk .
If yk = xk , take uk = yk and go to Step 3. Otherwise, go to Step 2.
Step 2. (Armijo linesearch) Find mk as the smallest nonnegative integer number m satis-

fying

zk,m := (
1 − ηm

)
xk + ηmyk, (3.1)

〈
F

(
zk,m

)
, yk − zk,m

〉 + 1

ρ
L

(
xk, yk

) ≤ 0. (3.2)

Set ηk = ηmk , zk := zk,mk and compute

σk = −ηk〈F(zk), yk − zk〉
(1 − ηk)‖F(zk)‖2

, uk := PC

(
xk − σkF

(
zk

))
. (3.3)

Step 3. Having xk and uk , construct two halfspaces

Ck := {
y ∈R

n : ∥∥uk − y
∥∥2 ≤ ∥∥xk − y

∥∥2};
Dk := {

y ∈R
n : 〈xg − xk, y − xk

〉 ≤ 0
}
.

Let Bk := Ck ∩ Dk ∩ C.
Step 4. Compute xk+1 := PBk

(xg).
If xk+1 ∈ S, terminate: xk+1 solves the bilevel problem (1.1). Otherwise, increase k by

one and go to iteration k.

Before considering validity and convergence of the algorithm, we would like to empha-
size that the main difference between the just described algorithm with the other available
ones [6, 7, 19, 20, 28, 30] applied to the bilevel problem (1.1) is that the lower VI in (1.1)
is pseudomonotone with respect to its solution rather than monotone as in the above men-
tioned papers. Moreover, the subproblems to be solved in our algorithms are strongly convex
programs, which seem numerically easier than strongly monotone VIs as in the above men-
tioned algorithms for the monotone case. As we have mentioned, for pseudomonotonicity
case, the latter subvariational inequality is no longer strongly monotone, even not pseu-
domonotone. In our recent paper [1], the lower variational inequality can be pseudomono-
tone. However, the algorithm proposed there consists of two loops, and for the convergence,
we have to assume that the inner loop must terminate after a finite number of projections. For
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monotonicity case this assumption is satisfied, but the number of the projections, although
finite, cannot be estimated. It is well known that the solution set S of VI(C,F ) is just the
fixed point set of an operator T defined in some way, for example T (x) := PC(x − ρF(x))

with ρ > 0 or T (x) := Tprox(x), where

Tprox(x) := {
u ∈ C : 〈F(u), y − u

〉 + c〈y − u,u − x〉 ≥ 0 ∀y ∈ C
}

with c > 0. Thus the bilevel variational inequality (1.1) belongs to the class of variational
inequality problems over the fixed point set of an operator (mapping) T . The latter prob-
lem with T being a nonexpansive operator is solved by some algorithms based upon the
fixed point approach (see e.g. [10, 20, 29] and the references therein). In [30], a hybrid
steepest descent method was proposed for variational inequality over the fixed point set of
a quasi-shrinking nonexpansive mapping. We note that the algorithms proposed in this pa-
per do not belong to the steepest descent method and, for convergence, the sequences of
iterates generated by our algorithms are not required to satisfy any additional condition as
the algorithms in [30]. Moreover, the operator T (x) := PC(x − ρF(x)) may not be neces-
sarily quasi-shrinking nonexpansive whereas Tprox may have nonconvex values when F is
pseudomonotone with respect to the solution set S.

Remark 3.1 (i) The linesearch in Step 2 is well defined. Indeed, otherwise for all nonnegative
integer numbers m one has

〈
F

(
zk,m

)
, yk − zk,m

〉 + 1

ρ
L

(
xk, yk

)
> 0. (3.4)

Thus letting m → ∞, by continuity of F , and zk,m = (1 − ηm)xk + ηmyk → xk , we have

〈
F

(
xk

)
, yk − xk

〉 + 1

ρ
L

(
xk, yk

) ≥ 0,

which, together with

〈
F

(
xk

)
, xk − xk

〉 + 1

ρ
L

(
xk, xk

) = 0,

implies that xk is the solution of the strongly convex program CP(xk). Thus xk = yk which
contradicts the fact that the linesearch is performed only when yk �= xk .

