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Abstract Considered here is the first initial boundary value problem for the two-dimension-
al g-Navier–Stokes equations in bounded domains. We first prove the existence and unique-
ness of strong solutions to the problem by using the Faedo–Galerkin method. Then we study
the finite time numerical approximation of the strong solutions by discretization schemes.
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1 Introduction

Let Ω be a bounded domain in R
2 with smooth boundary Γ . We consider the following

two-dimensional (2D) non-autonomous g-Navier–Stokes equations:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂u
∂t

− νΔu + (u · ∇)u + ∇p = f (x, t) in (0, T ) × Ω,

∇ · (gu) = 0 in (0, T ) × Ω,

u = 0 on (0, T ) × Γ,

u(x,0) = u0(x), x ∈ Ω,

(1.1)
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where u = u(x, t) = (u1, u2) is the unknown velocity vector, p = p(x, t) is the unknown
pressure, ν > 0 is the kinematic viscosity coefficient and u0 is the initial velocity.

The g-Navier–Stokes equations are a variation of the standard Navier–Stokes equa-
tions. More precisely, when g ≡ const we get the usual Navier–Stokes equations. The 2D
g-Navier–Stokes equations arise in a natural way when we study the standard 3D prob-
lem in thin domains. We refer the reader to [13] for the derivation of the 2D g-Navier–
Stokes equations from the 3D Navier–Stokes equations and the relationships between them.
As mentioned in [12], the good properties of the 2D g-Navier–Stokes equations can lead
to an initial study of the Navier–Stokes equations on the thin three dimensional domain
Ωg = Ω × (0, g). In the last few years, the existence and long-time behavior of weak solu-
tions to 2D g-Navier–Stokes equations have been studied extensively in both cases without
and with delays (see e.g. [1, 2, 7, 8, 11–14] and the references therein). However, to the
best of our knowledge, little seems to be known about strong solutions of the 2D g-Navier–
Stokes equations. This is a motivation of the present paper.

The aim of this paper is to study the existence and numerical approximations of strong
solutions to the two-dimensional non-autonomous g-Navier–Stokes equations. To do this,
we assume that the function g satisfies the following hypothesis:

(G) g ∈ W 1,∞(Ω) is such that

0 < m0≤g(x)≤M0 for all x = (x1, x2) ∈ Ω, and |∇g|∞ < m0λ
1/2
1 ,

where λ1 > 0 is the first eigenvalue of the g-Stokes operator in Ω (i.e., the operator A

defined in Sect. 2).

Let us describe the contents of the paper. First, we prove the existence, uniqueness and
continuous dependence on the initial data of strong solutions to problem (1.1) by using
the Faedo–Galerkin method. Second, we study the convergence of a space and time dis-
cretization scheme for the 2D evolution g-Navier–Stokes equations. This scheme combines
a discretization in time by an alternating direction (or decomposition) method with a dis-
cretization in space by finite elements. The convergence problem is treated by energy meth-
ods (see [15, 16] for related results on the standard Navier–Stokes equations). We also refer
the reader to [4–6, 9, 10] for several other recent results on numerical approximations of the
standard Navier–Stokes equations.

It is noticed that in this paper we only consider the finite time approximation of strong so-
lutions to problem (1.1). The long-time behavior and long-time approximation of the strong
solutions are important questions because the problem of numerical computation of turbu-
lent flows is connected with the computation of the solutions for large time, and they will be
the subject of a forthcoming work.

The paper is organized as follows. In Sect. 2, for convenience of the reader, we recall
some auxiliary results on function spaces and inequalities for the nonlinear terms related to
the g-Navier–Stokes equations. In Sect. 3, we prove the existence and uniqueness of a strong
solution to the problem by using the Faedo–Galerkin method. The finite time approximation
of the strong solution is studied in the last section by using discretization schemes.

2 Preliminary results

Let L2(Ω,g) = (L2(Ω))2 and H 1
0 (Ω,g) = (H 1

0 (Ω))2 be endowed, respectively, with the
inner products

(u, v)g =
∫

Ω

u · vg dx, u, v ∈ L2(Ω,g),
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and

(
(u, v)

)

g
=

∫

Ω

2∑

j=1

∇uj · ∇vjg dx, u = (u1, u2), v = (v1, v2) ∈ H 1
0 (Ω,g),

and norms |u|2 = (u,u)g , ‖u‖2 = ((u,u))g . Thanks to the assumption (G), the norms | · |
and ‖ · ‖ are equivalent to the usual ones in (L2(Ω))2 and in (H 1

0 (Ω))2, respectively.
Let

V = {
u ∈ (

C∞
0 (Ω)

)2 : ∇ · (gu) = 0
}
.

Denote by Hg the closure of V in L2(Ω,g), and by Vg the closure of V in H 1
0 (Ω,g). It

follows that Vg ⊂ Hg ≡ H ′
g ⊂ V ′

g , where the injections are dense and continuous. We will
use ‖ · ‖∗ for the norm in V ′

g , and 〈·, ·〉 for duality pairing between Vg and V ′
g .

We now define the trilinear form b by

b(u, v,w) =
2∑

i,j=1

∫

Ω

ui

∂vj

∂xi

wjg dx,

whenever the integrals make sense. It is easy to check that if u,v,w ∈ Vg , then

b(u, v,w) = −b(u,w,v).

Hence

b(u, v, v) = 0 ∀u,v ∈ Vg.

