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Incorporating Anatomical Side Information into
PET Reconstruction Using Nonlocal Regularization

Van-Giang Nguyen and Soo-Jin Lee, Member, IEEE

Abstract— With the introduction of combined positron
emission tomography (PET)/computed tomography (CT) or
PET/magnetic resonance imaging (MRI) scanners, there is an
increasing emphasis on reconstructing PET images with the aid
of the anatomical side information obtained from X-ray CT
or MRI scanners. In this paper, we propose a new approach
to incorporating prior anatomical information into PET recon-
struction using the nonlocal regularization method. The nonlocal
regularizer developed for this application is designed to selectively
consider the anatomical information only when it is reliable. As
our proposed nonlocal regularization method does not directly
use anatomical edges or boundaries which are often used in
conventional methods, it is not only free from additional processes
to extract anatomical boundaries or segmented regions, but also
more robust to the signal mismatch problem that is caused by the
indirect relationship between the PET image and the anatomical
image. We perform simulations with digital phantoms. Accord-
ing to our experimental results, compared to the conventional
method based on the traditional local regularization method,
our nonlocal regularization method performs well even with the
imperfect prior anatomical information or in the presence of
signal mismatch between the PET image and the anatomical
image.

Index Terms— Positron emission tomography (PET), statistical
image reconstruction, penalized likelihood, anatomical priors,
nonlocal regularization.

I. INTRODUCTION

POSITRON emission tomography (PET) has played an
important role as one of the nuclear medicine imaging

techniques that provide functional information about physi-
ological processes in the human body. In PET a positron-
emitting radioactive tracer isotope is introduced into the patient
and localizes within one or more organs based on its bio-
chemical properties. After an appropriate uptake period, the
radioisotope undergoes positron emission decay and emits a
positron, which travels a short distance before colliding and
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annihilating with an electron of a nearby atom. This annihila-
tion produces pairs of gamma rays moving in approximately
opposite directions [1], [2]. These gamma ray photons easily
escape from the human body and are recorded by the detectors
placed around the body and grouped into projection data.
The two-dimensional (2-D) or 3-D distribution of radioisotope
concentrations can be visualized by reconstructing from the
projection data acquired over an adequate range of angles
about the body.

Over the last two decades, statistical methods have been
a topic for PET reconstruction, since they can not only
conveniently incorporate a system model needed to account for
physics of image formation, but also allow the incorporation
of a priori information on the underlying source distribution.
(An extensive overview of statistical reconstruction methods
and references can be found in [3]). For maximum a posteriori
(MAP) approaches, priors reflect the local spatial characteris-
tics of the underlying source and regularize otherwise unstable
maximum likelihood (ML) solutions. However, since most of
the prior models are designed by the generic assumptions on
the underlying source, they tend to work well only under
specific conditions.

Recently, attempts have also been made to incorporate
the prior anatomical information, which is obtained from
high-resolution magnetic resonance (MR) or X-ray computed
tomography (CT) images, into the statistical image recon-
struction methods. (The prior models in these cases are non-
generic; the prior information differs for different objects.).
One popular approach is to use Markov random field (MRF)
models in the context of a Bayesian MAP framework in which
a priori anatomical information is modeled as a Gibbs distri-
bution [4], [5]. Several different approaches, which include
the Bayesian joint mixture model [6], the method of using
the mutual information and joint entropy between the PET
image and the anatomical image [7], the level set method [8],
the method of using tissue composition model [9], and the
minimum cross-entropy method [10], have also been proposed.

An important issue in these methods is that, there always
remain the problems of position mismatch due to the position
alignment error and signal mismatch due to the indirect
relationship between the anatomical and PET images [4], [5],
[8], [9]; the intensity changes in PET images are not consistent
with those in anatomical images, which can cause artifacts in
the reconstructed images. Thanks to the recent development of
multimodal imaging systems which provide coregistered func-
tional and anatomical images, such as combined PET/CT and
PET/MRI systems, the position mismatch problem has been
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alleviated [11]. (An extensive overview of the multimodality
systems can be found in [12].) In this work we assume that
the PET and anatomical images are perfectly aligned and the
registration errors between the two images are negligible.

For signal mismatch, it is usually classified into two types.
If there is an intensity change in the pixels in the PET image
while there is no such change in the (labeling of) anatomical
image, it is called missing anatomical information (label). In
the opposite case, where there is no intensity change in the
pixels in the PET image while there is in the anatomical image,
it is called false anatomical information (label) [5].

In order to reduce the signal mismatch error, several differ-
ent approaches have been proposed. In [4], both pixel values
and edges were jointly estimated. The edges in this case were
modeled as the binary line processes proposed by Geman and
Geman [13]. The line processes signal the presence of an
edge between two adjacent pixels. During the reconstruction
process, the quadratic penalty encourages smoothness except
where edges are detected by the line processes turned on.
By using prior anatomical information, the line processes
are turned on more easily in those regions of the functional
image corresponding to anatomical boundaries. Since this
method involves binary variables for the line processes, its
overall objective function becomes non-convex, which requires
a complex annealing process for optimization. In [5], the
anatomical labels derived from an anatomical image were first
blurred and then used to indicate the location of edges in
the functional PET image via a Bayesian method. While this
method can reduce the effects of signal mismatch, it results
in high variance in the regions containing false anatomical
labels [5]. In [10], an edge-preserving filter derived from the
anatomical image was applied to PET image reconstruction via
cross entropy minimization. Though this method can preserve
the functional edges matched with anatomical edges, it has
a limitation in preserving the functional edges when their
corresponding anatomical edges are missing. More recently,
Cheng-Liao and Qi [8] proposed to use a level set prior which
can model not only the smoothness of functional images,
but also the similarity between functional boundaries and
their corresponding anatomical boundaries. In general, since
these existing methods usually involve segmented anatomical
regions or boundaries, they have limitations in incorporating
complex anatomical structures which are far from piecewise
flat.

Recently, efforts have been made to develop methods to
incorporate anatomical information into reconstruction with-
out segmenting anatomical images or obtaining anatomical
boundary maps. In [11] and [14], joint entropy between the
emission distribution and the anatomical image was introduced
where the intensity of the anatomical image was directly
used. In [7], spatial information was introduced into the joint
entropy priors by adding features that capture the underlying
anatomical morphology. The features were derived from the
scale-space theory, which is a framework for analyzing image
structures at different scales. The scale-space features in this
case were defined to put a high value on strong boundaries
in the anatomical and functional images, and a less value on
internal detail and noise.

