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Abstract—In this paper, kernel interval type-2 fuzzy c-means
clustering (KIT2FCM) and multiple kernel interval type 2 fuzzy
c-means clustering (MKIT2FCM) are proposed as a base for
classification problems. Besides building algorithms KIT2FCM
to overcome some drawback of the conventional FCM and use
the advantages of fuzzy clustering technique on the interval type
2 fuzzy set in handling uncertainty, the paper also introduces
combining the different kernels to construct the MKIT2FCM
which provides us a new flexible vehicle to fuse different data
information in the classification problems. That is, different
information represented by different kernels is combined in the
kernel space to produce a new kernel. The experiments are done
based on well-known data-sets and application of land cover
classification from multi-spectral with the statistics show that the
algorithms generates good quality of classifications.

Index Terms—Type-2 fuzzy sets, type-2 fuzzy c-means clus-
tering, Kernel fuzzy c-means clustering, Multiple Kernel fuzzy
c-means clustering.

I. INTRODUCTION

Clustering is a mathematical tool used to detect any struc-
tures or patterns in the data set, in which objects within the
cluster level data show certain similarities.

Clustering algorithms have different shapes from simple
clustering as k-means and various improvements [2], [3],
development of family of fuzzy c-mean clustering (FCM) [11].

To overcome the drawbacks of conventional FCM tech-
nique, kernel fuzzy c-means clustering (KFCM) algorithm has
been proposed. The limitation of the standard FCM algorithm
is based on the Euclidean norm distance in the observation
space, it has been shown while it is effective for spherical
clusters it does not perform well for more general clusters
[12], which is eliminated in KFCM by adapting a new kernel
induced metric in the data space [9], which maps the original
inputs into a much higher dimensional Hilbert space by some
transform function. After this reproduction in the kernel Hilbert
space, the data are more easily to be separated or clustered.

However, for such kernel-based methods, a crucial step is
the combination or selection of the best kernels among an
extensive range of possibilities. This step is often heavily
influenced by prior knowledge about the data and by the
patterns we expect to discover [17]. Unfortunately, it is unclear
which kernels are more suitable for a particular task [18].

The problem is aggravated for many real-world clus-
tering applications, in which there are multiple potentially

useful cues. For example, KFCM is applied in the image-
segmentation problems, where the input data selected for
clustering is the combination of the pixel intensity and the
local spatial information of a pixel represented by the mean
or the median of neighbouring pixels. Applications of kernel-
based approach are used for image segmentation with spatial
information [19], [20]. Chen and Zhang [21] applied the
idea of kernel methods in the calculation of the distances
between the examples and the cluster centroids. They compute
these distances in the extended Hilbert space, and they have
demonstrated that such distances are more robust to noises.
To keep the merit of applying local spatial information, an
additional term about the difference between the local spatial
information and the cluster centroids (also computed in the
extended Hilbert space) is appended to the objective function.

Thus, it is necessary to aggregate features from different
sources into a single aggregated feature. However, these fea-
tures are often not equally relevant to clustering; some are
irrelevant, and some are less important than others [12]. As
most clustering methods do not embed a feature selection
capability, such feature imbalances often necessitate an ad-
ditional process of feature selection, or feature fusion, before
clustering. Instead of a single fixed kernel, multiple kernels
may be used. Recent developments in multiple kernel learning
have shown that the construction of the multiple kernel fuzzy
c-means (MKFCM) algorithm simultaneously finds the the best
degrees of membership and the optimal kernel weights for a
non-negative combination of a set of kernels.

We also embed the feature weight computation into the
clustering procedure. The incorporation of multiple kernels and
the automatic adjustment of kernel weights renders MKFCM
more immune to unreliable features or kernels. It also makes
combining kernels more practical since appropriate weights
are assigned automatically. Effective kernels or features tend to
contribute more to the clustering and therefore improve results.

