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Abstract—The advances of nVIDIAs computing technology
allow to deploy of general purpose high performance applications
of Graphic Processing Units (GPU) by parallelizing algorithms.
Based on the grid-based representation of T2FS, the paper deals
with an approach to computational process of general type-2
fuzzy logic systems based on Grid T2FS for GPU platforms.
Experiments are implemented in various applications to show
that the representation are suitable to speed-up general type-2
fuzzy logic systems on GPU platform.

Index Terms—Type-2 fuzzy set, General type-2 fuzzy logic
systems, Graphic Processing Units, defuzzification, Type-2 fuzzy
operation.

I. INTRODUCTION

Nowadays, many researches focus on representation of type-
2 fuzzy sets for reducing complexity of computation of oper-
ations, especially for type-2 fuzzy logic systems. Because of
advantages of type-2 fuzzy sets in management of uncertainty,
applications of type-2 fuzzy sets are deployed in many fields.
Almost applications are limited by computational complex-
ity of general type-2 fuzzy sets. Recently, these are many
researches arising from reduction the complexity of these
systems that depend on representation of type-2 fuzzy sets.
There are many approaches to representation of type-2 fuzzy
sets. The point-based representation [5], [6] has proposed with
operations and computation of type-2 fuzzy sets and systems.
The point-based pure representation of type-2 fuzzy sets are
hardly to apply because of huge cloud of points by discretizing
the domain. Mendel et al [6] proposed the representation
based on embedded fuzzy sets, vertical slices and gains
successful from approximate computation of embedded type-
2 fuzzy sets for type-2 fuzzy logic systems. Starczewski [10]
introduced a method for complexity reduction of operations
on triangular type-2 fuzzy sets. For this purpose, Coupland
et al [2] proposed geometric method for representation type-
1 and interval type-2 fuzzy sets, new algorithms for various
operations on type-1 and type-2 fuzzy sets and for defuzzifi-
cation. Coupland et al [3], [4] presented new techniques using
upper and lower surfaces for performing logical operations on
type-2 fuzzy sets with considering computational speed and
accuracy. Techniques based on cloud of triangles are limited
by computational capability in case of complexity type-2 fuzzy
sets with huge quantity of triangles.

Triangulated irregular network (TIN) has used to represent
3-dimensional surfaces by dividing domain into irregular sub-
triangles and approximately represent using piecewise linear

functions. To support speed-up in computation of operations
of type-2 fuzzy sets, a refinement CTIN [9] is proposed by
combining contour model and constraint Delaunay criteria.
So a type-2 fuzzy set is also represented by RCTIN in the
same way. An approach was proposed to use RCTIN for
representation of general type-2 fuzzy sets, algorithms for
operations and general type-2 fuzzy logic systems (GT2FLS).

Hagras et al [11] proposed an approach to representation of
type-2 fuzzy sets using zSlices that be able to gap interval
type-2 fuzzy sets and general type-2 fuzzy sets. A similar
approach to representation of type-2 fuzzy sets was proposed
by Mendel et al [7] based on α - plane representation.

CUDA-based GPU computing has developed by nVIDIA
and gains advantages with capability to parallel algorithms into
sub-algorithms on threads, blocks as matrices. General purpose
GPU has applied for intelligent computation such as fuzzy c-
mean clustering [12], fuzzy neural networks [16], fuzzy ART
clustering [15] or fuzzy logic systems [13], [14].

On the basis of matrix-based parallelisation, grid type-2
fuzzy sets are proposed to take this advantage. The paper
introduces an approach to representation of grid general type-2
fuzzy sets, that use a grid to store data at vertices as matrices
and value of non-vertex points is interpolated based on four
vertices of rectangle containing them. This representation is
the basis to design algorithms of general type-2 fuzzy sets on
GPU paralleling platform. Computational process of general
type-2 fuzzy logic systems based on Grid T2FS are fully
proposed on both of platforms GPU and CPU that points out
the advantage of GPU-based high performance in comparison
with CPU platform. Experiments are implemented on GPU
and CPU platforms with summarised reports on various input
parameters such as resolution of grid to show advantages
of this approach. An application of grid type-2 fuzzy logic
systems are given based on avoidance behavior of robot
navigation. Runtime of algorithms on GPU is enough fast to
deploy applications of type-2 fuzzy sets to real problems with
high accuracy.