Another method that directly uses anatomical image was
proposed in [15] and was recently re-validated in [11]. In
this case, a position dependent neighborhood for the MAP
approach was defined by selecting the neighbors that are
most similar in the anatomical image. While this method
encourages similar emission values in those pixels that are
alike in the anatomical image, it is vulnerable in the case of
inconsistencies between PET and anatomical images.

In this work, an adaptive weighting method, which can
selectively incorporate prior anatomical information without
need for explicit boundary or edge information from the
anatomical image, is used. The main key to this work is to
use the “self-similarity” property of an image, which underlies
the fact that every small patch in an image has many similar
patches in the same image. It was first exploited in image
restoration and resulted in the well-known nonlocal means
algorithm [16]. The essence of the nonlocal means algorithm
is to perform a weighted averaging process using the natural
redundancy of information in an image; the weight of a
pixel reflects the similarity between the patch centered at the
pixel and the corresponding patch centered at the reference
pixel. This principle has been successfully applied to many
other applications such as super-resolution imaging [17], [18],
compressed sensing recovery [18], and image inpainting [19].
In medical imaging, it has been applied to MRI denoising [20],
MRI reconstruction [21], MRI upsampling [22], [23], and CT
image reconstruction [24]. Recently, it has also been applied
to emission tomography reconstruction [25]–[27].

Our motivation of using the nonlocal method for incorpo-
rating anatomical information into PET image reconstruction
is that, the nonlocal method can capture a variety of useful
image features, such as edges, points and texture, in images
[16], [28]. Furthermore, it is less sensitive to noise than other
single intensity methods [16]. In this work we show that the
nonlocal method can be successfully applied to incorporating
anatomical side information into PET reconstruction and has
great potential not only to improve the quality of reconstruc-
tion but also to resolve the signal mismatch issue better than
other single intensity methods.

Our overall reconstruction algorithm is derived from the
penalized-likelihood approach in which the penalization is
performed by a patch-based nonlocal regularization (NLR) as
described in Section II. Section III describes our simulation
procedure. In Section IV our experimental results that show
the performance of our proposed methods are presented. In
Section V our final conclusion on our idea of using the NLR
method to incorporate anatomical side information into PET
reconstruction is drawn.

II. METHODS

A. Nonlocal Regularization for PET Reconstruction Using
Prior Anatomical Information

In PET reconstruction, the penalized-likelihood (PL)
approach is to seek the underlying source image, whose
estimate is denoted as f, by minimizing the following objective
function:

E(f) = L(g|f) + γ R(f), (1)
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where L(g|f) is the Poisson negative log likelihood of the
projection data g given f of the underlying source image, R(f)
is the regularization term for f, and γ is a positive parameter.
In (1), L(g|f) = ∑

i
(ḡi − gi log ḡi ), where gi is the number of

photon counts in the i -th detector pair, and ḡi = ∑

j
Hi j f j +ri

where Hi j ≥ 0 denotes the element of the forward projection
(or the system) matrix, ri is the mean number of background
events such as scattered and random events.

The regularization term is usually defined as

R(f) =
∑

j

∑

k∈N j
ω j kφ( f j − fk), (2)

where ω j k is the positive parameter, φ(·) is the penalty
function, and N j is a local neighborhood of the pixel located
at j . In this work only convex penalties are considered.

In the conventional PL approach with local regularization
terms, the penalty function is usually specified by a set of
pixels that belong to N j . The weight ω j k is shift invariant
and inversely proportional to the distance between the pixel
located at j and its neighbor located at k. For the conventional
local regularization-based method using anatomical boundary
information (referred to as LR-AB), the weight ω j k is set to
zero if the intensity difference between the two anatomical
pixels located at j and k is greater than a threshold. Otherwise,
ω j k is set to one.

In this work, the weight ω j k is defined so that it is
proportional to the similarity between the two patches centered
at j and k in the PET image. In order to incorporate the
prior anatomical information, ω j k is redefined so that it can
also reflect the similarity between the two patches centered
at j and k in the anatomical image. Our proposed nonlo-
cal regularization-based method using the anatomical prior
(NLR-AP) can be represented by

f̂ = arg max
f

{−L(g|f) − γ R(f)} , (3)

where the new nonlocal regularization term that includes the
anatomical side information is defined as follows:

R(f) =
∑

j

∑

k∈� j

ω j k

W j
φ

(
f(N j ) − f(Nk)

)
. (4)

In (4), f(N j ) = (
f j ′, j ′ ∈ N j

)
denotes the patch centered

at j , and

φ
(
f(N j ) − f(Nk)

) =
P∑

p=1

Gσ (p)φ( f j (p) − fk(p)), (5)

where j (p) and k(p) denote the p-th pixels in the patches
centered at j and k, respectively, P denotes the number of
pixels in a patch, � j is the search window for the pixel
located at j , W j = ∑

k∈� j
ω j k , and Gσ is a Gaussian kernel

of standard deviation σ . The weight ω j k that reflects self-
similarities in both PET and anatomical images is given by

ω j k = exp

(

−φ
(
f(N j ) − f(Nk)

)

h2

)

A jk, (6)

Fig. 1. Sensitivity of ω j k with respect to functional edges and anatomical
edges: (a) The standard NLR method that does not use anatomical information;
(b) The LR-AB method that erroneously decreases the weight at the location
with false anatomical boundaries but increases the weight at the location where
anatomical boundaries are missing; (c) The nonlocal regularization method
using the independent anatomical prior (NLR-IAP), whose weight factors are
specified by Eq. (11), can account for missing anatomical information but
has no ability to account for false anatomical information; (d) Our proposed
NLR-AP method which adaptively signals the existence of roughness in the
anatomical image only when there is similar roughness in the current estimate
of the PET image.

where h is a positive parameter and A jk is given by

A jk = exp

(

−φ
(
a(N j ) − a(Nk)

)

h2
A

)

+
(

1 − exp

(

−φ
(
a(N j ) − a(Nk)

)

h2
A

))

exp

(

−φ
(
f(N j ) − f(Nk)

)

h2
F

)

. (7)

In (7), a denotes the anatomical image, the parameters
h A and hF control the degree of smoothness in the anatomical
image and estimated PET image, respectively, both of which
affect the current estimate of the PET image.