Recently, type-2 fuzzy sets are extension of original fuzzy
sets, have the advantage of handling uncertainty, which have
been developed and applied to many different problems [4],
[5], [6], [8], [10] including data clustering problems. In
addition, interval type-2 fuzzy c-means clustering algorithm
(IT2FCM) [1] has developed a step in the clustering method in
which FOU (footprint of uncertainty) is created for the fuzzier
m using two parameters for handling of uncertainty, making



clustering more efficiently.
Therefore, this paper proposes KIT2FCM and MKIT2FCM

algorithms to handle the uncertainty better than KFCM and
MKFCM, which are more appropriate when clusters have
significant overlap. With MKIT2FCM, a linear composite of
multiple kernels was used based on the IT2FCM algorithm.
Algorithms are proposed on the basis of combination of kernel
techniques and IT2FCM [1]. Experiments are implemented
based various datasets of classification and land cover classifi-
cation of multi-spectral satellite image to show the advantage
of proposed approach.

The paper is organized as follows: Section II briefly in-
troduces about the kernel technique, Section III proposes
the Kernel Interval type-2 fuzzy C-means clustering, Section
III describes the Multiple Kernel Fuzzy C-means clustering;
Section IV offers some experimental results and section V is
conclusion.

II. THE KERNEL TECHNIQUE

[22]
The key idea of the kernel technique is to invert the chain of

arguments, i.e., choose a kernel k rather than a mapping before
applying a learning algorithm. Of course, not any symmetric
function k can serve as a kernel. Suppose our input space
χ has a finite number of elements, i,e., χ = {x1, .., xr}.
Then, the r × r kernel matrix K with Kij = k (xi, xj) is
by definition a symmetric matrix and k(xi, xj) is kernel value
between xi, xj ∈ χ. The necessary and sufficient conditions
of k : χ× χ→ R be a kernel are given by Mercers theorem.

Theorem 2.1: The function k : χ × χ → R is a Mercer
kernel if, and only if, for each r ∈ N and x = (x1, x2..., xr) ∈
χr the r × r matrix K = (k (xi, xj))

r
i,j=1 is positive semi

definite.
Kernel Families

So far we have seen that there are two ways of making
linear classifiers nonlinear in input space:

1. Choose a mapping φ which explicitly gives us a (Mercer)
kernel k,or

2. Choose a Mercer kernel k which implicitly corresponds
to a fixed mapping φ.

Though mathematically equivalent, kernels are often much
easier to define and have the intuitive meaning of serving as
a similarity measure between objects x, x̃ ∈ χ.

Moreover, there exist simple rules for designing kernels on
the basis of given kernel functions.

Theorem 2.2: Functions of kernels. Let k1 : χ × χ → R
and k2 : χ × χ → R be any two Mercer kernels. Then, the
functions k : χ× χ→ R given by

1.k (x, x̃) = k1 (x, x̃) + k2 (x, x̃)
2.k (x, x̃) = c.k1 (x, x̃) for all c ∈ R+

3.k (x, x̃) = k1 (x, x̃) + c for all c ∈ R+

4. k (x, x̃) = k1 (x, x̃) .k2 (x, x̃)
5. k (x, x̃) = f (x) .f (x̃) foranyfunctionf : χ → R are

also Mercer kernels
Theorem 2.3: Let k1 : χ × χ → R be any Mercer kernel.

Then, the functions k : χ× χ→ R given by

1. k (x, x̃) = (k1 (x, x̃) + θ1)
θ2 , for all θ1 ∈ R+andθ2 ∈

N.
2. k (x, x̃) = exp

(
k1(x,x̃)
σ2

)
for all σ ∈ R+

3.k (x, x̃) = exp
(
−k1(x,x)−2k1(x,x̃)+k1(x̃,x̃)2σ2

)
, for all σ ∈

R+

4.k (x, x̃) = k1(x,x̃)√
k1(x,x).k1(x̃,x̃)

are also Mercer kernels. it is possible to normalize data in
feature space without performing the explicit mapping because,
for the inner product after normalization, it holds that

knorm (x, x̃)
def
= k(x,x̃)√

k(x,x).k(x̃,x̃)