The paper is organized as follows: II presents an overview
on type-2 fuzzy sets and GPU computing; III introduces grid
type-2 fuzzy sets, operations involving join, meet, negation and
defuzzification; IV presents experiments on representation and
operations with various parameters of input grid type-2 fuzzy
sets; V is conclusion and future works.



II. TYPE-2 FUZZY LOGIC SYSTEMS AND GPU
COMPUTING

A. Type-2 Fuzzy Logic Systems

A type-2 fuzzy set in X is denoted Ã, and its membership
grade of x ∈ X is µÃ(x, u), u ∈ Jx ⊆ [0, 1], which is a type-
1 fuzzy set in [0, 1]. The elements of domain of µÃ(x, u)
are called primary memberships of x in Ã and memberships
of primary memberships in µÃ(x, u) are called secondary
memberships of x in Ã.

Definition 2.1: A type− 2 fuzzy set, denoted Ã, is char-
acterized by a type-2 membership function µÃ(x, u) where
x ∈ X and u ∈ Jx ⊆ [0, 1], i.e.,

Ã = {((x, u), µÃ(x, u))|∀x ∈ X,∀u ∈ Jx ⊆ [0, 1]} (1)

or
Ã =

∫
x∈X

∫
u∈Jx

µÃ(x, u))/(x, u), Jx ⊆ [0, 1] (2)

in which 0 ≤ µÃ(x, u) ≤ 1.
At each value of x, say x = x′, the 2-D plane whose axes

are u and µÃ(x
′, u) is called a vertical slice of µÃ(x, u). A

secondary membership function is a vertical slice of µÃ(x, u).
It is µÃ(x = x′, u) for x ∈ X and ∀u ∈ Jx′ ⊆ [0, 1], i.e.

µÃ(x = x′, u) ≡ µÃ(x
′) =

∫
u∈Jx′

fx′(u)/u, Jx′ ⊆ [0, 1] (3)

in which 0 ≤ fx′(u) ≤ 1.
Let Ã, B̃ be type-2 fuzzy sets whose secondary membership

grades are fx(u), gx(w), respectively. Theoretic operations of
type-2 fuzzy sets such as union, intersection and complement
are described [5] as follows:

µÃ∪B̃(x) = µÃ(x)t µB̃(x) =

∫
u

∫
v

(fx(u) ? gx(w))/(u∨w)
(4)

µÃ∩B̃(x) = µÃ(x) u µB̃(x) =

∫
u

∫
v

(fx(u) ? gx(w))/(u ? w)

(5)

µÃ(x) = µ¬Ã(x) =

∫
u

(fx(u))/(1− u) (6)

where ∨, ? are t-cornorm, t-norm, respectively. Type-2 fuzzy
sets are called an interval type-2 fuzzy sets if the secondary
membership function fx′(u) = 1 ∀u ∈ Jx.

Fig. 1. The structure of type-2 fuzzy logic system

Fig. 1 shows the structure of a type-2 FLS. The singleton
fuzzifier maps the crisp input into a type-2 fuzzy set. Singleton

fuzzification is only considered, for which the input fuzzy set
has only a single point of nonzero membership. ”IF-THEN”
rules that the lth rule has the form ”Rl :

IF x1 is F̃ l
1 and x2 is F̃ l

2 and ... and xp is F̃ l
p THEN y is

G̃l”,
where: xis are inputs; F̃ l

i s are antecedent sets (i=1, 2, ...,
p); G̃l is the output.

The output of the inference engine is a type-2 set. Type-
reduction is used to take from the type-2 output sets of the
FLS to a type-1 set. To obtain a crisp output from a type-
2 FLS, we can defuzzify the type-reduced set and the most
natural method is by finding the centroid of the type-reduced
set.