Set A: Vg → V ′
g by 〈Au,v〉 = ((u, v))g , B: Vg × Vg → V ′

g by

〈
B(u, v),w

〉 = b(u, v,w),

and put Bu = B(u,u). Denote D(A) = {u ∈ Vg : Au ∈ Hg}, then

D(A) = H 2(Ω,g) ∩ Vg

and Au = −PgΔu ∀u ∈ D(A), where Pg is the ortho-projector from L2(Ω,g) onto Hg .
Using the Hölder inequality, the Ladyzhenskaya inequality (when n = 2):

|u|L4 ≤ c|u|1/2|∇u|1/2 ∀u ∈ H 1
0 (Ω),

and the interpolation inequalities, as in [15] one can prove the following result.

Lemma 2.1 If n = 2, then

∣
∣b(u, v,w)

∣
∣ ≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c1|u|1/2‖u‖1/2‖v‖|w|1/2‖w‖1/2 ∀u,v,w ∈ Vg,

c2|u|1/2‖u‖1/2‖v‖1/2|Av|1/2|w| ∀u ∈ Vg, v ∈ D(A),w ∈ Hg,

c3|u|1/2|Au|1/2‖v‖|w| ∀u ∈ D(A), v ∈ Vg,w ∈ Hg,

c4|u|‖v‖|w|1/2|Aw|1/2 ∀u ∈ Hg,v ∈ Vg,w ∈ D(A),

(2.1)

where ci, i = 1, . . . ,4, are appropriate constants.
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Lemma 2.2 Let u ∈ L2(0, T ;D(A)) ∩ L∞(0, T ;Vg), then the function Bu defined by

(
Bu(t), v

)

g
= b

(
u(t), u(t), v

) ∀v ∈ Hg, a.e. t ∈ [0, T ],

belongs to L4(0, T ;Hg), therefore also belongs to L2(0, T ;Hg).

Proof By Lemma 2.1, for almost every t ∈ [0, T ], we have

∣
∣Bu(t)

∣
∣ ≤ c3

∣
∣u(t)

∣
∣1/2∣∣Au(t)

∣
∣1/2∥∥u(t)

∥
∥ ≤ c′

3

∥
∥u(t)

∥
∥3/2∣∣Au(t)

∣
∣1/2

.

Then
∫ T

0

∣
∣Bu(t)

∣
∣4

dt ≤ c′
3

∫ T

0

∥
∥u(t)

∥
∥6∣∣Au(t)

∣
∣2

dt ≤ c‖u‖6
L∞(0,T ;Vg)

∫ T

0

∣
∣Au(t)

∣
∣2

dt < +∞.

This completes the proof. �

Lemma 2.3 [3] Let u ∈ L2(0, T ;Vg). Then the function Cu defined by

(
Cu(t), v

)

g
=

((∇g

g
· ∇

)

u,v

)

g

= b

(∇g

g
,u, v

)

∀v ∈ Vg,

belongs to L2(0, T ;Hg) and therefore also belongs to L2(0, T ;V ′
g). Moreover,

∣
∣Cu(t)

∣
∣ ≤ |∇g|∞

m0
· ∥∥u(t)

∥
∥ for a.e. t ∈ (0, T )

and
∥
∥Cu(t)

∥
∥

∗ ≤ |∇g|∞
m0λ

1/2
1

· ∥∥u(t)
∥
∥ for a.e. t ∈ (0, T ).

Since

− 1

g
(∇ · g∇)u = −Δu −

(∇g

g
· ∇

)

u,

we have

(−Δu,v)g = (
(u, v)

)

g
+

((∇g

g
·∇

)

u,v

)

g

= (Au,v)g +
((∇g

g
·∇

)

u,v

)

g

∀u,v ∈ Vg.

3 Existence and uniqueness of strong solutions

Definition 3.1 Given f ∈ L2(0, T ;Hg) and u0 ∈ Vg , a strong solution on the interval (0, T )

of (1.1) is a function u ∈ L2(0, T ;D(A)) ∩ L∞(0, T ;Vg) with u(0) = u0 and such that

d

dt

(
u(t), v

)

g
+ ν

((
u(t), v

))

g
+ ν

(
Cu(t), v

)

g
+ b

(
u(t), u(t), v

) = (
f (t), v

)

g
(3.1)

for all v ∈ Vg and for a.e. t ∈ (0, T ).
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Remark 3.1 Due to Lemmas 2.2 and 2.3 from the above definition we see that any strong
solution u must have the properties u ∈ L2(0, T ;D(A)) and du

dt
= f − νAu − Bu − Cu ∈

L2(0, T ;Hg). By Lemma 1.2 in [15], we have u ∈ C([0, T ];Vg), which makes the initial
condition u(0) = u0 meaningful. It is also noticed that if u is a strong solution of (1.1), then
u satisfies the equation

du

dt
(t) + νAu(t) + Bu(t) + Cu(t) = f (t) in Hg for a.e. t ∈ (0, T )

and satisfies the following energy equality for all 0 ≤ s < t ≤ T :

∣
∣u(t)

∣
∣2 + 2ν

∫ t

s

∥
∥u(r)

∥
∥2

dr + 2ν

∫ t

s

b

(∇g

g
,u(r), u(r)

)

dr

= ∣
∣u(s)

∣
∣2 + 2

∫ t

s

(
f (r), u(r)

)

g
dr.

We now prove some a priori estimates for the (sufficiently regular) strong solutions to
(1.1).