Note that A jk described in (7) takes into account the
degree of roughness in the anatomical image using the term
exp

(−φ
(
a(N j ) − a(Nk)

)
/h2

A

)
. If the difference between the

two anatomical patches a(N j ) and a(Nk) is negligible, then
exp

(−φ
(
a(N j ) − a(Nk)

)
/h2

A

) ≈ 1 and A jk ≈ 1. In this
case, the weight ω j k is determined solely by the patch-based
difference in the PET image f so that the signal mismatch
issue due to the missing anatomical edges can be handled.
(See Fig. 1(d)). In contrast, if the difference between the two
anatomical patches a(N j ) and a(Nk) is considerably large,
then A jk ≈ exp

(−φ
(
f(N j ) − f(Nk)

)
/h2

F

)
. In this case, A jk

takes the role of verifying whether there exists comparably
large difference between the patches centered at j and k in
the previously estimated PET image f. If so, the weight ω j k is
reduced by the multiplication factor A jk , thereby convincing
the existence of edges in the PET image. However, if the
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difference in the patches centered at j and k in the PET
image is negligible, which corresponds to a signal mismatch
case due to the false anatomical information, then A jk ≈ 1
and the weight ω j k is again determined solely by the patch-
based difference in the PET image (See Fig. 1(d)). Note
that, in general, exp

(−φ
(
f(N j ) − f(Nk)

)
/h2

F

) ≤ A jk ≤ 1.
Unlike the conventional regularization function in (2), the NLR
function in (4) regularizes two patches whenever the similarity
between them, reflected in the weight ω j k , is high.

In our method, as f is updated iteratively, the space-variant
weight ω is also updated iteratively. This unfavorable update
of ω changes the objective function in (3) at each iteration.
However, as shown below, under certain conditions, the objec-
tive function can be frozen so that it does not change during
iterations.

Inspired by the nonlocal regularization for inverse problems,
which includes compressive sensing recovery, super-resolution
imaging [18], and exemplar-based image inpainting [19], the
weight ω can be regarded as a set of parameters to be estimated
during the reconstruction process. In this work, to estimate
ω, we use the maximum entropy approach and consider the
following joint optimization:

(f̂, ω̂) = arg max
f,ω

�(f,ω)

= arg max
f,ω

{−L(g|f) − γ
[
R(f,ω) − h2 H (ω)

]}
,

(8)

where

R(f,ω) =
∑

j

∑

k∈� j

ω j k

×[
φ

(
f(N j ) − f(Nk)

) + τφ
(
a(N j ) − a(Nk )

) ]
,

(9)

H (ω) is the summation of local entropy associated with the
weight ω

H (ω) = −
∑

j

∑

k∈� j
ω j k log(ω j k), (10)

and the weight ω satisfies the constraint
∑

k ω j k = 1 ∀ j .
In this case, h is the positive parameter which weights the
summation of local entropy of the weight ω relative to the
regularization term R(f,ω) (h can also be considered as
a filter parameter; the larger its value, the smoother the
reconstructed image), τ is the positive parameter that balances
the contribution of the patch differences between the PET
image and the anatomical image to the nonlocal regularizer.
The summation of local entropy H (ω) in (8) is to constrain
the weight ω to have large entropy [18], [19].

Although the function �(f,ω) is not jointly concave in
f and ω, it is concave with respect to f and also with respect
to ω. A maximizer (f̂, ω̂) to (8) can be found by using
alternating optimization; an iterative procedure is performed
for maximizing �(f,ω) jointly over both f and ω by alter-
nating restricted maximization over each variable. It can be
shown that, maximizing �(f,ω), while fixing f, results in the

following update for ω j k :

ω j k = 1

W j
exp

(

−φ
(
f(N j ) − f(Nk)

)

h2

)

× exp

(

−τ
φ

(
a(N j ) − a(Nk)

)

h2

)

, (11)

where

W j =
∑

k
exp

(

−φ
(
f(N j ) − f(Nk)

)

h2

)

× exp

(

−τ
φ

(
a(N j ) − a(Nk)

)

h2

)

is the normalizing constant. When ω is fixed, (8) becomes the
standard nonlocal regularization method. Therefore, the joint
optimization in (8) is a special case of our proposed NLR-AP
method. The special case occurs when the anatomical informa-
tion is independently used without referring to the estimated
PET image f. In this case, the false anatomical information
can affect the reconstruction (See Fig. 1(c)). Mathematically,
the equivalence is achieved when (7) is reduced to A jk =
exp

(−φ
(
a(N j ) − a(Nk)

)
/h2

A

)
with h A = h/

√
τ . This NLR

method using the independent anatomical prior is referred to
as NLR-IAP.

In summary, if A jk = exp
(−φ

(
a(N j ) − a(Nk)

)
/h2

A

)
and

h A = h/
√

τ , the NLR-AP method becomes the NLR-IAP
method, which is a joint minimization problem of the fixed
objective function given in (8). Otherwise, the objective func-
tion for the NLR-AP method is not fixed.

B. Other Related Methods

Among the recent works using nonlocal regularization for
image restoration and image reconstruction ([17], [20], [21],
[23], [24], [27], [29]), [23] is closely related to our work in
that a nonlocal approach was applied to incorporating the side
information for image super-resolution in MRI.

In [23], the problem of image super-resolution from a single
low-resolution image (also known as image up-scaling) was
considered. In particular, it aims to generate a high-resolution
brain image from a single low-resolution T2-weighted image
with the aid of a high-resolution T1-weighted image obtained
from another modality. In this case, the T1-weighted image
was regarded as a high-resolution anatomical image. The
authors proposed to solve the problem by using a regular-
ization method where the regularizer is given by

R(f, a) =
∑

j

∥
∥ f j − dN L M ( f j , a)

∥
∥2

, (12)

where dN L M ( f j , a) is the denoised version of f j with the
support of anatomical image a, and is given by

dN L M ( f j , a) = α j

∑

k∈� j

ω j k(a) fk + (1 − α j )
∑

k∈� j

ω j k(f) fk .

(13)
In (13) ω(a) and ω(f) are the weighted graphs estimated on the
anatomical image a and reconstructed image f, respectively,
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which are defined by

ω j k(a) = exp
(−φ

(
a(N j ) − a(Nk)

)
/h2

A

)

/
∑

k∈� j

exp
(−φ

(
a(N j ) − a(Nk)

)
/h2

A

)
, (14)

ω j k(f) = exp
(−φ

(
f(N j ) − f(Nk)

)
/h2

)

/
∑

k∈� j

exp
(−φ

(
f(N j ) − f(Nk )

)
/h2

)
, (15)

and α j is the local correlation between ω(a) and ω(f) at the
pixel located at j . Note that the weights in the first term on
the right side of (13) are computed from the anatomical image
and those in the second term are computed from the current
estimate of the reconstructed image. The anatomical image
is used in the denoising process in (13), which eventually
affects the reconstruction process via (12) only when the two
weighted graphs centered at the j -th pixel are correlated.