The following is the inference processing [4] of type-2
FLS: Consider a type-2 FLS having p inputs, x1 ∈ X1, x2 ∈
X2, ..., xp ∈ Xp, and one output y ∈ Y . Let us suppose that
it has M rules where the lth rule has the form

Rl : IF x1 is F̃ l
1 AND ... AND xp is F̃ l

p THEN y is G̃l.
(7)

This rule represents a type-2 fuzzy relation between the input
space X1×X2× ...×Xp and the output space Y of the FLS.
We denote the membership function of this type-2 relation as
µF̃ l1×...×F̃ lp→G̃l(x, y), where F̃ l

1×...×F̃ l
p denotes the Cartesian

product of F̃ l
1, ..., F̃ l

p, and x = {x1, x2, ..., xp}.
When an input x′ is applied, the composition of the fuzzy

set X̃ ′ to which x′
′ belongs and the rule Rl is found by using

the extended sup-star composition

µX̃′◦F̃ l1×...×F̃ lp→G̃l(y) = tx∈X̃′ [µX̃′(x)tµF̃ l1×...×F̃ lp→G̃l(x, y)]

(8)
We denote X̃ ′ ◦ F̃ l

1 × ... × F̃ l
p → G̃l as B̃l, the output set

corresponding to the lth rule. We use singleton fuzzification
and the product or minimum implication, inference process of
rule lth is described (detail in [4]) as follows:

µB̃l(y) = µF̃ l1
(x1) u µF̃ l2

(x2) u ... u µF̃ lp
(xp) u µG̃l(y)

= µG̃l(y) u [upi=1µF̃ li
(xi)] (9)

The output sets of rules are combined in a type-2 fuzzy set
by using join operation.

B. GPU Computing

Recently, the GPU has been transformed into the general
purpose GPU. The programmable GPU has evolved into a
high parallel, multi-threaded, multi-core processor with huge
computational power and memory bandwidth. Fig. 2 shows
CUDA processing model. CUDA allows multiple kernels to
be run simultaneously on a single GPU. CUDA refers to each
kernel as a grid. A grid is a collection of blocks. Each block
runs the same kernel but is independent of each other. A block
contains threads, which are the smallest divisible unit on a
GPU.

The CUDA programming model is a set of massive
threads that run in parallel. A thread block is a number of
SIMD(Single Instruction, Multiple Data) threads that work on
an Streaming Multiprocessor at a given time, can exchange
information through the shared memory, and can be synchro-
nized. The operations are systematized as a grid of thread



 

Fig. 2. CUDA processing model design

blocks. For operation parallelism, the programming model
allows a developer to partition a program into several sub-
problems, each of which is executed independently on a block.
Each sub-program can be further divided into finer pieces
that perform the same function for execution on different
threads within the block. For dataset parallelism, datasets can
be divided into smaller chunks that are stored in the shared
memory, and each chunk is visible to all threads of the same
block. This local data arrangement approach reduces the need
to access off-chip global memory, which reduces data access
time.

C. Grid Type-2 Fuzzy Sets

Grid type-2 fuzzy sets and operations have proposed [20] to
take the advantages of high performance computing on GPU
platform. This section reviews concepts and operations of grid
type-2 fuzzy sets. Let X be domain of type-2 fuzzy set Ã and
U = (umin, umax) ⊆ [0, 1] be secondary domain of Ã. Space
X ×U of Ã can be divided into a grid with union of M ×N
cells. A sub type-2 fuzzy set Ãij in domain of the cell (i, j)
is described as follows:

Ãij = {((x, u), µÃ(x, u)|x ∈ Xi = [xi, xi], u ∈ Uj = [uj , uj ]}
(10)

in which xi = xmin+i∗dx, xi = xi+dx, uj = umin+j∗du,
uj = uj + du, i = 0, N − 1 and j = 0,M − 1.