Lemma 3.1 If u is a strong solution of (1.1) on (0, T ), then we have

∫ T

0

∥
∥u(t)

∥
∥2

dt ≤ K1, K1 = K1

(|u0|,‖f ‖L2(0,T ;Hg), ν, T ,λ1

)
, (3.2)

sup
s∈[0,T ]

∣
∣u(s)

∣
∣2 ≤ K2, K2 = K2

(|u0|,‖f ‖L2(0,T ;Hg), ν, T ,λ1

)
. (3.3)

Proof Replacing v by u(t) in (3.1) we get

d

dt

∣
∣u(t)

∣
∣2 + 2ν

∥
∥u(t)

∥
∥2 = 2

(
f (t), u(t)

)

g
− 2νb

(∇g

g
,u(t), u(t)

)

, (3.4)

where we have used the facts that b(u(t), u(t), u(t)) = 0 and (Cu(t), u(t))g = b(
∇g

g
, u(t),

u(t)). Using Lemma 2.3 and the Cauchy inequality, we have

d

dt

∣
∣u(t)

∣
∣2 + 2ν

∥
∥u(t)

∥
∥2 ≤ 2εν

∥
∥u(t)

∥
∥2 + |f (t)|2

2ενλ1
+ 2ν

|∇g|∞
m0λ

1/2
1

∣
∣u(t)

∣
∣2

.

Hence

d

dt

∣
∣u(t)

∣
∣2 + 2ν(γ0 − ε)

∥
∥u(t)

∥
∥2 ≤ |f (t)|2

2ενλ1
, (3.5)

where γ0 = 1 − |∇g|∞
m0λ

1/2
1

> 0 and ε > 0 is chosen so that γ0 − ε > 0. By integrating in t from 0

to T , after dropping the unnecessary term, we obtain (3.2). Then by integrating in t of (3.5)
from 0 to s, 0 < s < T , we obtain

∣
∣u(s)

∣
∣2 ≤ |u0|2 + 1

2ενλ1

∫ T

0

∣
∣f (t)

∣
∣2

dt.

Hence we get (3.3). �
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Lemma 3.2 If u is a sufficiently regular solution of (1.1) on (0, T ), then

sup
t∈[0,T ]

∥
∥u(t)

∥
∥2 ≤ K3, K3 = K3(K1,K2), (3.6)

∫ T

0

∣
∣Au(t)

∣
∣2

dt ≤ K4, K4 = K4(K1,K2). (3.7)

Proof Thanks to (3.1), replacing v by Au(t), we get

d

dt

(
u(t),Au(t)

)

g
+ ν

((
u(t),Au(t)

))

g
+ ν

(
Cu(t),Au(t)

)

g
+ b

(
u(t), u(t),Au(t)

)

= (
f (t),Au(t)

)

g
. (3.8)

Since ((φ,ψ))g = 〈Aφ,ψ〉 ∀φ,ψ ∈ Vg , this relation can be rewritten as follows:

1

2

d

dt

∥
∥u(t)

∥
∥2 + ν

∣
∣Au(t)

∣
∣2 + ν

(
Cu(t),Au(t)

)

g
+ b

(
u(t), u(t),Au(t)

)

= (
f (t),Au(t)

)

g
≤ ν

4
|Au(t)|2 + 1

ν
|f (t)|2. (3.9)

By Lemmas 2.1 and 2.3, (3.9) implies that

1

2

d

dt

∥
∥u(t)

∥
∥2 + ν

∣
∣Au(t)

∣
∣2 ≤ ν

4

∣
∣Au(t)

∣
∣2 + 1

ν

∣
∣f (t)

∣
∣2 + c3

∣
∣u(t)

∣
∣1/2∣∣Au(t)

∣
∣3/2∥∥u(t)

∥
∥

+ ν|∇g|∞
m0

∥
∥u(t)

∥
∥
∣
∣Au(t)

∣
∣. (3.10)

Using the Young inequality, we obtain

1

2

d

dt

∥
∥u(t)

∥
∥2 + ν

∣
∣Au(t)

∣
∣2 ≤ ν

4

∣
∣Au(t)

∣
∣2 + 1

ν

∣
∣f (t)

∣
∣2

+ ν

4

∣
∣Au(t)

∣
∣2 + c′

3

∣
∣u(t)

∣
∣2∥∥u(t)

∥
∥4

+ ν|∇g|∞
m0λ

1/2
1

∣
∣Au(t)

∣
∣2 + ν|∇g|∞λ

1/2
1

4m0

∥
∥u(t)

∥
∥2

. (3.11)

Then,

d

dt

∥
∥u(t)

∥
∥2 + ν

(

1 − |∇g|∞
m0λ

1/2
1

)
∣
∣Au(t)

∣
∣2

≤ 2

ν

∣
∣f (t)

∣
∣2 + 2c′

3

∣
∣u(t)

∣
∣2∥∥u(t)

∥
∥4 + ν|∇g|∞λ

1/2
1

2m0

∥
∥u(t)

∥
∥2

. (3.12)

Dropping the term ν(1 − |∇g|∞
m0λ

1/2
1

)|Au(t)|2, we obtain the differential inequality

y ′ ≤ a + θy,
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where

y(t) = ∥
∥u(t)

∥
∥2

, a(t) = 2

ν

∣
∣f (t)

∣
∣2

, θ(t) = c′
3

∣
∣u(t)

∣
∣2∥∥u(t)