Note that mk > 0. Indeed, if mk = 0, then by the Armijo rule, we have zk = yk , and
therefore

1

ρ
L

(
xk, yk

) = 〈
F

(
zk

)
, yk − zk

〉 + 1

ρ
L

(
xk, yk

) ≤ 0,

which, together with nonnegativity of L, implies L(xk, yk) = 0. Since L(xk, yk) ≥ β

2 ‖xk −
yk‖2, one has xk = yk .

(ii) The step size σk defined by (3.3) is positive whenever xk �= yk .

Lemma 3.1 Under the assumptions of Lemma 2.3, it holds that

∥∥uk − x∗∥∥2 ≤ ∥∥xk − x∗∥∥2 − σ 2
k

∥∥F
(
zk

)∥∥2 ∀x∗ ∈ S ∀k. (3.5)
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Proof The proof of this lemma can be done similarly as the proof of Lemma 12.1.10 in [8]
(see also [23]). So we give here only a sketch. For the simplicity of notation, we write Fk for
F(zk) and vk for xk − σkF

k . Since uk = PC(vk), by the nonexpansiveness of the projection
we have

∥∥uk − x∗∥∥2 = ∥∥PC

(
vk

) − PC

(
x∗)∥∥2 ≤ ∥∥vk − x∗∥∥2

= ∥∥xk − x∗ − σkF
k
∥∥2

= ∥∥xk − x∗∥∥2 + σ 2
k

∥∥Fk
∥∥2 − 2σk

〈
Fk, xk − x∗〉. (3.6)

Since x∗ ∈ S, using assertion (d) of Lemma 2.3 we can write

〈
Fk, xk − x∗〉 = 〈

Fk, xk − zk + zk − x∗〉 ≥ 〈
Fk, xk − zk

〉
. (3.7)

Since xk − zk = ηk

1−ηk
(zk − yk),

〈
Fk, xk − zk

〉 = ηk

1 − ηk

〈
Fk, zk − yk

〉 = σk

∥∥Fk
∥∥2

. (3.8)

The last equality comes from the definition of σk by (3.3) in the algorithm. Combining (3.6),
(3.7) and (3.8) we obtain (3.5). �

The following theorem shows validity and convergence of the algorithm, with parts of
the proof using a technique in [28].

Theorem 3.1 Suppose that the assumptions (A1), (A2) and (B1), (B2) are satisfied and
that VI(C,F ) admits a solution. Then both the sequences {xk}, {uk} converge to the unique
solution of the original bilevel problem (1.1).

Proof As we have remarked, the linesearch used in the algorithm is well defined. So, to
see validity of the algorithm, it is sufficient to show that S ⊆ Bk for every k. Indeed, from
Lemma 3.1, it follows that ‖uk − x∗‖ ≤ ‖xk − x∗‖ for every k and x∗ ∈ S. Hence, by the
definition of Ck , one has ∅ �= S ⊆ Ck for every k. Moreover, S ⊆ Dk for every k. In fact, since
x1 = xg , S ⊆ D1 = R

n. By the definition of xk+1, it follows, by induction, that if S ⊆ Dk ,
then, since xk+1 = PBk

(xg), we have S ⊆ Dk+1. Consequently, ∅ �= S ⊆ Ck ∩ Dk ∩ C = Bk

for every k. Hence the projection onto Bk is well defined. Due to the definition of Dk , by the
assertion (ii) of Lemma 2.1 we have xk = PDk

(xg).
Note that xk+1 ∈ Dk , we can write ‖xk −xg‖ ≤ ‖xk+1 −xg‖ for every k. Moreover, since

xk = PDk
(xg) and S ⊂ Dk for every k, we have ‖xk − xg‖ ≤ ‖x∗ − xg‖ for any x∗ ∈ S and

for every k, therefore {xk} is bounded.
From the boundedness of {xk} and the inequality ‖xk −xg‖ ≤ ‖xk+1 −xg‖ for every k, it

follows that limk ‖xk − xg‖ exists and is finite. The sequence {xk} is asymptotically regular,
i.e., ‖xk+1 − xk‖ → 0 as k → ∞. Indeed, since xk ∈ Dk and xk+1 ∈ Dk , by the convexity
of Dk one has xk+1+xk

2 ∈ Dk . By the definition of Dk , we have xk = PDk
(xg). Then we can
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write

∥∥xg − xk
∥∥2 ≤

∥∥∥∥xg − xk+1 + xk

2

∥∥∥∥
2

=
∥∥∥∥xg − xk+1

2
+ xg − xk

2

∥∥∥∥
2

= 1

2

∥∥xg − xk+1
∥∥2 + 1

2

∥∥xg − xk
∥∥2 − 1

4

∥∥xk+1 − xk
∥∥2

,

where the last equality comes from the property of the Euclidean norm (see e.g. [2, Corol-
lary 2.14]). Thus we have

1

2

∥∥xk+1 − xk
∥∥2 ≤ ∥∥xg − xk+1

∥∥2 − ∥∥xg − xk
∥∥2

.