To define grid type-2 fuzzy set, called Ãg , an approximate
representation of sub type-2 fuzzy set Ãij by a cell type-
2 fuzzy set Ãc

ij is introduced. Let fij(x, u) be to compute
membership grade of Ãc

ij at (x, u) and is described as follows:
Provide that (x, u) is in the cell (i, j) and dk(k = 1, 4) are

distance from (x, u) to kth vertex of the cell, i.e.

d1 =
√
(x− x)2 + (u− u)2

d2 =
√

(x− x)2 + (u− u)2 (11)

d3 =
√

(x− x)2 + (u− u)2

d4 =
√

(x− x)2 + (u− u)2

Let uk be the rate between (xu) and kth vertex and computed
as follows:

uk =
1∑4

i=1

√
dk/di

(12)

And the membership grade at (x, u) of Ã is computed as
follows:

fij(x, u) =

4∑
i=1

ui × f (i)/
4∑

i=1

ui (13)

in which f (1) = µÃij
(x, u), f (2) = µÃij

(x, u), f (3) =

µÃij
(x, f (4) = µÃij

(x, u).
Definition 2.2: A cell type-2 fuzzy set, denoted Ãc

ij , is
approximate representation of sub type-2 fuzzy set Ãij and
is defined as follows:

Ãc
ij = {((x, u), µÃcij

(x, u))|x ∈ [xi, xi], u ∈ [ui, ui]} (14)

in which µÃcij
(x, u)) = fij(x, u) if (x, u) ∈ Dij and Dij is

domain of the cell (i, j), i = 0, N − 1, j = 0,M − 1.
Definition 2.3: A grid type-2 fuzzy set, denoted Ãg , is

union of above defined cell type-2 fuzzy set, i.e

Ãg =

N−1⋃
i=0

M−1⋃
j=0

Ãc
ij (15)

Let a value point (x, u) ∈ X × U , the membership grade
µÃg (x, u) is computed as follows:

µÃg (x, u) = fij(x, u) (16)

in which (x, u) ∈ Dij , i = [(x − xmin)/dx] and j = [(u −
umin)/du].

Degree of approximation is defined to measure the uncer-
tainty as follows:

Definition 2.4: The degree of approximation (DoA) is the
difference between original type-2 fuzzy set Ã and the repre-
senting grid type-2 fuzzy set Ãg and is defined as follows:

DoA =

N−1∑
i=0

M−1∑
j=0

4ij/nc (17)

in which 4ij = |µÃ(x
c
i , u

c
j)− fij(xci , ucj)|, xci =

1

2
(xi + xi),

uci =
1

2
(ui + ui) and nc is number of cells that belong to the

FOU of Ã.
Let Ãg , B̃g be two grid type-2 fuzzy sets. Note that Ãg ,

B̃g are discretized on the same grid with dx, du parameters.
Results of meet/join operations of Ãg , B̃g , called C̃g , are grid
type-2 fuzzy sets with the same partitioned grid that its domain
is union of domains D(Ãg) and D(B̃g). At each vertex (i, j)
of the grid of C̃g , membership grades are computed as follows:

Meet operation:

µC̃(xi, uj) =
[
maxNk=jµB̃g (xi, uk) ∧ µÃg (xi, uj)

]
∨

[
maxNk=jµÃg (xi, uk) ∧ µB̃g (xi, uj)

]
(18)

Join operation:

µC̃(xi, uj) =
[
maxjk=0µB̃g (xi, uk) ∧ µÃg (xi, uj)

]
∨

[
maxjk=0µÃg (xi, uk) ∧ µB̃g (xi, uj)

]
(19)

in which ∧ is t-conorm operation that may be maximum. ∨
is t-norm operation that may be minimum or product.



III. GRID BASED GENERAL TYPE-2 FUZZY LOGIC
SYSTEMS

A. Inference Engine

This section mentions approach to inference technique for
grid general type-2 fuzzy sets with singleton fuzzification that
maps the crisp input into a GT2-FS. Singleton fuzzification is
considered for which the input GT2FS has only a single point
of non-zero membership. Provide that the IF-THEN rules have
the form, for lth rule, as follows:

Rl : IF x1 is F̃ l
1 AND ... AND xp is F̃ l

p THEN y is G̃l.
(20)

where: xis, y are linguistic variables of inputs, output,
respectively; F̃ l

i s are antecedent GT2-FSs (i=1, 2, ..., p); G̃l

is the output GT2-FS. Provide that all of GT2FS are in the
same grid with size M ×N .