= 1√
‖x‖2.‖x̃‖2

〈x, x̃〉

=
〈

x
‖x‖ ,

x̃
‖x̃‖

〉 (1)

III. KERNEL INTERVAL TYPE-2 FUZZY C-MEAN
CLUSTERING

This algorithm is based on a combination of type-2 fuzzy
set with the kernel technique. Although the interval type-2
fuzzy C-mean clustering algorithm has advantages in handling
uncertainty, the limitation of IT2FCM algorithm is based on the
Euclidean norm distance in the observation space, it has been
shown while it is effective for spherical clusters it does not
perform well for more general clusters. As an enhancement
of classical IT2FCM, the Kernel Interval Type 2 Fuzzy C-
mean Clustering (KIT2FCM) use a non-linear map defined as
φ : x→ φ (x) ∈ H,x ∈ X ∈ Rd.

Where X denotes the data set or the feature space and H is
a Hilbert space (usually called kernel space).

In the new kernel space, the data demonstrate simpler
structures or patterns. According to clustering algorithms, the
data in the new space show clusters that are more spherical and
therefore can be clustered more easily by IT2FCM algorithms
[7], which is the main purpose of this algorithm.

Generally, the transform function φ is not given out ex-
plicitly, but the kernel function is given and it is defined as
k : θxθ → R

k (x, y) = φ (x)φ(y)
T ∀x, y ∈ R (2)

Here φ (x)φ(y)T is an inner product of the kernel function.
Such kernel functions are usually called Mercer kernels or
kernel. Given a Mercer kernel k, we know that there is always
a transform function φ : x→ φ (x) ∈ H,x ∈ X ∈ Rd satisfies
k (x, y) = φ (x)φ(y)

T , although sometimes, we do not know
the specific form of φ. Widely used Mercer kernels include
the Gaussian kernel k (x, y) = exp

(
−‖x− y‖2/r2

)
and the

polynomial kernel k (x, y) =
(
xT .y + d

)2
.

There are two major forms of kernel interval type 2
clustering (KIT2FCM). The first one comes with prototypes
constructed in the feature space, referred as KIT2FCM-F (with
F standing for the feature space). In the second category,
abbreviated as KIT2FCM-K (with K standing for the kernel
space), the prototypes are retained in the kernel space and



thus the prototypes must be approximated in the feature space
by computing an inverse mapping from kernel space to feature
space.

The advantage of the KIT2FCM-F clustering algorithm
is that the prototypes reside in the feature space and are
implicitly mapped to the kernel space through the use of the
kernel function. Similar to IT2FCM, KIT2FCM-F use two
fuzzifiers m1 and m2 to handle the uncertainty, it minimized
the following objective function as

Jm1
(U, V ) =

c∑
i=1

n∑
j=1

uij
m1‖ φ(xj)− φ(vi) ‖2

Jm2(U, V ) =
c∑
i=1

n∑
j=1

uij
m2‖ φ(xj)− φ(vi) ‖2

(3)

Where c is the number of cluster, n the number of data points
and ‖ φ(xj) − φ(vi) ‖ is the Euclidean distance between the
pattern xj and the prototype vi in the kernel space. By using
the Euclidean distance ‖ φ(xk)−φ(vi) ‖, the squared distance
is computed in the kernel space using a kernel function

‖φ (xj)− φ (vi)‖2 = k (xj , xj) + k (vi, vi)− 2k (xj , vi) (4)