Remembering that limk ‖xk − xg‖ does exist and is finite, we obtain ‖xk+1 − xk‖ → 0 as
k → ∞.

On the other hand, since xk+1 ∈ Bk ⊆ Ck , by the definition of Ck , we have

∥∥uk − xk+1
∥∥ ≤ ∥∥xk+1 − xk

∥∥.

Thus, ∥∥uk − xk
∥∥ ≤ ∥∥uk − xk+1

∥∥ + ∥∥xk+1 − xk
∥∥ ≤ 2

∥∥xk+1 − xk
∥∥,

which, together with ‖xk+1 − xk‖ → 0, implies that ‖uk − xk‖ → 0 as k → ∞.
Next, we show that any cluster point of the sequence {xk} is a solution to variational

inequality VI(C,F ). Indeed, let x be any cluster point of {xk}. For the simplicity of notation,
without loss of generality we may assume that xk → x. We consider two distinct cases:

Case 1: The linesearch is performed only for finitely many k. In this case, by the algo-
rithm, either uk = xk or uk = zk for infinitely many k. In the first case, xk is a solution to
VI(C,F ), while in the latter case, uk is a solution to VI(C,F ) for infinitely many k. Hence,
by ‖uk − xk‖ → 0, we see that x is a solution to VI(C,F ).

Case 2: The linesearch is performed for infinitely many k. Then, by taking a subsequence
if necessary, we may assume that the linesearch is performed for every k.

We distinguish two possibilities:
(a) limkηk > 0. From xk → x and ‖uk − xk‖ → 0 it follows that uk → x. Then applying

(3.5) with some x∗ ∈ S we see that σk ‖Fk‖2 → 0. Thus by the definition of σk , we have
− ηk

1−ηk
〈Fk, yk − zk〉 → 0. Since limkηk > 0, by taking again a subsequence if necessary,

we may assume that 〈Fk, yk − zk〉 → 0. On the other hand, using assumption (B1) and the
Armijo rule, we can write

0 ≤ β

2ρ

∥∥xk − yk
∥∥2 ≤ 1

2ρ
L

(
xk, yk

) ≤ −〈
Fk, yk − zk

〉 → 0.

Hence ‖xk − yk‖ → 0, which, together with xk → x, implies that yk → x. Since yk is a
solution of the problem

min

{〈
F

(
xk

)
, y − xk

〉 + 1

ρ
L

(
xk, y

) : y ∈ C

}
, CP

(
xk

)
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we have

〈
F

(
xk

)
, y − xk

〉 + 1

ρ
L

(
xk, y

) ≥ 〈
F

(
xk

)
, yk − xk

〉 + 1

ρ
L

(
xk, yk

) ∀y ∈ C.

Letting k to infinity, by the continuity of F and L we obtain

〈
F(x̄), y − x̄

〉 + 1

ρ
L(x̄, y) ≥ 〈

F(x̄), x̄ − x̄
〉 + 1

ρ
L(x̄, x̄) ∀y ∈ C.

which means that x̄ is a solution of CP(x̄). Then, by Lemma 2.3, x is a solution of VI(C,F ).
(b) limk ηk = 0. In this case, the sequence {yk} is also bounded. Indeed, since yk is the

solution of CP(xk), we have

〈
F

(
xk

)
, y − xk

〉 + 1

ρ
L

(
xk, y

) ≥ 〈
F

(
xk

)
, yk − xk

〉 + 1

ρ
L

(
xk, yk

) ∀y ∈ C.