Inference engine combines rules and gives a mapping from
input type-2 fuzzy sets to output type-2 fuzzy sets. Multiple
antecedents in rules are connected by the meet operation. The
membership grades in the input sets are combined with those
in the output sets using the sup − star composition. To do
this one needs to find meets and joins of GT2FS, as well as
compositions of type-2 fuzzy relations.

Normally, the output of type-2 fuzzy logic systems is crisp
value that is defuzzified from output type-2 fuzzy set of
inference process. The output of the inference engine is a grid
type-2 fuzzy set.

These rules as equation (20) represent a grid based type-2
fuzzy relation between the input space X1×X2× ...×Xp and
the output space Y . The membership function of this type-2
fuzzy relation is denoted as µF̃ l1×...×F̃ lp→G̃l(x, y), where F̃ l

1×
...× F̃ l

p denotes the Cartesian product of F̃ l
1, ..., F̃ l

p, and x =
{x1, x2, ..., xp}.

When an input x′ is applied, the composition of the fuzzy
set X̃ ′ to which x′ belongs and the rule Rl is found by using
the extended sup-star composition

µX̃′◦F̃ l1×...×F̃ lp→G̃l(y) = ux∈X̃′ [µX̃′(x)uµF̃ l1×...×F̃ lp→G̃l(x, y)]

(21)
Denote X̃ ′ ◦ F̃ l

1 × ... × F̃ l
p → G̃l as B̃l is the output set

corresponding to the lth rule. Singleton fuzzification and the
product or minimum implication are used, inference process
of rule lth is described as follows:

µB̃l(y) = µF̃ l1
(x1) u µF̃ l2

(x2) u ... u µF̃ lp
(xp) u µG̃l(y)

= µG̃l(y) u [upi=1µF̃ li
(xi)] (22)

Denote f
F̃ li
(uj) = µF̃ li

(xi) where uj ∈ [0, 1] and j = 1,M .

For any Ãg , fÃg (uj) of Ãg at x is computed as follows:

fÃg (uj) = (αµÃg (xk, uj) + βµÃg (xk+1, uj) (23)

in which k = (x−xmin)/dx, α = (x−xk)/dx and β = 1−α.
For any Ãg , B̃g , meet operation of fÃg (u) and fB̃g (u) is

described as equation (18).
Denote f∗(uj) = upi=1fF̃ li

(uj). Note that B̃l be grid type-2
fuzzy set. Hence, the formula (22) is re-written as follows:

µB̃l(xi, uj) = µG̃l(xi, uj) u f
∗(uj) (24)

where i = 1, N , j = 1,M and u meet operation is computed
as formula (18).

The output sets of rules are combined by using join
operation, i.e.

µB∗(y) = tKi=1µB̃i(y) (25)

in which K is number of fired rules and µB̃i(y) is output of
ith fired rule.

Equation (25) can be re-written according to the grid form
as follows:

µB̃∗(xi, uj) = t
K
i=1µB̃i(xi, uj) (26)

For each vertical slide at xi, t join operation of any Ãg ,
B̃g is computed as follows:

fB̃gtB̃g (uj) =
[
fÃg (uj) ∧max

j
k=0fB̃g (uk)

]
∨

[
fB̃g (uj) ∧max

j
k=0fÃg (uk)

]
(27)

Before mentioning the algorithm of inference process, the
algorithm of meet operation of fuzzified sets are introduced.
The algorithms are described as follows:

Algorithm 3.1 (Meet operation of fuzzified sets): .
Input: two fuzzified sets with secondary MFs fÃg (u) and

fB̃g (u).
Output: output is the secondary f∗(u).
1) Copy data of fÃg (u), fB̃g (u), f

∗(u) to device memory
cA, cB , c∗, respectively.