Upper/lower degrees of membership, uij and uij are deter-
mined as follows:

uij =



1
c∑
l=1

(
dφij
dφlj

)2/(m1−1)
if

1
c∑
l=1

(
dφij
dφlj

) < 1

c

1
c∑
l=1

(
dφij
dφlj

)2/(m2−1)
otherwise

(5)

uij =



1
c∑
l=1

(
dφij
dφlj

)2/(m1−1)
if

1
c∑
l=1

(
dφij
dφlj

) ≥ 1

c

1
c∑
l=1

(
dφij
dφlj

)2/(m2−1)
otherwise

(6)

in which i = 1, c, j = 1, n, dφij = ‖φ (xj)− φ (vi)‖. If we use
the Gaussian kernel then k(x, x) = 1 and ‖φ (xj)− φ (vi)‖2 =
2(1− k(xj , vi)). The derivation of the prototypes depends on
the specific selection of the kernel function. The calculation
of the prototypes vi for i =1,2,...,c with the Gaussian kernel
and degree of membership uij =

uij+uij
2 and m is a type 1

fuzzifier (m usually is 2) as follows

∇viJ = 0
n∑
j=1

umij∇vi
(
‖φ (xj)− φ (vi)‖2

)
= 0

n∑
j=1

umij∇vi (2− 2k (xj , vi)) = 0

n∑
j=1

umij∇vi
(
e−‖xj−vi‖

2/σ2
)
= 0

n∑
j=1

umij∇vi
(
‖φ (xj)− φ (vi)‖2

)
= 0

n∑
j=1

umij

(
e−‖xj−vi‖

2/σ2
) (

2
σ2 (xj − vi)

)
= 0

vi
n∑
j=1

umijk (xj , vi) =
n∑
j=1

umijk (xj , vi)xj

vi =

n∑
j=1

umijk(xj ,vi)xj

N∑
j=1

umijk(xj ,vi)

(7)

KIT2FCM-F Algorithm
In general, fuzzy memberships in interval type-2 fuzzy C

means algorithm is achieved by computing the relative distance
among the patterns and cluster centroids. Hence, to define
the interval of primary membership for a pattern, we define
the lower and upper interval memberships using two different
values of m . In (5)-(6), m1 and m2 are fuzzifiers which
represent different fuzzy degrees. We define the interval of
a primary membership for a pattern, as the highest and lowest
primary membership for a pattern. These values are denoted
by upper and lower membership for a pattern, respectively.

Because each pattern has membership interval as the upper
u and the lower u, each centroid of cluster is represented by
the interval between vL and vR.

The iterative algorithm for finding centroids
• Step 1: Find uij , uij , by the equations (5)-(6).
• Step 2: Set m = arbitrary and m ≥ 1;

Compute v′j = (v′j1, ..., v
′
jM ) by (7) with uij =

(uij+uij)

2 .
Sort N patterns on each of M features in ascending order.

• Step 3: Find index k such that: xkl ≤ v′jl ≤ x(k+1)l with
k = 1, .., N and l = 1, ..,M .
Update uij :
o If i ≤ k then uij = uij .
o If i > k then uij = uij .
Define vL or vR

• Step 4: Define vL or vR Compute v′′j by (7).
Compare v′jl with v′′jl
o If v′jl = v′′jl then vR = v′j .
o Otherwise:
Set v′jl = v′′jl.
Back to Step 3.

In Case, to define vL:
• In step 3 we modify

Update uij : o If i ≤ k then uij = uij . o If i > k then
uij = uij . and

• In step 4 replace VR with vL.



Finish the iterative algorithm for finding centroid
In this section, we represent KIT2FCM-F algorithm as the

following diagram.

Fig. 1. Type-2 FCM Diagram

In the Figure 1, we can’t do clustering algorithm with
centroids VR,vL and memberships u, u. We need do type
reduction for them.