∥
∥2 + ν|∇g|∞λ

1/2
1

2m0
,

from which, by applying the Gronwall inequality, we obtain

y(t) ≤ y(0) exp

(∫ t

0
θ(τ ) dτ

)

+
∫ t

0
a(s) exp

(∫ t

0
θ(τ ) dτ

)

ds,

or

∥
∥u(t)

∥
∥2 ≤ ∥

∥u0

∥
∥2

exp

(∫ t

0

(

c′
3

∣
∣u(τ)

∣
∣2∥∥u(τ)

∥
∥2 + ν|∇g|∞λ

1/2
1

2m0

)

dτ

)

+ 2

ν

∫ t

0

∣
∣f (s)

∣
∣2

exp

(∫ t

0

(

c′
3

∣
∣u(τ)

∣
∣2∥∥u(τ)

∥
∥2 + ν|∇g|∞λ

1/2
1

2m0

)

dτ

)

ds. (3.13)

By Lemma 3.1, we get (3.6). Integrating (3.12) from 0 to T , we obtain (3.7). �

Theorem 3.1 Suppose that f ∈ L2(0, T ;Hg) and u0 ∈ Vg are given. Then there exists a
unique strong solution u of (1.1) on (0, T ). Moreover, the map u0 �→ u(t) is continuous on
Vg for all t ∈ [0, T ], that is, the strong solution depends continuously on the initial data.

Proof (i) Uniqueness and continuous dependence. Assume that u and v are two strong so-
lutions of (1.1) with initial data u0, v0. Setting w = u − v, we see that

w ∈ L2
(
0, T ;D(A)

) ∩ L∞(0, T ;Vg)

and

d

dt
w + νAw + νCw = Bv − Bu,

w(0) = u0 − v0.

Taking the inner product with Aw, we have

d

dt
(w,Aw)g + ν(Aw,Aw)g + ν(Cw,Aw)g = b(v, v,Aw) − b(u,u,Aw).

By the equality (Aφ,ψ)g = ((φ,ψ))g and the trilinearness of b(·, ·, ·) we have

d

dt
‖w‖2 + 2ν|Aw|2 = −2ν(Cw,Aw)g − 2b(u,w,Aw) − 2b(w,v,Aw).

Hence, by Lemmas 2.1 and 2.3,

d

dt
‖w‖2 + 2ν|Aw|2 ≤ 2ν

|∇g|∞
m0

‖w‖|Aw|

+ 2c3|u|1/2|Au|1/2‖w‖|Aw| + 2c3|w|1/2|Aw|1/2‖v‖|Aw|.
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Since ‖w‖2 ≤ λ1|Aw|2, by Cauchy’s inequality and Young’s inequality, we obtain

d

dt
‖w‖2 + 2ν|Aw|2 ≤ ν|Aw|2 + ν|∇g|2∞

m2
0

‖w‖2

+ ν

2
|Aw|2 + 2c2

3

ν
|u||Au|‖w‖2

+ ν

2
|Aw|2 + 6c4

3

νλ1
‖v‖4‖w‖2.

Hence

d

dt
‖w‖2 ≤

(
ν|∇g|2∞

m2
0

+ 2c2
3

ν
|u||Au| + 6c4

3

νλ1
‖v‖4

)

‖w‖2.

Thus, one has

∥
∥w(t)

∥
∥2 ≤ ∥

∥w(0)
∥
∥2

exp

(∫ t

0

(
ν|∇g|2∞

m2
0

+ 2c2
3

ν

∣
∣u(s)

∣
∣
∣
∣Au(s)

∣
∣ + 6c4

3

νλ1

∥
∥v(s)

∥
∥4

)

ds

)

,

or

∥
∥u(t) − v(t)

∥
∥2 ≤ ∥

∥u0 − v0

∥
∥2

exp

(∫ t

0

(
ν|∇g|2∞

m2
0

+ 2c2
3

ν

∣
∣u(s)

∣
∣
∣
∣Au(s)

∣
∣ + 6c4

3

νλ1

∥
∥v(s)

∥
∥4

)

ds

)

.

This implies the uniqueness (if u0 = v0) and the continuous dependence of the strong solu-
tion on the initial data.

(ii) Existence. We split the proof of the existence into several steps.
Step 1: A Galerkin scheme. Let v1, v2, . . . be a basis of Vg consisting of eigenfunctions

of the operator A, which is orthonormal in Hg . Denote Vm = span{v1, . . . , vm} and consider
the projector Pmu = ∑m

j=1(u, vj )vj . Define also

um(t) =
m∑

j=1

αm,j (t)vj ,

where the coefficients αm,j are required to satisfy the following system:

d

dt

(
um(t), vj

)

g
+ ν

(
Aum(t), vj

)

g
+ ν

(
Cum(t), vj

)

g
+ b

(
um(t), um(t), vj

)

= (
f (t), vj

)

g
∀j = 1, . . . ,m, (3.14)

and the initial condition um(0) = Pmu0. This system of ordinary differential equations in the
unknown (αm,1(t), . . . , αm,m(t)) fulfills the conditions of the Peano theorem, so the approx-
imate solutions um exist.