2) Initializing blocks and threads for GPU with number of
threads tu = 32 per block. Size of grid: nblock = 1 and
mblock =M/(tu ∗ ku), where ku is size of sub-column
processed for each thread.

3) For each thread do
a) Set ix = blockIdx.x*blockDim.x + threadIdx.x;
b) for (i = ix ∗ kx; i < (ix+ 1) ∗ kx; i++)

i) Compute f1 = minMk=icA[k].
ii) Compute f2 = minMk=icB [k].

iii) Compute c∗[ix] =
max(min(f1, cB [ix]),min(f2, cA[ix])).

4) Copy data c∗ to host memory f∗(u).
For implementation on GPU platform, the algorithm of

inference technique is described as follows:
Algorithm 3.2 (Inference process): .
Input: R GT2-FS based IF-THEN rules as the form (20),

p input values x1, ..., xp.
Output: GT2-FS B̃∗ is output of inference process.
1) For each rule lth.

a) Apply each input xk, k = 1, p, to compute f
F̃ li
(uj)

as the formula (23).
b) Compute f∗(uj) = f

F̃ l1
(uj) u f

F̃ l2
(uj) as the

algorithm (3.1).
c) For k = 3 to p do

Compute f∗(uj) = f∗(uj) u fF̃ lk(uj) as the algo-
rithm (3.1).

d) Compute array of max values as fmax(ui) =
maxMk=if

∗(uk).



e) Copy data µB̃l(xi, uj), f
∗(uj), f

∗(uj) to device
host mBl , c∗, cmax, respectively.

f) Initializing blocks and threads for GPU with num-
ber of threads tx = tu = 32 per block. Size of grid:
nblock =M/(tx∗kx) and mblock =MC̃g/(tu∗ku)
where kx, ku are size of sub-matrix processed for
each thread.

g) For each thread do
i) Set ix = blockIdx.x*blockDim.x + threadIdx.x;

ii) Set iu = blockIdx.y*blockDim.y + threadIdx.y;
iii) for (j = iu ∗ ku; j < (iu+ 1) ∗ ku; j ++)

A) Compute f1 = maxMk=jmBl [k, j].
B) for (i = ix ∗ kx; i < (ix+ 1) ∗ kx; i++)
C) Compute mBl [i, j] =

max(min(f1, c
∗[j]),min(mBl [i, j], cmax[j])).

h) Copy data of result from device to host memory.
2) If p = 1 then return µB̃1(xi, uj)
3) Else

a) Compute µB̃∗(xi, uj) = µB̃1(xi, uj)tµB̃2(xi, uj)
as the formula (19).

b) For k = 3 to K do
c) Compute µB̃∗(xi, uj) = µB̃∗(xi, uj)tµB̃k(xi, uj)

as the formula (19).
4) return µB̃∗(xi, uj).

B. Defuzzification

This operation is to find the centroid of uncertainty of
space of grid type-2 fuzzy sets. So the section mentions an
algorithm to compute the 3-dimensional centroid of the grid
by combining from centroids of cells. The following is outline
of defuzzification algorithm:

Algorithm 3.3: Defuzzification operation
Input: Ãg is a grid type-2 fuzzy sets.
Output: value of defuzzification.
1) Initializing sx, su are sizes of sub-matrix for processing

of each thread.
2) Initializing device memory mA for matrices of grid Ãg .
3) Copy data from host memory to device memory of grid

Ãg .
4) Initializing blocks and threads for GPU. We implement

with number of threads tx = tu = 32 per block. So
size of grid is computed as nblock = MC̃g/(tx ∗ kx)
and mblock = MC̃g/(tu ∗ ku) where kx, ku are size of
sub-matrix processed for each thread.

5) Initializing device memory md,mu for storing data for
each thread.