After obtaining vRi , vLi , type-reduction is applied to get
centroid of clusters as follows:

* Compute the mean of centroid , vj as: Compute the
mean of centroid , vj as:

vi = (vRi + vLi )/2 (8)

For membership grades:

ui(xk) = (uRi (xk) + uLi (xk))/2, j = 1, ..., C (9)

in which

uLi =

M∑
l=1

uil/M, uil =

{
ui(xk) if xil uses ui(xk) for vLi
ui(xk) otherwise

(10)

uRi =

M∑
l=1

uil/M, uil =

{
ui(xk) if xil uses ui(xk) for vRi
ui(xk) otherwise

(11)

Next, defuzzification for KIT2FCM is made as if ui(xk) >
uj(xk) for j = 1, ..., C and i 6= j then xk is assigned to cluster
i.

If the prototypes vi are constructed in the kernel space, this
type of KIT2FCM is referred as KIT2FCM-K. The objective
function of KIT2FCM-K is

Jm1
(U, V ) =

c∑
i=1

n∑
j=1

uij
m1‖ φ(xj)− vi ‖2

Jm2(U, V ) =
c∑
i=1

n∑
j=1

uij
m2‖ φ(xj)− vi ‖2

(12)

Using the Euclidean distance and optimizing Jm1 and Jm2

with respect to vi located in the kernel space such that
∇viJm1 = 0 or∇viJm2 = 0, we obtain prototype vi as follow:

vi =

n∑
j=1

umijk (xj)

n∑
j=1

umij

(13)

Where m is a type 1 fuzzifier (m usually is 2). Upper/lower
degrees of membership, uij and uij are calculated by 5 and 6
and with

d2φij = ‖φ (xj)− vi‖
2
= φ(xj)

T
φ(xj)− 2φ(xj)

T
vi + vi

T vi
(14)

Inserting vi from Eq(13) into Eq(14) gives:

‖φ (xj)− vi‖2 = k (xj , xj)−
2

n∑
h=1

umihk(xj ,xh)

n∑
h=1

umih

+

n∑
h=1

n∑
l=1

umihu
m
il k(xh,xl)(

n∑
h=1

umih

)2

(15)

The advantage of KIT2FCM-K is that the prototypes are not
constrained to the feature space; however, the disadvantage is
that the prototypes are implicitly located in the kernel space
and thus need to be approximated by an inverse mapping
to the feature space. The method outlined in [13] iteratively
determines approximate prototypes ṽi in the feature space by
inverse mapping φ. The objective function to be minimized as:

V =
c∑
i=1

‖φ (ṽi)− vi‖2

=
c∑
i=1

k (ṽi, ṽi)− 2

N∑
t=1

umitk(xt,ṽi)

N∑
t=1

umit

+

N∑
t=1

N∑
l=1

umitu
m
il k(xt,xl)(

N∑
t=1

umit

)2


(16)

Solving ∇ṽi = 0 requires knowledge of the kernel function k.
If we use Gaussian kernel then k(xj , xl) is independent of ṽi,
k(ṽi, ṽi) = 1 is independent of ṽi and ∇ṽik(xj , xl) = 0

The prototype expression for the Gaussian kernel for i
=1,2,...,c is then given as [13]:

ṽi =

n∑
t=1

umit k (xt, ṽi)xt

n∑
t=1

umit k (xt, ṽi)
(17)



Considering the polynomial kernel, we obtain the prototype
expression for the polynomial kernel for i =1,2,...,c is [13]

ṽi =

N∑
t=1

umit
(
xTt ṽi + θ

)p−1
xt(

ṽTi ṽi + θ
)p−1 N∑

t=1
umit

(18)

The prototypes are computed iteratively using a Kernel-
dependant formula such as the ones given for Gaussian kernels
or polynomial kernels after the evaluation of the fuzzy partition
matrix.

KIT2FCM-K algorithm
KIT2FCM-F algorithm contains two main steps.
In step 1: We also performs similarly to KIT2FCM-F

algorithm above with equations 5,6 are calculated with the
equations 13,14.

In step 2: We calculate ṽi following equation 17for Gaussian
kernel or equation 18 for polynomial kernels until termination
criteria satisfied or maximum iterations reached.