Step 2: A priori estimates. Using (3.14) and replacing vj by Aum(t), we get

d

dt

(
um(t),Aum(t)

)

g
+ ν

((
um(t),Aum(t)

))

g
+ ν

(
Cum(t),Aum(t)

)

g

+ b
(
um(t), um(t),Aum(t)

) = (
f (t),Aum(t)

)

g
. (3.15)
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This relation is similar to (3.8). Doing exactly as in Lemma 3.2 for um, with u0 replaced by
um

0 , and noticing that
∥
∥um

0

∥
∥ = ‖Pmu0‖ ≤ ‖u0‖,

we conclude that

{
um

}
is bounded in L2

(
0, T ;D(A)

) ∩ L∞(0, T ;Vg). (3.16)

Now, observe that (3.14) is equivalent to

dum

dt
= −νAum − νCum − PmBum + Pmf.

Hence, by Lemma 2.2 we have

{(
um

)′}
is bounded in L2(0, T ;Hg).

Step 3: Passage to the limit. From the above estimates we conclude that there exist
u ∈ L2(0, T ;D(A)) ∩ L∞(0, T ;Vg) with u′ ∈ L2(0, T ;Hg), and a subsequence of {um},
relabeled the same, such that

{
um

}
converges weakly-star to u in L∞(0, T ;Vg),

{
um

}
converges weakly to u in L2

(
0, T ;D(A)

)
and

{(
um

)′}
converges weakly to u′ in L2(0, T ;Hg).

(3.17)

Since Ω is bounded, we can use the Compactness Lemma (see e.g. [15, Chap. III, Theo-
rem 2.1]) to deduce the existence of a subsequence (still denoted by) um which converges
strongly to u in L2(0, T ;Vg).

Then we can pass to the limit in the nonlinearity b thanks to the following lemma whose
proof is exactly the proof of Lemma 3.2 in [15, Chap. III].

Lemma 3.3 If um converges to u in L2(0, T ;Vg) strongly then, for any vector function w

with components belonging to C1([0, T ] × Ω), we have

∫ T

0
b
(
um(t), um(t),w(t)

)
dt →

∫ T

0
b
(
u(t), u(t),w(t)

)
dt.

Finally, we prove that u(0) = u0. Let ψ be a continuously differentiable function on
[0, T ] with ψ(T ) = 0. Multiplying (3.14) by ψ(t) and integrating by parts the first term, we
get

−
∫ T

0

(
um(t), vjψ

′(t)
)

g
dt + ν

∫ T

0

(
Aum(t), vjψ(t)

)

g
dt

+ ν

∫ T

0

(
Cum(t), vjψ(t)

)

g
dt +

∫ T

0
b
(
um(t), um(t), vjψ(t)

)
dt

= (
um(0), vj

)

g
ψ(0) +

∫ T

0

(
f (t), vjψ(t)

)

g
dt.
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Passing to the limit and noting that the set {vj }∞
j=1 is dense in Vg , we have

−
∫ T

0

(
u(t), vψ ′(t)

)

g
dt + ν

∫ T

0

(
Au(t), vψ(t)

)

g
dt

+ ν

∫ T

0

(
Cu(t), vψ(t)

)

g
dt +

∫ T

0
b
(
u(t), u(t), vψ(t)

)
dt

= (u0, v)gψ(0) +
∫ T

0

(
f (t), vψ(t)

)

g
dt (3.18)

holds for any v ∈ Vg . On the other hand, we can multiply (3.1) by ψ(t), integrate on (0, T )

and apply the integration by part for the first term to get

−
∫ T

0

(
u(t), vψ ′(t)

)

g
dt + ν

∫ T

0

(
Au(t), vψ(t)

)

g
dt

+ ν

∫ T

0

(
Cu(t), vψ(t)

)

g
dt +

∫ T

0
b
(
u(t), u(t), vψ(t)

)
dt

= (
u(0), v

)

g
ψ(0) +

∫ T

0

(
f (t), vψ(t)

)

g
dt. (3.19)

By a comparison with (3.18), we have

(
u(0) − u0, v

)

g
ψ(0) = 0.

We can choose ψ with ψ(0) �= 0, thus u(0) = u0. This completes the proof. �

4 Finite time approximation of the strong solutions

In this section, we will study the finite time numerical approximation of the strong solutions
by using a space and time discretization scheme. This scheme combines a discretization in
time by an alternating direction method with a discretization in space by finite elements.

Denote by H a regular triangulation of Ω and by Wh,h ∈ H, a family of finite dimen-
sional subspaces of H 1

0 (Ω,g) such that ∪h∈HWh is dense in H 1
0 (Ω,g). For every h, Vh is a

subspace of Wh. The family Vh,h ∈ H, constitutes an external approximation of Vg . From
the results in [15, Chap. I], the preceding approximation is stable and convergent.

For every h, let u0h be the projection (in H 1
0 (Ω,g)) of u0 on Vh, i.e.,

u0h ∈ Vh,

(
(u0h, vh)

)

g
= (

(u0, vh)
)

g
∀vh ∈ Vh.

(4.1)

Let N be an integer, k = T/N . For every h and k, we now recursively define a family u
m+i/2
h

of elements of Vh,m = 0, . . . ,N − 1, i = 1,2. We start with

u0
h = u0h.
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Assuming that um
h ,m ≥ 0, is known, we define u

m+1/2
h and um+1

h as follows:

u
m+1/2
h ∈ Vh,

1

k

(
u

m+1/2
h − um

h , vh

)

g
+ ν

2

((
u

m+1/2
h , vh

))

g
+ ν

2

(
Cu

m+1/2
h , vh

)

g
= (

f m, vh

)

g
∀vh ∈ Vh,

(4.2)
where

f m = 1

k

∫ (m+1)k

mk

f (t) dt,

and

um+1
h ∈ Wh,

1

k

(
um+1

h − u
m+1/2
h , vh

)

g
+ ν

2

((
um+1

h , vh

))

g
+ ν

2

(
Cum+1

h , vh

)

g

+ b̃
(
um+1

h , um+1
h , vh

) = 0 ∀vh ∈ Wh,

(4.3)

where

b̃(u, v,w) =
2∑

i,j=1

1

2

∫

Ω

{
ui

[
(Divj )wj − vj (Diwj )

]}
g dx.