6) Call ds be area of a cell in the grid of T2FS.
7) f1 = f2 = 0
8) For each thread do

a) Set ix = blockIdx.x*blockDim.x + threadIdx.x;
b) Set iu = blockIdx.y*blockDim.y + threadIdx.y;
c) for (i = ix ∗ kx; i < (ix+ 1) ∗ kx; i++)
d) for (j = iu ∗ ku; j < (iu+ 1) ∗ ku; j ++)

i) fa = (mA[i, j]+mA[i+1, j]+mA[i, j+1]+
mA[i+ 1, j + 1])/4.0.

ii) fu = (j + 0.5)/N .

iii) f1+ = fa ∗ ds ∗ (i+ 0.5) ∗ fu.
iv) f2+ = fa ∗ ds ∗ fu.

e) md[ix, iu] = f1, mu[ix, iu] = f2.
9) f1 = f2 = 0.

10) Copy data from device memory of md,mu to host
memory.

11) Compute sum of md[i, j]s, call s1, and sum of mu[i, j]s,
call s2.

12) Value of defuzzification is s1/s2.

Hence, the algorithm is implemented on both of GPU (at
threads) and CPU, combination of results of threads.

IV. EXPERIMENTS

In this section, we mention experiments on representation
and operations of grid type-2 fuzzy sets involving join , meet,
negation operation and defuzzification. All experiments are
implemented on ASUS Laptop with CPU CORETM i5, 6GB
RAM, Windows 7 64bit and nVIDIA GeForce GT520M using
VC 2008 Release Compiler and CUDA SDK 5.0.

Let Ã is a general type-2 fuzzy set gÃ(m1,m2, σ). The
feature membership functions of Ã are described as follows:

FOU is Gaussian function with upper MF and lower MF as
follows:

Upper MF of FOU:

fu(x) =


e−

1
2 (
x−m1
σ )2 if x < m1

1 if m1 ≤ x ≤ m2

e−
1
2 (
x−m2
σ )2 if x > m2

(28)

Lower MF of FOU:

fl(x) =

{
e−

1
2 (
x−m2
σ )2 if x < m1+m2

2

e−
1
2 (
x−m1
σ )2 if otherwise

(29)

where m1 = 3.0, m2 = 4.0 and σ = 0.5.
The next feature of Ã is set of points where µÃ(x, u) = 1.0,

involves points belong to the MF described as follows:

fm(x) = e−
1
2 (
x−(m1+m2)/2

σ )2 (30)

The secondary membership function at x of Ã are Gaussian
functions that are described as follows:

g(u) =

{
e−

1
2 (

u
σ1

)2 if u ≥ u0
e−

1
2 (

u
σ2

)2 if u < u0
(31)

in which u0 = fm(x), σ1 = 3.035 ∗ |u − u0| and σ2 =
3.035 ∗ |u− u0|.

A. Defuzzification

Defuzzification operation is implemented on Ãg , the Gaus-
sian gÃ(3, 4, 0.6). The precise value of defuzzification of Ãg

is 3.5. Difference between the precise value and the output
of defuzzification is enough small in various resolution. High
resolution of grid results in high accuracy of defuzzification.



TABLE I
RUNTIME AND DIFFERENCE VALUE OF DEFUZZIFICATION OPERATION

Difference 128×32 512×128 2048×512 8192×1024

CPU (ms) 0.067 1.075 48.161 434.821

Resolution 5.5e-5 5.0e-6 4.0e-5 9.83e-4

GPU (ms) 0.75 0.755 5.202 39.272

Difference 5.81e-4 4.0e-6 7.0e-6 1.7e-5

CPU/GPU 0.088 1.433 9.259 11.072

TABLE II
RUNTIME OF INFERENCE TECHNIQUE WITH VARIOUS GRIDS (IN

MILLISECONDS)

27 × 25 29 × 27 211 × 29 213 × 210

CPU 0.90 51.35 3671.61 57433.14

GPU 1.43 5.68 168.61 2467.18

CPU/GPU 0.63 9.04 21.78 23.27

B. Inference Technique

For implementation of inference process, a rule base involv-
ing two rules is described as follows:

IF x1 is gÃ1
(3, 4, 0.5) AND x2 is gB̃1

(4, 4.5, 0.2) THEN y
is gB̃1

(3, 3.5, 0.3).
IF x1 is gÃ2

(4.5, 5.5, 0.4) AND x2 is gB̃2
(4.5, 5.5, 0.2)

THEN y is gB̃1
(4.5, 5.5, 0.3).