IV. MULTIPLE KERNEL INTERVAL TYPE 2 FUZZY C-MEAN
CLUSTERING

For KIT2FCM, a crucial step is the selection of the best
kernels among an extensive range of possibilities. This step is
often heavily influenced by prior knowledge about the data and
it is unclear which kernels are more suitable. Many real-world
clustering applications, in which there are multiple potentially
useful cues. Thus,it is necessary to aggregate features from
different sources into a single aggregated feature. A multiple
kernel interval type 2 fuzzy c-means (MKIT2FCM) algorithm
extends the KIT2FCM by combining different kernels to obtain
better results. The general framework of MKIT2FCM aims to
minimize the objective function as the KIT2FCM, i.e.,

Jm1
(U, V ) =

c∑
i=1

n∑
j=1

uij
m1‖ φcom(xj)− φcom(vi) ‖2

Jm2
(U, V ) =

c∑
i=1

n∑
j=1

uij
m2‖ φcom(xj)− φcom(vi) ‖2

(19)
or

Jm1
(U, V ) =

c∑
i=1

n∑
j=1

uij
m1‖ φcom(xi)− vi ‖2

Jm2
(U, V ) =

c∑
i=1

n∑
j=1

uij
m2‖ φcom(xi)− vi ‖2

(20)

Where φcom is the transformation defined by the combined
kernels.

kcom(x, y) =< φcom(x), φcom(y) > (21)

The composite kernel kcom is defined as a combination of
multiple kernels using properties introduced in Theorem 2.2
For example, two simple composite kernels are k = k1+α∗k2
or k = k1 ∗ k2 A linearly combined kernel function is

kcom = w1
bk1 + w2

bk2 + ...+ wl
bkl (22)

Where b > 1 is a coefficient kernel. The regulation on
weights, w1, w2, ..., wl,is

∑l
i=1 wi = 1. When the number of

parameters in the combined kernel is small, the parameters can
be adjusted by trial and error. For instance, the parameter α in
the kcom = k1 + αk2 can be selected by testing a group α in
a predefined range or set. While the number of parameters
in the combined kernel is large, the more feasible method
is automatically adjusting these parameters in the learning
algorithms. For example, kcom = w1

bk1+w2
bk2+ ...+wl

bkl.
Some learning algorithms that adjust the weights wi automat-
ically in typical kernel learning methods like multiple-kernel
regressions and classifications [14] have been studied. Here,
we propose a similar algorithm for MKIT2FCM using linearly
combined kernels. The typical kernels are defined on Rp×Rp
are: Gaussian kernel k(xi, xj) = exp(−|xi − xj |2/r2) And
Polynomial kernel k(xi, xj) = (xi ∗ xj + d)2 Upper/lower
degrees of membership, uij and uij are determined as follows:

uij =



1
c∑
l=1

(
dφcom (xj ,vi)
dφcom (xj ,vl)

)2/(m1−1)
if

1
c∑
l=1

(
dφcom (xj ,vi)
dφcom (xj ,vl)

) < 1

c

1
c∑
l=1

(
dφcom (xj ,vi)
dφcom (xj ,vl)

)2/(m2−1)
otherwise

(23)

uij =



1
c∑
l=1

(
dφcom (xj ,vi)
dφcom (xj ,vl)

)2/(m1−1)
if

1
c∑
l=1

(
dφcom (xj ,vi)
dφcom (xj ,vl)

) ≥ 1

c

1
c∑
l=1

(
dφcom (xj ,vi)
dφcom (xj ,vl)

)2/(m2−1)
otherwise

(24)
(25)

dφcom(xj , vi)
2
= ‖ φcom(xj)− vi ‖2

= kcom (xj , xj) +
2
∑n
h=1 (uih)

mkcom(xj ,xh)∑n
h=1 (uih)

m +∑n
h=1

∑n
l=1 (uih)

m(uil)
mkcom(xh,xl)

(
∑n
h=1 (uih)

m)
2

(26)

By introducing the Lagrange term of the constraint of
weights into the objective function, defined as

J =
∑c

i=1

∑n

j=1
umij‖ φcom (xj)− vi ‖2+η

(
1−

∑l

i=1
wi

)
(27)

By taking derivative of J over wi and assuming the result
zero, we will obtain updating rule of the total weights.