The existence and uniqueness of a solution u
m+1/2
h of (4.2) follows from the Riesz represen-

tation theorem. The existence of a solution um+1
h ∈ Wh of (4.3) follows from the Brouwer

fixed point theorem (see [15, Chap. II, Lemma 1.4]). We associate this family of elements
u

m+i/2
h of Wh with the following functions defined on [0, T ]:

• u
(i)
k is the piecewise constant function which is equal to u

m+i/2
h on [mk, (m + 1)k), i =

1,2; m = 0, . . . ,N − 1.
• ũ

(i)
k is the continuous function from [0, T ] into Wh, which is linear on (mk, (m+1)k) and

equal to u
m+i/2
h at mk, i = 1,2;m = 0, . . . ,N − 1.

By adding (4.2) and (4.3) we obtain a relation which can be reinterpreted in terms of these
functions as:

(
dũ

(2)
k

dt
(t − k), vh

)

g

+ ν

2

((
u

(1)
k (t) + u

(2)
k (t), vh

))

g

+ ν

2

(
Cu

(1)
k (t) + Cu

(2)
k (t), vh

)

g
+ b

(
u

(2)
k (t), u

(2)
k (t), vh

)

= (
fk(t), vh

)

g
∀vh ∈ Vh, (4.4)

where

fk(t) = f m for t ∈ [mk, (m + 1)k).

Similarly, by adding (4.3) to the relation (4.2) for m + 1, we arrive at an equation which is
equivalent to

(
dũ

(1)
k

dt
(t), vh

)

g

+ ν

2

((
u

(1)
k (t + k) + u

(2)
k (t), vh

))

g
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+ ν

2

(
Cu

(1)
k (t + k) + Cu

(2)
k (t), vh

)

g
+ b

(
u

(2)
k (t), u

(2)
k (t), vh

)

= (
fk(t + k), vh

)

g
∀vh ∈ Vh. (4.5)

We now discuss the behavior of these functions u
(i)
k , ũ

(i)
k , as h and k tend to 0.

Theorem 4.1 Under the above assumptions, the functions u
(i)
k , ũ

(i)
k ; i = 1,2, belong to a

bounded set of L2(0, T ;H 1
0 (Ω,g)) ∩ L∞(0, T ;L2(Ω,g)).

As k and h → 0, u
(i)
k and ũ

(i)
k converge to the strong solution u of (1.1) in L2(0, T ;

H 1
0 (Ω,g)) and Lq(0, T ;L2(Ω,g)) for all 1 ≤ q < ∞.

Proof (i) A priori estimates. Setting vh = u
m+1/2
h in (4.2) and observing that

(a − b, a) = 1

2

(|a|2 − |b|2 + |a − b|2) ∀a, b ∈ Hg,

we get

∣
∣u

m+1/2
h

∣
∣2 − ∣

∣um
h

∣
∣2 + ∣

∣u
m+1/2
h − um

h

∣
∣2 + νk

∥
∥u

m+1/2
h

∥
∥2

= 2k
(
f m,u

m+1/2
h

)

g
− νk

(
Cu

m+1/2
h , u

m+1/2
h

)

g

≤ νkε
∥
∥u

m+1/2
h

∥
∥2 + k

ενλ1

∣
∣f m

∣
∣2 + νk

|∇g|∞
m0λ

1/2
1

∥
∥u

m+1/2
h

∥
∥2

, (4.6)

whence

∣
∣u

m+1/2
h

∣
∣2 − ∣

∣um
h

∣
∣2 + ∣

∣u
m+1/2
h − um

h

∣
∣2 + νk(γ0 − ε)

∥
∥u

m+1/2
h

∥
∥2 ≤ k

ενλ1

∣
∣f m

∣
∣2

, (4.7)

where γ0 = 1− |∇g|∞
m0λ

1/2
1

> 0, and ε is chosen such that γ0 − ε > 0. Similarly, taking vh = um+1
h

in (4.3), we can deduce that

∣
∣um+1

h

∣
∣2 − ∣

∣u
m+1/2
h

∣
∣2 + ∣

∣um+1
h − u

m+1/2
h

∣
∣2 + νk

∥
∥um+1

h

∥
∥2 − νk

|∇g|∞
m0λ

1/2
1

∥
∥um+1

h

∥
∥2 ≤ 0,

or
∣
∣um+1

h

∣
∣2 − ∣

∣u
m+1/2
h

∣
∣2 + ∣

∣um+1
h − u

m+1/2
h

∣
∣2 + νkγ0

∥
∥um+1

h

∥
∥2 ≤ 0. (4.8)

By adding all the relations (4.7), (4.8) for m = 0, . . . ,N − 1, we obtain

∣
∣uN

h

∣
∣2 +

N−1∑

m=0

(∣
∣um+1

h − u
m+1/2
h

∣
∣2 + ∣

∣u
m+1/2
h − um

h

∣
∣2)

+ νk

N−1∑

m=0

(
(γ0 − ε)

∥
∥u

m+1/2
h

∥
∥2 + γ0

∥
∥um+1

h

∥
∥2)