Note that gÃ(m1,m2, σ) be above described Gaussian grid
general type-2 fuzzy sets. Fig. 3(a) depicts GT2FSs of above
rules. The inference process is implemented by applying two
input values x1 = 4, x2 = 4.5 to grid T2FS of antecedent
of rules. Fig. 3(b) describes output of rules from implication
and the final grid T2FS after combining output of rules using
join operation. Table II shows summarised of implementation
on CPU and GPU platforms. Algorithms are implemented
10 times for taking average of run-times. As summarised
report in Table II, when size of grid is large, algorithms of
CPU platform take huge run-times meanwhile run-times of
GPU algorithms are allowable to deploy real applications with
high accuracy. The run-time of inference process depends on
number of inputs p and rules R. The number of operations
involves R× (p− 1) meet operations between column type-2
FSs, R meet operations between column and grid T2FS, R−1
join operations between grid T2FSs.

C. Robot navigation

We implement type-2 fuzzy logic systems with collision
avoidance behavior of robot navigation. The fuzzy logic sys-
tems have two inputs: the extended fuzzy directional relation
[19] and range to obstacle, the output is angle of deviation
(AoD). The fuzzy rule has the form as following:

IF FDR is Ãi AND Range is B̃i THEN AoD is C̃i

where Ãi, B̃i, C̃i are type-2 fuzzy sets of antecedent and
consequent, respectively.

The fuzzy directional relation has six linguistic values
(NLarge, NMedium, NSmall, PSmall, PMedium and PLarge).
The range from robot to obstacle is divided in three subsets:

VNear, Near, Medium and Far. The output of fuzzy if-then is
a linguistic variable representing for angle of deviation, has
six linguistic variables the same the fuzzy directional relation
with the different membership functions. Linguistic values
are general type-2 fuzzy subsets that membership functions
are described in Fig. 4. Membership functions are Gaussian
GT2FS mentioned above. The rule-base is described in the
table III.

TABLE III
THE RULE BASE OF COLLISION AVOIDANCE BEHAVIOR

FDR Range AoD FDR Range AoD
NS N PL PS N NL
NS M PM PS M NM
NS F PS PS F NS
NM N PM PM N NM
NM M PM PM M NM
NM F PS PM F NS
NL N PM PL N NM
NL M PS PL M NS
NL F PS PL F NS

General type-2 FLS is tested on the whole of discretized
input spaces with step of 0.1 in which FDR ∈ [−1, 1] and
Range ∈ [0.0, 2.0], i.e we have the whole of 200× 200 input
points. Table IV shows the run-time of inference process for
400 input points and the result of inference process is shown
in Fig. 5.

Fig. 5. Inference Surface of Type-2 avoidance behavior

TABLE IV
RUNTIME OF INFERENCE PROCESS OF THE WHOLE OF DISCRETIZED INPUT

SPACE(IN SECONDS)

512× 128 1024× 256 2048× 512 4096× 1024

CPU 12.33 85.28 658.40 4368.01

GPU 2.13 5.61 23.50 107.00

CPU/GPU 5.79 15.2 28.0 40.8



Fig. 3. Explanation of inference process for grid T2FS based rules.

Fig. 4. Membership grades of CA behavior.

V. CONCLUSION

The paper has presented an approach to representation of
grid general type-2 fuzzy sets for speed-up of computation
based on GPU. The inference process of general type-2 FLS
is proposed with implementation. The approach is to speed up
computation of general T2FLS in the case of high accuracy of
GT2FS. The result points out that high performance is even
obtained at low hardware of nVIDIA card. In the case of higher
nVIDIA hardware with multi cores, the high performance is
many times higher than on CPU platform.
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