Our proposed method is different from this method in
that, while this method first performs a nonlocal denoising
process of the anatomical image and regularizes by minimizing
the difference between the current estimate and the denoised
version of the estimate, our method directly performs nonlocal
regularization by minimizing the quadratic penalty with the
weights computed from both the anatomical image and the
PET image.

C. Optimization Method

Since the solution for maximizing the NLR-AP objective
function described in (3) cannot be found in a closed form, an
iterative method needs to be used. A variety of fast and glob-
ally convergent optimization algorithms for convex objectives
have been proposed [30]–[32]. To achieve fast convergence,
most of the algorithms use block-iterative methods based on
the ordered-subsets (OS) principle [33]. In this work, to effi-
ciently find f̂ in (3), we use the complete-data ordered subsets
expectation maximization (COSEM) algorithm [30], which
is free from a seriously inconvenient user-specific relaxation
schedule required in conventional relaxed OS methods.

In the COSEM algorithm, a ‘complete data objective’ is
jointly minimized with respect to both the complete data
C and the underlying PET image f. The element Cij of
the complete data C, which is real and positive, obeys the
constraint

∑
j Ci j = gi . In the standard COSEM algorithm,

the update equations are obtained by directly differentiating
the complete data objective with respect to Cij and f j , and
setting the result to zero while satisfying constraints on C. For
the objective function given in (3), the update equation for
Cij remains the same as the conventional COSEM algorithm.
However, the update equation for f j cannot be derived by
directly differentiating the complete data objective with respect
to Cij and f j since the objective function involves the regu-
larization term that introduces coupling between the patches,
which results in complex interaction between source pixels.
To decouple the regularization term, the separable surrogate
approach can be used as done in [34] and [35]. With n as the
index for the outer iteration and l as the subset iteration for the
COSEM-PL algorithm, the surrogate Rs(f; f (n,l−1)) for R(f)

j(p)

j

k(p)

k

jΩ

jN

Fig. 2. A neighborhood system in the nonlocal regularization method.

in (4) is given by

Rs(f; f (n,l−1))

= ∑

j

∑

k∈� j

ω jk
2W j

[
P∑

p=1
Gσ (p)

(
φ
(

2 f j (p)− f (n,l−1)
j (p) − f (n,l−1)

k(p)

)

+φ
(

2 fk(p) − f (n,l−1)
j (p) − f (n,l−1)

k(p)

))
]

, (16)

where the convexity of the penalty function φ(·) has been used
to obtain the surrogate [34], [35] Rs(f; f (n,l−1)) ≥ R( f ).

The surrogate regularization term Rs(f; f (n,l−1)) is now
separable with respect to f j so that,

Rs( f j ; f (n,l−1)) =
∑

j (p)∈N j

Gσ (p)
∑

k(p)∈� j (p)

ω j (p)k(p)

W j (p)
φ
(

2 f j − f (n,l−1)
j − f (n,l−1)

k

)
.(17)

where k = k(p) + j − j (p) (See Fig. 2).
Therefore, we have the following surrogate objective func-

tion which is separable with respect to f j

Es( f j ; f(n,l−1), C(n,l)) = −
∑

i

C(n,l)
i j log f j

+
∑

i

Hi j f j + γ Rs( f j ; f(n,l−1)) (18)

When the penalty function φ(·) has the quadratic form
φ(ξ) = ξ2, the minimizer of (18) can be directly found by
differentiating Es( f j ; f (n,l−1), C(n,l)) with respect to f j and
set the result to zero. The solution in this case is positive,
unique and of closed-form. Note that, if the penalty function
is convex nonquadratic, the closed-form update for f (n,l)

j will
be replaced by 1-D optimization as done in [36]. Before
describing the COSEM-PL algorithm in detail we first define

the following notations as done in [37]: B(n,l)
j

def= ∑

i
C(n,l)

i j ,∀ j ,

A(n,l)
j

def= ∑

i∈Sl

C(n,l)
i j , l = 1, ..., L ∀ j , and D j

def= ∑

i
Hi j ,∀ j

where L is the number of subsets. The COSEM-PL algorithm
first subdivides the projection data into an ordered sequence
of L disjoint subsets Sl : l = 1, ..., L. An iteration of the
COSEM-PL algorithm is defined as a single pass through all
of L subsets. Given f (0) as an initial image, the outline of the
COSEM-PL algorithm is described in Table I.

In summary, to find a solution for our NLR method, the
following procedure is used:

• Initialize f (0)

• For m = 1, ...,
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TABLE I

OUTLINE FOR THE COSEM-PL ALGORITHM

◦ Set f = f (m−1),
◦ Update the weights ω j k ∀ j, k using (6),
◦ Update image f (m) using the COSEM-PL algorithm

described in Table I.

In our application, f and ω are updated at each iteration of the
COSEM-PL algorithm.

III. SIMULATIONS

In PET reconstruction, due to limited width of detector bins
and the low photon counts, images are usually reconstructed at
a relatively low-resolution. In reconstructing PET images using
prior anatomical information, since the anatomical images
obtained from MR or CT scans have relatively higher reso-
lution than the PET images, they are usually down-sampled
to match the resolution of the PET image [5]. Here we note
that, instead of simply down-sampling the high-resolution
anatomical images, we can also extend our simulations to
increase the pixel resolution of PET images up to the level of
the high-resolution anatomical image by modeling the under-
lying PET image on a finer-grid (with the smaller pixel size)
and performing our nonlocal regularization method using the
side information obtained from the high-resolution anatomical
image. In this section, the results from the extended simulation
are presented along with the results from the simulation for
the original low-resolution PET reconstruction.

To evaluate the performance of our proposed method, we
performed 2-D simulations using the 128 × 128 software
phantoms A and B shown in Figs. 3(a) and 4(a), respectively.