≤ |u0h|2 + k

ενλ1

N−1∑

m=0

∣
∣f m

∣
∣2
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≤ |u0h|2 + k

ενλ1

N−1∑

m=0

∣
∣
∣
∣

∫ (m+1)k

mk

f (s) ds

∣
∣
∣
∣

2

≤ |u0h|2 + 1

ενλ1

∫ T

0

∣
∣f (s)

∣
∣2

ds (by Schwarz’s inequality). (4.9)

Since ‖u0h‖ ≤ ‖u0‖, we then conclude that

N−1∑

m=0

(∣
∣um+1

h − u
m+1/2
h

∣
∣2 + ∣

∣u
m+1/2
h − um

h

∣
∣2) ≤ L, (4.10)

k

N−1∑

m=0

(
(γ0 − ε)

∥
∥u

m+1/2
h

∥
∥2 + γ0

∥
∥um+1

h

∥
∥2) ≤ L

ν
, (4.11)

where

L = 1

λ1
‖u0‖2 + 1

ενλ1

∫ T

0

∣
∣f (s)

∣
∣2

ds.

By adding the relations (4.7) and (4.9) for m = 0, . . . , p, after a simplification we obtain

∣
∣u

p+1
h

∣
∣2 ≤ L, p = 0, . . . ,N − 1. (4.12)

Adding the relations (4.7) for m = 0, . . . , p and (4.9) for m = 0, . . . , p − 1, and dropping
unnecessary terms, we find that

∣
∣u

p+1/2
h

∣
∣2 ≤ L, p = 0, . . . ,N − 1. (4.13)

The relations (4.11)–(4.13) imply that the functions u
(i)
k , ũ

(i)
k , i = 1,2, belong to a bounded

set of L∞(0, T ;L2(Ω,g)) and that u
(1)
k , u

(2)
k belong to a bounded set of L2(0, T ;H 1

0 (Ω,g)).
In order to show that ũ

(i)
k also belongs to a bounded set of L2(0, T ;H 1

0 (Ω,g)), we observe
by a direct calculation that

∣
∣u

(i)
k − ũ

(i)
k

∣
∣2

L2(0,T ;L2(Ω,g))
= k

3

N∑

m=1

∣
∣u

m+i/2
h − u

m−1+i/2
h

∣
∣2

≤ kL

3
(by (4.10)). (4.14)

(ii) Convergence of u
(i)
k , ũ

(i)
k as k,h → 0. Due to the previous a priori estimates, there

exist a subsequence and u(1), u(2) in L2(0, T ;H 1
0 (Ω,g)) ∩ L∞(0, T ;L2(Ω,g)) such that

u
(i)
k → u(i) weakly in L2

(
0, T ;H 1

0 (Ω,g)
)
,

u
(i)
k → u(i) weakly-star in L∞(0, T ;Hg), i = 1,2.

(4.15)

The relations (4.10) and (4.14) imply that the same is true for ũ
(i)
k , i = 1,2. Now we infer

from (4.10) that
∣
∣u

(2)
k − u

(1)
k

∣
∣
L2(0,T ;Hg)

≤ kL, (4.16)
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and therefore

u
(2)
k − u

(1)
k → 0 in L2(0, T ;Hg) as k → 0,

so that u(2) = u(1). We also deduce from the properties of the V ′
hs (which constitute an

external approximation of Vg) that u(1) belongs in fact to L2(0, T ;Vg) ∩ L∞(0, T ;Hg):

u(2) = u(1) = u∗ ∈ L2(0, T ;Vg) ∩ L∞(0, T ;Hg). (4.17)

To prove that u∗ is a strong solution of (1.1), we need the following result.

Lemma 4.1 [16, Theorem 13.3] Assume that X and Y are two Banach spaces with the
property

Y ⊂ X, the injection being compact.

Let G be a bounded set in L1(0, T ;Y ) and Lp(0, T ;X),T > 0,p > 1, such that

∫ T −a

0

∣
∣g(a + s) − g(s)

∣
∣p
X

ds → 0 as a → 0 uniformly for g ∈ G. (4.18)

Then G is relatively compact in Lq(0, T ;X) for any q,1 ≤ q < p.

By integration of (4.5),

(
ũ

(1)
k (t + a) − ũ

(1)
k (t)

)

g
= −

∫ t+a

t

{
ν

2

((
u

(1)
k (s + k) + u

(2)
k (s), vh

))

g

+ ν

2

(
Cu

(1)
k (s + k) + Cu

(2)
k (s), vh

)

g
+ b

(
u

(2)
k (s), u

(2)
k (s), vh

)

− (
fk(s + k), vh

)

g

}

ds ∀vh ∈ Vh.