∂J

∂wi
= 0 (i = 1...l)⇒ wi = 1/

(∑n

h=1
Ji/J

1/(b−1)
h

)1/(b−1)
(28)

Where

Jh (u, v) =
∑c

i=1

∑n

j=1
umij‖ φh (xj)− vi ‖

2 (29)

Here φh is the transformation function defined by kh
(h=1,2,...l) in Eq(22) and

‖ φh (xj)− vi ‖2 = kh (xj , xj)−
2
∑n
h=1 (uih)

mkh(xh,xj)∑n
h=1 (uih)

m

+
∑n
h=1

∑n
l=1 (uih)

m(uil)
mkh(xh,xl)

(
∑n
h=1 (uih)

m)
2

(30)
Multiple kernel interval type 2 fuzzy c-means algorithm



Given a set of n data points X = {xi}ni=1, a set of kernel
functions {ki}li=1, parameters m1,m2 and the desired number
of clusters c. Output a membership matrix U = {uic}ni,c=1, c

and weights {wi}li=1 for the kernels.
Step 1: Initialize centroid matrix V 0 = {vi}ci=1 by choosing

random from dataset and the membership matrix U0 follow the
equation:

uij =
1

c∑
l=1

(
dij
dlj

)2/(m−1) (31)

Where m is a constant, m > 1 and dij = d(xj − vi) =
‖xj − vi‖

Step 2: Repeat: + Calculate the weights wi for the kernels
following the Eq(28)

+ Calculate Interval membership values uij and uij fol-
lowed Eq(23,24) and Eq(26).

+ Update the centroid matrix followed the iterative algo-
rithm for finding centroids in KIT2FCM and Eq(8).

+ Update the membership matrix by Eq(9)
+ Assign data xj to cluster ci if data (uj (xi) > uk (xi)),

k = 1, .., c and j 6= k.
Step 3: Termination criteria satisfied or maximum iterations

reached Return U and V else back to step 2.

V. EXPERIMENTS

The first experiment, the well-known datasets are IRIS,
Wisconsin Diagnostic Breast Cancer (WDBC), Wine [23] is
considered. These datasets was classified by the various algo-
rithms such as KFCM, IT2FCM and KIT2FCM (the proposed
algorithm). The performance of the classification was evaluated
with the True Positive Rate (TPR) and False Positive Rate
(FPR) which are defined by the following equations:

TPR =
TP

TP + FN
(32)

where TP is the number of correctly classified data and FN is
the number of incorrectly misclassified data.

FPR =
FP

TN + FP
(33)

where FP is the number of incorrectly classified data and TN
is the number of correctly misclassified data

This experiment was carried out as follows: Every experi-
ment dataset is randomly divided into K sets of approximately
equal size by 2/3 the size of experiment dataset and K is set
to 20. Experimental work will be conducted K times on K
different data sets. We randomly initialized centroids with the
given number of clusters from the experiment data and defined
the stop criterion: the number of Iterations G= 20 and the error
σ < 0.00001. With kernel methods, the Gaussian kernel is used
for all datasets. The results of the clustering or the quality of
classification is shown in the indicators TPR and FPR.

Table I shows the evaluation results of the different algo-
rithms. The efficient algorithms have larger TPR value and
smaller FTR value.