TABLE II

VALUES OF THE SMOOTHING PARAMETER γ USED IN SIMULATIONS

Phantom
(Resolution)

LR-QD LR-AB NLR NLR
-AP

NLR
-IAP

A(L) 0.0024 0.0024 0.0012 0.0012 0.0012

A(H) 0.04 0.04 0.005 0.005 0.005

B(L) 0.00055 0.00055 0.0002 0.0002 0.0002

B(H) 0.0028 0.0028 0.001 0.001 0.001

Phantom A consists of piecewise flat regions with activities of
4:1:0. Phantom B was derived from a digitized rhesus monkey
autoradiograph. The intent of using such an autoradiograph for
phantom B is that it contains more realistic edge structure than
a simple piecewise constant phantom, such as phantom A.
The phantoms in Fig. 3(a) and Fig. 4(a) were derived from
their original 256 × 256 phantoms, Fig. 3(b) and Fig. 4(b),
respectively, by summing up four adjacent pixels in each
high-resolution phantom to generate a corresponding pixel
in the associated low-resolution phantom. The low- and
high-resolution software anatomical phantoms are shown in
Figs. 3(c) and 3(d), respectively, for phantom A, and
Figs. 4(c) and 4(d), respectively, for phantom B. (The low-
resolution anatomical phantoms were obtained by down sam-
pling the high-resolution phantoms by using the 8-nearest
neighbor interpolation method.) The intensity ratio of anatom-
ical image for phantom A was 4:2:1:0. The phantoms were
designed to contain unmatched region boundaries between
the functional PET image and the anatomical image. For the
set of phantom A, the region denoted R1 in the PET image
has no corresponding region in the anatomical image, the
boundary of the region denoted R2 perfectly matches with
its corresponding anatomical boundary, and the boundary of
the region denoted R3 partially matches with its corresponding
anatomical boundary. For the set of phantom B, two tumors
with high activity were inserted into the PET image. Both
tumors have no corresponding regions in the anatomical
image. However, the region denoted R2 partially matches with
the anatomical boundary.

To generate projection data with independent Poisson noise,
the low-resolution phantoms were used. The total projection
counts in this case were approximately 400,000 for phantom A
and 1,000,000 for phantom B. The width of the detector bins
was set to the length equal to the pixel size in the conventional
(referred to as low-resolution) reconstruction, which was twice
as long as the pixel size in the high-resolution reconstruction.

In this work we tested the following two PL reconstruc-
tion methods: (i) our proposed nonlocal regularization-based
method using anatomical prior (NLR-AP), (ii) the conventional
local regularization-based method using anatomical bound-
ary information (LR-AB) [5]. In both methods, the penalty
function was set to φ(ξ) = ξ2. Therefore, if the anatomical
information is ignored, the NLR-AP method reduces to the
PL method using simple nonlocal regularization (referred to as
NLR) and the LR-AB method reduces to the conventional PL
method with a quadratic prior (referred to as LR-QD). We also
tested the NLR-IAP method that incorporates the anatomical
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Fig. 3. Reconstructions for phantom A: (a) Low-resolution phantom (used
to generate simulated projection data for all reconstructions); (b) High-
resolution phantom with anatomical edges superposed; (c) Low-resolution
anatomical image; (d) High-resolution anatomical image; (e)(f) LR-QD; (g)(h)
LR-AB; (i)(j) NLR; (k)(l) NLR-AP; (m)(n) NLR-IAP. P(L) and P(H) denote
low- and high-resolution phantoms, respectively, and A(L) and A(H) denote
low- and high-resolution anatomical images, respectively. Arrows designate
mismatched regions; #1 for false anatomical information and #2 for missing
anatomical information. The three small images on top of each figure show
zoomed-in regions.

prior independently without referring to the PET image. The
number of iterations was set to 100 for all methods. In
implementing the above algorithms, the system matrix H could
be modeled to include physical factors in PET imaging, such
as the positron range blurring, geometrical sensitivity, attenu-
ation, detector blurring, and detector sensitivity [2]. However,
to avoid any side effects, which can be caused by the physical
factors, in investigating the efficacy of our NLR-AP method,
we ignored the physical factors by using a simple geometric
projection matrix in modeling the system matrix. To accurately
account for finite-width detectors in modeling H, however, we
employed the strip area-based method [38], which calculates
the area of intersection between a pixel and the ray strip
formed by detector pair. (For three-dimensional reconstruction,
the distance-driven method [39] or the separable footprint
method [40] can be used to model the system matrix.) In the
strip area-based method, an element of the system matrix, Hi j ,
is modeled as the weight calculated by the intersecting area si j

between the pixel located at j and the strip formed by the i -th
finite-width detector pair. For PET, each element of the system
matrix can be normalized so that [10] Hi j = si j /

∑
i si j .
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Fig. 4. Reconstructions for phantom B: (a) Low-resolution phantom (used to
generate simulated projection data for all reconstructions); (b) High-resolution
phantom with anatomical edges superposed; (c) Low-resolution anatomical
image; (d) High-resolution anatomical image; (e)(f) LR-QD; (g)(h) LR-AB;
(i)(j) NLR; (k)(l) NLR-AP; (m)(n) NLR-IAP. P(L) and P(H) denote low- and
high-resolution phantoms, respectively, and A(L) and A(H) denote low- and
high-resolution anatomical images, respectively. The two small images on top
of each figure show zoomed-in regions.

TABLE III

WINDOW SIZES AND VALUES OF FILTER PARAMETERS USED IN

SIMULATIONS

Phantom
(Resolution)

∣
∣� j

∣
∣

∣
∣N j

∣
∣ h h F

A(L) 7×7 3×3 48 18

A(H) 11×11 3×3 12 4.5

B(L) 7×7 3×3 84 36

B(H) 11×11 5×5 25 10

The anatomical label maps for the LR-AB method were
generated by manually segmenting the anatomical phantom
images. The initial estimate for f̂ in all reconstruction meth-
ods was initialized to the image reconstructed by 15 itera-
tions of the maximum likelihood expectation maximization
algorithm [41]. For the smoothing parameter γ , we empiri-
cally chose different values for different methods so that the
resulting reconstructions had approximately the same back-
ground noise level. The resulting values of γ are summarized
in Table II.

The search window � j and the neighborhood window N j

(or the similarity window in the context of a nonlocal means
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approach) were set to the values described in Table III. The
parameter h A was set to [20]

h A =
√

2Pβσ̂ 2
A. (19)

In (19), σ̂A is the estimated standard deviation of noise in
the anatomical image. For Gaussian noise, σ̂A is given by

σ̂A =
√∑

j ε̃2
j/NA , where NA is the number of pixels in the

anatomical image, and ε̃ j is the pseudo-residual [42] given by

ε̃ j = √
(4/5)

(
(1/4)

∑
k∈M j

ak − a j

)
for 2-D images, where

M j is the nearest 4-neighbors of the pixel located at j . For
data-dependent noise, σ̂A( j) is dependent on the intensity of
the j -th pixel in the anatomical image and is estimated directly
from the anatomical image using the estimation method pro-
posed in [43]. The parameter β is a constant determined by
the noise model in the anatomical image. For Gaussian noise,
β is set to 1. In fact (19) has proven useful for Rician noise
in MRI [20], [23].