In particular, with y = xk , by (B1), one can write

0 ≥ 〈
F

(
xk

)
, yk − xk

〉 + 1

ρ
L

(
xk, yk

) ≥ 〈
F

(
xk

)
, yk − xk

〉 + β

2ρ

∥∥xk − yk
∥∥2

,

which implies that ‖xk − yk‖ ≤ 2ρ

β
‖F(xk)‖. Since {xk} is bounded and F is continuous,

{yk} is bounded. Thus, we may assume, taking a subsequence if necessary, that yk → y for
some y. By the same argument as before we have

〈
F(x), y − x

〉 + 1

ρ
L(x, y) ≤ 〈

F(x), y − x
〉 + 1

ρ
L(x, y) ∀y ∈ C. (3.9)

On the other hand, as mk is the smallest natural number satisfying the Armijo linesearch
rule, we have 〈

F
(
zk,mk−1

)
, yk − zk,mk−1

〉 + 1

ρ
L

(
xk, yk

)
> 0.

Since that zk,mk−1 → x as k → ∞ and since F and L are continuous, from the last inequality
we obtain in the limit that

〈
F(x), y − x

〉 + 1

ρ
L(x, y) ≥ 0. (3.10)

Substituting y = x into (3.9) we get

〈
F(x), y − x

〉 + 1

ρ
L(x, y) ≤ 0,

which, together with (3.10), yields

〈
F(x), y − x

〉 + 1

ρ
L(x, y) = 0. (3.11)

From (3.11) and 〈
F(x), x − x

〉 + 1

ρ
L(x, x) = 0
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it follows that both x and y are solutions of the strongly convex program

min

{〈
F(x), y − x

〉 + 1

ρ
L(x, y) : y ∈ C

}
.

Hence x = y and, therefore, by Lemma 2.3, x solves VI(C,F ). Moreover, from ‖uk −
xk‖ → 0, we can also conclude that every cluster point of {uk} is a solution to VI(C,F ).

Finally, we show that {xk} converges to the unique solution of the bilevel problem (1.1).
To this end, let x∗ be any cluster point of {xk}. Then there exists a subsequence {xkj } such
that xkj → x∗ as j → ∞. Since, by the algorithm, xkj = PBkj −1(x

g), we have

〈
xkj − xg, y − xkj

〉 ≥ 0 ∀y ∈ Bkj −1 ⊇ S ∀j.

Letting j → ∞ we obtain 〈
x∗ − xg, y − x∗〉 ≥ 0 ∀y ∈ S,

which, together with x∗ ∈ S, implies that x∗ = PS(x
g). Thus, the whole sequence must

converge to the unique solution to the original bilevel problem (1.1). Then, since ‖xk −
uk‖ → 0, it follows that uk converges to the solution of (1.1). �

Other Armijo rules can be chosen for the above algorithm. For example, one can use the
linesearch in [27]. Then at each iteration k in Algorithm 1, Step 2 and Step 3 are replaced
by Step 2a and Step 3a below.

Step 2a. Having xk ∈ C, find mk as the smallest nonnegative integer m such that〈
F

(
xk − ηmr

(
xk

))
, r

(
xk

)〉 ≥ σ
∥∥r

(
xk

)∥∥2
, (3.12)

where σ ∈ (0,1), r(xk) = xk −yk with yk being the unique solution of the problem CP(xk).
Take zk := (1 − ηk)x

k + ηky
k . If F(zk) = 0, take uk := zk . Otherwise, go to Step 4 (in

Algorithm 1).
Step 3a. Define

Hk := {
x ∈ C : 〈F (

zk
)
, x − zk

〉 ≤ 0
}

and take uk := PHk
(xk).

It is easy to see that if F is pseudomonotone on C with respect to S, then S ⊆ Hk . In the
same way as the linesearch rule (3.2) we can show that the linesearch (3.12) is well defined.
Moreover, as in the linesearch (3.2), the following lemma can be proved for (3.12) by the
same idea as in the proof of Theorem 2.1 in [27].

Lemma 3.2 Under the assumptions of Lemma 2.3, it holds that∥∥uk − x∗∥∥2 ≤ ∥∥xk − x∗∥∥2 − ηkσ

‖F(zk)‖2

∥∥r
(
xk

)∥∥4 ∀x∗ ∈ S ∀k. (3.13)

Using this lemma we can prove the following convergence theorem by the same argu-
ments as in the proof of Theorem 3.2.

Theorem 3.2 Suppose that assumptions (A1), (A2) and (B1), (B2) are satisfied and that
VI(C,F ) admits a solution. Then Algorithm 1 with Steps 2 and 3 replaced by Steps 2a and
3a respectively is well defined and both the sequences {xk}, {uk} converge to the unique
solution of (1.1).
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