TABLE I
CLASSIFICATION RESULTS OF KFCM,IT2FCM, KIT2FCM-F,

KIT2FCM-K

Methods KFCM IT2FCM KIT2FCM-F KIT2FCM-K
(WDBC,c=2)

TPR(%) 91.5 ± 3.5 92.8 ± 5.5 95.3 ± 3.3 94.1 ± 3.2
FPR(%) 3.4 ± 1.2 3.4 ± 1.5 1.9 ± 0.9 1.5 ± 0.6

(IRIS,c=3)
TPR(%) 91.4 ± 3.5 93.6 ± 5.7 96.1 ± 4.2 93.2 ± 4.1
FPR(%) 3.1 ± 1.5 4.3 ± 1.6 1.7 ± 0.6 1.4 ± 0.5

(Wine,c=3)
TPR(%) 95.5 ± 2.5 94.8 ± 2.1 97.9 ± 1.2 96.8 ± 1.2
FPR(%) 2.0 ± 0.8 2.3 ± 1.4 0.7 ± 0.4 0.9 ±0.4

The second experiments are more visible could be found
from multi spectral remote sensing images. The pixel informa-
tion in these images inherits from different temporal sensors.
As a result, we can define different kernels for different
temperature channels and apply the combined kernel in a
multiple-kernel learning algorithm. With the Multiple Kernel
algorithms, the data inputs contain Gaussian kernel k1 for pixel
intensities and Gaussian kernel k2 for spatial information.

To exploit the spatial information, a spatial function is
defined as

hij =
∑

k∈NB(xj)

uik (34)

where NB(xj) represents a square window centered on pixel
xj in the spatial domain which was a window 5×5 . Just like
the membership function,the spatial function hij represents the
probability that pixel xj belongs to ith cluster.

While kernel algorithm only gets Gaussian kernel k for
pixel intensities as data inputs.

Test Data from LANDSAT-7 image is Ha Noi re-
gion(Vietnam) with square of area:20306.25 hectares.

In Figure (2), colors of classes are denoted as follows:
Class 1. Rivers, ponds, lakes. Class 2. Rocks,

bare soil. Class 3. Fields, sparse tree. Class
4. Planted forests, low woods. Class 5. Perennial tree
crops. Class 6. Jungles.

The experimental results are shown in (2) in which a)
for NIR channel, b) for VR channel, c) for NDVI image
generating from NIR and VR channels, d), e), f) for result
image of the classification of MKFCM and KIT2FCM-F,
MKIT2FCM algorithm, respectively. Figure (3) is the com-
paring results between MKFCM, KIT2FCM-F, MKIT2FCM
and the the result of The Vietnamese Center of Remote
Sensing Technology (VCRST) on each class (in percentage %).
The significant difference between the algorithms MKFCM,
KIT2FCM-F, MKIT2FCM in determining the area of regions,
the largest difference between the algorithms up to 10%.
Compare these experimental results with the result of VCRST,
with the result of MKFCM algorithm, the largest difference is
11% and KIT2FCM-F algorithm is 8%. Meanwhile, the result
of MKIT2FCM algorithm does not exceed 5% difference.

Besides, Figure 2 also clearly show that MKIT2FCM clas-



(a) (b)

(c) (d)

(e) (f)

Fig. 2. Study data 2: Result of land cover classification. a) NIR channel
image; b) VR channel image; c) NDVI image; d) MKFCM classification; e)
KIT2FCM-F classification; f) MKIT2FCM classification

sifier gives clusters better. Low accuracy of classification for
class 1 may see in Figure 2 d) (MKFCM) and e) (KIT2FCM-
F), especially in river region (center of image).

VI. CONCLUSIONS

This paper presented a fuzzy clustering algorithm based
on kernel technique which improved the clustering results
and overcome the drawbacks of the conventional clustering
algorithms which depend on the spherical distances. The
proposed approach have solved the problem of combining
between kernel technique and type 2 fuzzy sets to handle the
uncertainty better in kernel space.The experiments are done

Fig. 3. Study data 2: Comparisons between the result of MKFCM, KIT2FCM-
F, MKIT2FCM and the result of VCRST

based on well-known dataset with the statistics show that the
algorithm generates good quality clusters.

The next goal is some researches related to use the genetic
algorithm to automatic update the parameters of MKIT2FCM.
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