The parameters h and hF are also related to the variance
of noise in the PET image. However, since the PET image
contains signal-dependent noise [44] which is different from
additive Gaussian noise, the method of pseudo-residuals can-
not be directly used to estimate variance of the noise in the
PET image. In this work, while the value of h was chosen so
that the NLR method results in the same background noise
level as the LR-QD and LR-AB methods, the value of hF

was chosen so that the NLR-AP method results in the same
background noise level as the NLR method. The values of h
and hF used in the simulations are listed in Table III. Note
that, since the last term involving hF in (7) is used to confirm
the large difference between the two patches in the PET image
in conjunction with that in the anatomical image, hF is usually
set to a value less than h as shown in Table III.

To evaluate the quantitative performance of reconstructed
images, we computed point-wise bias and standard deviation
(STD) images. A bias image b j is defined as

b j = (1/N)
∑N

n=1
( f̂ n

j − f j ), (20)

where f̂ n
j is the pixel located at j in the n-th reconstruction

and the summation is over N = 100 independent noise trials.
(To display the bipolar bias image, an intermediate gray scale
of 128 out of 256 levels was used as zero bias.) A standard
deviation image, s j , is defined as

s j =
√

1

N − 1

∑N

n=1
( f̂ n

j − f̄ j )2, (21)

where f̄ j is the mean of f̂ j over the noise trials defined as
f̄ j = (1/N)

∑N
n=1 f̂ n

j . The smoothing parameter γ in this case
was chosen so that different methods resulted in approximately
the same level of STD in the background region.

IV. RESULTS

Figs. 3 and 4 show anecdotal reconstructions for phantoms
A and B, respectively. The regions designated by the arrows
in Figs. 3(g)(h)(k)(l)(m)(n) are mismatched regions between
the PET image and the anatomical image; the arrow #1 is

TABLE IV

MEAN ABSOLUTE PERCENTAGE ERRORS (%) CALCULATED FROM 100

NOISE TRIALS USING PHANTOM A

Method\
Resolution

Low: Full Image
(ROIs R1/R2/R3)

High: Full Image
(ROIs R1/R2/R3)

LR-QD
24.04

(30.21/25.05/37.68)
23.85

(29.34/24.44/36.91)

LR-AB 18.92
(30.34/12.48/29.51)

17.14
(29.42/6.21/29.67)

NLR 12.95
(14.63/13.85/19.26)

12.51
(13.68/11.94/16.66)

NLR-AP 11.43
(14.70/9.53/14.70)

9.73
(13.71/5.07/14.04)

NLR-IAP
10.77

(14.71/8.85/14.84)
9.13

(13.72/3.76/14.53)

for the false anatomical information and the arrow #2 is for
the missing anatomical information. Several qualitative obser-
vations may be noted here. Clearly, the PL method performs
better when the anatomical information is incorporated into the
reconstruction process. For the LR-AB method, since it uses
the boundary information derived from the anatomical image,
unless any false information is involved, it performs well
in both low-resolution and high-resolution reconstructions as
shown in Figs. 3(g) and (h). However, it leads to a significant
error when the boundaries in the anatomical image and those
in the PET image are not matched as shown in Figs. 3(g)
and 3(h) (see the region designated by arrow #1) On the
other hand, our proposed NLR-AP method, which does not
require additional boundary information, performs better than
the LR-AB method when the image resolution is increased.
Comparisons of Figs. 3(g) with 3(k) and Figs. 3(h) with 3(l)
show the better performance of the NLR-AP method than
that of the LR-AB method when the resolution is increased.
Comparisons of Figs. 3(k) with (m) and Figs. 3(l) with (n)
show that, unlike the NLR-AP method, the NLR-IAP method
results in errors in the false anatomical region (designated by
the arrow #1). This is due to the fact that, while our NLR-AP
method confirms the existence of edges whenever there
exist edges in the anatomical image by referring to the
PET image, the NLR-IAP method independently incorporates
the anatomical information without referring to the PET
image. Therefore, if there exist false anatomical regions, the
NLR-IAP reconstruction produces false edges in the corre-
sponding regions. Comparisons of Figs. 3(l) with 3(k) and 3(l)
with 3(h) show that the high-resolution reconstruction using
our proposed method improves the reconstruction accuracy.
(See the region designated by the arrow #1.)

Table IV summarizes the mean absolute percentage errors
(MAPEs) of the reconstructions and the regions of interests
(ROIs), R1, R2, and R3 calculated from 100 noise trials.
The sizes of ROIs were 72, 107, and 42 pixels for R1, R2,
and R3, respectively. To calculate MAPEs of the high-
resolution reconstructions under the same condition as the low-
resolution reconstructions, the high-resolution reconstructions
were first down-sampled to the low-resolution images and their
MAPEs were calculated with respect to the low-resolution
phantom A. As shown in Table IV, regardless of the level of
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the resolution, the NLR-based methods clearly outperform the
conventional LR-based methods. For the comparison of NLR-
IAP with NLR-AP, the overall MAPEs of the NLR-IAP recon-
structions appear smaller than those of the NLR-AP recon-
structions. This is presumably due to the fact that, as the NLR-
IAP method is strongly affected by anatomical boundaries, it
usually performs well for piecewise flat reconstructions when
the signal mismatch problem is not severe. This is also true
in R2 for a perfectly matched anatomical region. On the other
hand, the MAPEs of R1, which contains no anatomical edges,
are about the same for the two methods. Finally, the NLR-
AP method, as expected, outperforms the NLR-IAP method
in R3 which contains false anatomical information. Note
that the MAPEs for the high-resolution reconstructions are
smaller than those for the low-resolution reconstructions. The
MAPEs measured from the ROIs also support this superior
performance of the high-resolution reconstructions.