We majorize the absolute value of the right-hand side of this equality as follows:

∣
∣
∣
∣
ν

2

∫ t+a

t

((
u

(1)
k (s + k), vh

))

g
ds

∣
∣
∣
∣ ≤ ν

2
a1/2‖vh‖

(∫ t+a

t

‖u(1)
k (s + k)‖2 ds

)1/2

≤ ν

2
a1/2‖vh‖

(∫ T

t

‖u(1)
k (s + k)‖2 ds

)1/2

≤ c1a
1/2‖vh‖,

where c1 = c1(u0, f, ν, T ,Ω). Similarly, we have

∣
∣
∣
∣
ν

2

∫ t+a

t

((
u

(2)
k (s), vh

))

g
ds

∣
∣
∣
∣ ≤ c2a

1/2‖vh‖,
∣
∣
∣
∣

∫ t+a

t

(
fk(s + k), vh

)

g
ds

∣
∣
∣
∣ ≤ c3a

1/2‖vh‖,
∣
∣
∣
∣
ν

2

∫ t+a

t

(
Cu

(1)
k (s + k) + Cu

(2)
k (s), vh

)

g
ds

∣
∣
∣
∣
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≤
∣
∣
∣
∣
ν

2

∫ t+a

t

(
Cu

(1)
k (s + k), vh

)

g
ds

∣
∣
∣
∣ +

∣
∣
∣
∣
ν

2

∫ t+a

t

(
Cu

(2)
k (s), vh

)

g
ds

∣
∣
∣
∣

≤ ν

2

∫ t+a

t

|∇g|∞
m0λ

1/2
1

∥
∥u

(1)
k (s + k)

∥
∥‖vh‖ds + ν

2

∫ t+a

t

|∇g|∞
m0λ

1/2
1

∥
∥u

(2)
k (s)

∥
∥‖vh‖ds

≤ c4a
1/2‖vh‖,

where c4 = c4(u0, f, ν, T ,Ω,m0, λ1, |∇g|∞).
For the term involving b, using Lemma 2.1, the Hölder inequality, and the fact that u

(2)
k

is bounded in L∞(0, T ;L2(Ω,g)), we have
∣
∣
∣
∣

∫ t+a

t

b
(
u

(2)
k (s), u

(2)
k (s), vh

)
ds

∣
∣
∣
∣ ≤ c5a

1/4‖vh‖.

Finally, we obtain the majorization
∣
∣
(
ũ

(1)
k (t + a) − ũ

(1)
k (t), vh

)

g

∣
∣ ≤ c6a

1/4‖vh‖ ∀vh ∈ Vh. (4.19)

Since ũ
(1)
k is a Vh-valued function, we can take vh = ũ

(1)
k (t + a) − ũ

(1)
k (t), and we find after

integration with respect to t that

∫ T −a

0

∣
∣̃u

(1)
k (t + a) − ũ

(1)
k (t)

∣
∣2

dt ≤ c6a
1/4

∫ T −a

0

∥
∥ũ

(1)
k (t + a) − ũ

(1)
k (t)

∥
∥dt

≤ c6a
1/4(T )1/2

(∫ T −a

0

∥
∥ũ

(1)
k (t + a) − ũ

(1)
k (t)

∥
∥2

dt

)1/2

.

Then
∫ T −a

0

∣
∣̃u

(1)
k (t + a) − ũ

(1)
k (t)

∣
∣2

dt ≤ c7a
1/4. (4.20)

We apply Lemma 4.1 as follows: G is the family of functions ũ
(1)
k which is bounded

in L2(0, T ;H 1
0 (Ω,g)) ∩ L∞(0, T ;L2(Ω,g)), (Y = H 1

0 (Ω,g),X = L2(Ω,g),p = 2),
so that (4.18) follows from (4.20). We conclude that ũ

(1)
k is relatively compact in

Lq(0, T ;L2(Ω,g)), 1 ≤ q < 2, and since ũ
(1)
k converges weakly in Lq(0, T ;L2(Ω,g))

to u∗, ũ
(1)
k converges to u∗ strongly in Lq(0, T ;L2(Ω,g)), 1 ≤ q < 2. As the sequence ũ

(1)
k

is bounded in L∞(0, T ;L2(Ω,g)), we conclude from the Lebesgue dominated convergence
theorem that

ũ
(1)
k → u∗ strongly in Lq

(
0, T ;L2(Ω,g)

)
, 1 ≤ q < ∞. (4.21)

Combining (4.14), (4.16) and (4.21), we have

ũ
(i)
k , u

(i)
k converge to u∗ strongly in Lq

(
0, T ;L2(Ω,g)

)
, 1 ≤ q < ∞. (4.22)

(iii) Passage to the limit in (4.5). Let ψ be any C1 scalar function on [0, T ] which van-
ishes near T . We multiply (4.5) by ψ(t), integrate in t and integrate by parts the first term
to get

∫ T

0

{

−(
ũ

(1)
k (t), vhψ

′(t)
)

g
+ ν

2

((
u

(1)
k (t + k) + u

(2)
k (t), vhψ(t)

))

g
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+ ν

2

(
Cu

(1)
k (t + k) + Cu

(2)
k (t), vhψ(t)

)

g
+ b

(
u

(2)
k (t), u

(2)
k (t), vhψ(t)

)
}

dt

=
∫ T

0

(
fk(t + k), vhψ(t)

)

g
dt + (u0h, vh)ψ(0). (4.23)

Let v be an arbitrary element of Vg . Choosing an approximation vh of v, and passing to the
limit in (4.23) we get

∫ T

0

{−(
u∗(t), vψ ′(t)

)

g
+ ν

((
u∗(t), vψ(t)

))

g

+ ν
(
Cu∗(t), vψ(t)

)

g
+ b

(
u∗(t), u∗(t), vψ(t)

)}
dt

=
∫ T

0

(
fk(t), vψ(t)

)

g
dt + (u0, v)ψ(0), (4.24)

where we have used the strong convergence (4.22) to pass to the limit in the nonlinear term.
We deduce from (4.24) that u∗ is a strong solution of (1.1) with the initial datum u0, and
therefore, by the uniqueness, u∗ = u. This completes the proof. �
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