For the phantom B whose anatomical boundaries are not
as sharp as those of the phantom A, the incorporation of
the anatomical information improves accuracy in both LR-AB
and NLR-AP reconstructions (see Figs. 4(g)(h) and (k)(l).)
While the visual improvements from LR-AB to NLR-AP
are not stunning, close inspection reveals that the NLR-AP
reconstruction, indeed captures subtle aspects of the autora-
diograph phantom B that are missed by the LR-AB method;
while the LR-AB method attempts to flatten the ‘ramp-like’
gradually changing regions (see Figs. 4(g) and 4(h)), the NLR-
AP method avoids the over-smoothing behavior of the LR-
AB method as seen in Fig. 4(l). For this phantom, due to
the absence of false anatomical boundaries, the results from
NLR-AP and NLR-IAP are almost identical. The MAPEs of
the reconstructions and the two ROIs shown in Fig. 4(a) are
summarized in Table V, which supports the results from our
visual inspection. The sizes of ROIs were 31 and 22 pixels
for R1 and R2, respectively.

We also calculated point-wise bias and STD images. To
compare the high-resolution reconstructions in the same
condition as the low-resolution reconstructions, the recon-
structed high-resolution images were down-sampled to the
low-resolution images. Note again that the smoothing parame-
ter γ in this case was chosen so that different methods resulted
in approximately the same STD level in the background
region. Bias images are bipolar, with a value of zero displayed
as an intermediate gray, and with darker/lighter regions corre-
sponding to negative/positive bias. In STD images, intensity
represents the positive STD value.

Fig. 5 shows our bias and STD images for phantom A.
The results indicate that the incorporation of anatomical
information immediately reduces the bias error in both the
LR-AB and the NLR-AP methods. Comparisons of Fig. 5(d)
with Fig. 5(h) and Fig. 5(c) with Fig. 5(g) reveal that our
proposed NLR-AP method outperforms the LR-AB method
by significantly reducing the bias error. The areas designated
by arrows in Figs. 5(c)(d) and 5(g)(h) show that the NLR-
AP method outperforms the LR-AB method in bias where
anatomical regions are missing (arrow #2) or false (arrow #1).
Comparisons of Figs. 5(g) with 5(h) show that increasing the
pixel resolution in NLR-AP reconstruction and then down-

TABLE V

MEAN ABSOLUTE PERCENTAGE ERRORS (%) CALCULATED FROM 100

NOISE TRIALS USING PHANTOM B

Method\
Resolution

Low: Full Image
(ROIs R1/R2)

High: Full Image
(ROIs R1/R2)

LR-QD
29.48

(40.37/42.99)
23.24

(28.93/30.87)

LR-AB 22.72
(40.71/35.52)

19.02
(28.98/26.91)

NLR 18.24
(17.52/16.85)

17.13
(15.92/14.97)

NLR-AP 14.95
(16.59/17.19)

14.87
(15.86/14.86)

NLR-IAP
14.54

(16.55/17.47)
14.75

(15.86/14.86)

sampling to conventional resolution reduces bias. Finally,
comparisons of Figs. 5(g) with 5(i) and 5(h) with 5(j) show that
the NLR-IAP method has all the advantages of the proposed
NLR-AP method except that it has no ability to resolve the
false anatomical information. (See the arrow #1’s in Figs. 5(i)
and (j) where the false anatomical boundary resulted in high
bias error.)

Fig. 6 shows our bias and STD images for phantom B. The
results once again indicate that the incorporation of anatomical
information improves reconstruction accuracy in bias at the
same level of STD. For this realistic phantom, the errors in
LR-AB reconstruction are caused mainly by the inconsistency
between the segmented anatomical image and the anatomical
phantom image; the anatomical phantom image contains more
complex edge structure than the segmented anatomical image.
The NLR-AP reconstructions (Figs. 6(g) and 6(h)) reveal
better accuracy than the LR-AB reconstructions (Figs. 6(c) and
6(d)) in bias at the same level of STD. Visual comparisons of
Figs. 6(g) with 6(i) and 6(h) with 6(j) show that, since the
false anatomical information does not exist in this particular
phantom, the NLR-IAP method performs slightly better than
the NLR-AP method in most areas. Note that, in point-
wise STD, the results from both LR-QD and LR-AB (Figs.
6(k)(l) and 6(m)(n), respectively) have less fluctuations than
those from NLR and NLR-AP (Figs. 6(o)(p) and 6(q)(r),
respectively). However, it can be easily noted that the high
STD values in the NLR and NLR-AP/IAP reconstructions
appear only around the high-contrast edges.

Finally, to evaluate the quantitative performance of our
proposed method focused in the tumor regions in both phan-
toms A and B, we performed additional ROI studies using
the contrast recovery coefficient (CRC) [45]. Figs. 7(a) and
8(a) show the preselected ROIs for the phantoms A and B,
respectively, which are identical to those shown in Figs. 3(a)
and 4(a), respectively. In both Figs. 7(a) and 8(a), the circles
denoted B indicate the background regions.

The contrast recovery coefficient (CRC) in each tumor
region is defined as

C RCn
ROI = C Rn

ROI/C R0
ROI, (22)

where C Rn
ROI = ∣

∣Zn
ROI − Zn

B

∣
∣ /Zn

B with Zn
ROI =
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Fig. 5. Point-wise bias/STD images for phantom A: (a)(b) bias for LR-QD; (c)(d) bias for LR-AB; (e)(f) bias for NLR; (g)(h) bias for NLR-AP; (i)(j) bias
for NLR-IAP; (k)(l) STD for LR-QD; (m)(n) STD for LR-AB; (o)(p) STD for NLR; (q)(r) STD for NLR-AP; (s)(t) STD for NLR-IAP. (L) and (H) denote
low- and high-resolution, respectively. The three small images on top of each figure show zoomed-in regions.

Fig. 6. Point-wise bias/STD images for phantom B: (a)(b) bias for LR-QD; (c)(d) bias for LR-AB; (e)(f) bias for NLR; (g)(h) bias for NLR-AP; (i)(j) bias
for NLR-IAP; (k)(l) STD for LR-QD; (m)(n) STD for LR-AB; (o)(p) STD for NLR; (q)(r) STD for NLR-AP; (s)(t) STD for NLR-IAP. (L) and (H) denote
low- and high-resolution, respectively. The two small images on top of each figure show zoomed-in regions.

(1/m)
∑

j∈ROI f̂ n
j denoting the mean activity in each

region at the n-th noise trial, m the number of pixels in the
ROI, Zn

B the mean activity in the background region, and
C R0

ROI the true contrast in the phantom. The ensemble mean
of CRC is defined as

C RCROI
def= (1/N)

∑N

n=1
C RCn

ROI, (23)

and the regional standard deviation is defined as

ST DC RC
ROI =

√
1

N − 1

∑N

n=1
(C RCn

ROI − C RCROI)2, (24)

where N is the total number of noise trials.
Fig. 7 shows regional CRC-STD curves for phantom A

in which each point represents the mean and STD of the
CRC evaluated from N =100 independent noise trials. To
observe the effect of smoothing over a range of γ , the nine
different γ values were used; γ was set to 0, 0.0000375,
0.000075, 0.00015, 0.0003, 0.0006, 0.0012, 0.0024, 0.0048 for
the original low-resolution reconstructions and 0, 0.0003125,
0.000625, 0.00125, 0.0025, 0.005, 0.01, 0.02, 0.04 for the
high-resolution reconstructions. Therefore, each curve con-
tains nine CRC-STD points for each reconstruction algorithm.
For each curve, the starting point with the highest STD
corresponds to γ = 0. The reconstructions with the same
resolution share the same starting point.

According to the results from the ROI studies, unless the
degree of signal mismatch was severe, the methods that used
the anatomical information always yielded better results in
CRC than the methods without using the anatomical infor-
mation. In particular, for the cases of signal mismatch in R1
and R3, our proposed NLR-AP/IAP methods provided better
results with higher CRC than the LR-AB method over a wide
range of γ . For R2, which was the case of the region with the
matched boundary, both the NLR-AP and NLR-IAP methods
revealed the higher CRC and smaller STD than the LR-AB
method. For R1, since the anatomical information is com-
pletely missing, there is no difference between the NLR-AP
method and the NLR-IAP method, which is verified by the
overlapped CRC mean-STD curves for both methods. For R2
which contained a perfectly matched anatomical boundary, the
NLR-AP method still outperformed the NLR-IAP method in
the low-resolution setting. However, the performance differ-
ence between the two methods in the high-resolution setting
was minor. For R3 which contained false anatomical informa-
tion, the NLR-AP method performed better than the NLR-IAP
method as shown Fig. 7(d). By increasing the pixel resolution
of the PET image as described in Sec. III, a better performance
was achieved in all ROIs. Note that the results shown in
Fig. 7 were measured in the low-resolution setting where
the reconstructed high-resolution images were down-sampled
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Fig. 7. Regional CRC-STD plots for ROI studies with phantom A:
(a) Phantom with regional boundaries superposed where R1 has no cor-
responding anatomical boundary, R2 has a perfectly matched anatomical
boundary, and R3 has a partially matched anatomical boundary; (b)-(d) Mean
versus STD of CRC curves for the preselected 3 ROIs.

to the low-resolution images before computing the regional
mean and STD. Comparison between the NLR method and
the proposed methods (NLR-AP and NLR-IAP) shows that
the proposed methods clearly outperform the NLR method in
R2 where the anatomical boundary and the functional bound-
ary are perfectly matched. When the anatomical boundary
is completely missing as shown in R1, the NLR method
and the proposed methods achieve the same performance.
Finally, when the anatomical boundary and the functional
boundary are not perfectly matched as shown in R3, with the
properly chosen smoothing parameter, the proposed methods
still perform better than the NLR method. These observations
indicate that our proposed methods not only utilize the reliable
anatomical information selectively, but also compromise the
partially false anatomical information.

Fig. 8 shows regional CRC-STD curves for phantom B in
which each point represents the mean and STD of the CRC
evaluated from N =100 independent noise trials. To observe
the effect of smoothing over a range of γ , the nine different
values were used; γ was set to 0, 0.0000125, 0.000025,
0.00005, 0.0001, 0.0002, 0.0004, 0.0008, 0.0016 for the
low-resolution reconstructions and 0, 0.0000625, 0.000125,
0.00025, 0.0005, 0.001, 0.002, 0.004, 0.008 for the high-
resolution reconstructions. In both ROIs, our proposed NLR-
AP/IAP methods revealed better results with higher CRC than
the LR-AB method and the NLR method without anatom-
ical information. Similarly to the case of the phantom A,
by increasing the pixel resolution of the PET image, a
better performance was also achieved in all ROIs in this
phantom.

V. CONCLUSIONS

We have developed a nonlocal regularization method
that incorporates anatomical side information into PET
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Fig. 8. Regional CRC-STD plots for ROI studies with phantom B:
(a) Phantom with regional boundaries superposed where R1 has no corre-
sponding anatomical boundary and R2 has a partially matched anatomical
boundary; (b)-(c) Mean versus STD of CRC curves for the preselected
2 ROIs.

reconstruction. In our method, to model the self-similarity
property in both the underlying (PET) image and the anatomi-
cal image, a patch-based regularization term, which is based on
nonlocal comparison of patches, was used. The experimental
results show that our proposed method significantly improves
both the quantitative and qualitative performance even with
imperfect anatomical information or in the presence of signal
mismatch between the PET image and the anatomical image.
According to the quantitative results from our extended simu-
lation study to increase the pixel resolution of the PET image
up to the level of the high-resolution anatomical image, the
high-resolution NLR-AP method further improves its perfor-
mance when they are evaluated in the original low-resolution
setting by down-sampling the reconstructed images.

Our NLR-AP method differs from the conventional meth-
ods in the following aspects: (i) It uses patch-based nonlo-
cal regularization rather than conventional pixel-based local
smoothing; (ii) The weight ω j k in our nonlocal regularizer is
modeled to adaptively signal the existence of roughness in the
anatomical image only when there is similar roughness in the
current estimate of the PET image. (Our method incorporates
the anatomical information into the reconstruction process
only when it is likely to be correlated to the PET data [4],
thereby reducing the signal mismatch error.); (iii) It directly
uses anatomical images without additional processes to extract
anatomical boundaries or segmented regions [4], [5].

Our method is computationally expensive since it is time-
consuming to update the values of the image pixels and
the projection bins as shown in Table I. Fortunately, the
COSEM-PL algorithm is parallelizable. All operations can
be performed independently and simultaneously, either for all
pixels or all projection bins. In our implementation, though it
was not reported in this paper, we parallelized the COSEM-
PL algorithm using the graphics processing unit (GPU) and
achieved a significant improvement in computational speed. To
maximize the computational efficiency of the GPU, we used
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the single subset for the COSEM-PL algorithm. The details
on the acceleration of the COSEM algorithm using GPU can
be found in [46].

In conclusion, our proposed NLR-AP method has a great
potential to enhance the accuracy of PET image reconstruction.
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