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Abstract In this paper, we propose two new signature schemes and a novel short
signature scheme from two hard problems. The proposed schemes have two
prominent advantages. Firstly, they are developed from some signature schemes
where the security and efficiency have been proven. Therefore, they inherit these
properties from the previous schemes. Secondly, the security of the proposed
schemes is based on two hard problems. Therefore, they are still safe even when
cryptanalysis has an effective algorithm to solve one of these problems, but not
both. Moreover, we also propose a method for reducing signatures and this is the
first attempt to reduce signatures based on two hard problems. Therefore, our
proposed schemes are suitable for the applications requiring long-term security in
resource limited systems.
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1 Introduction

One of the vital objectives of a information security systems is providing
authentication of the electronic documents and messages. Usually this problem is
solved with digital signature schemes (DSSes) [1]. There were many proposals for
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signature schemes published based on a single hard problem such as factoring
(FAC), discrete logarithm (DL) or elliptic curve discrete logarithm (ECDL)
problems [1, 2]. However, these schemes only guarantee short-term security. In
order to enhance the security of signature schemes, it is desirable that the signature
schemes are developed based on multiple hard problems. This makes it much
harder to attack these schemes sine it requires solving multiple problems simul-
taneously. Some schemes based on two problems, FAC and DL, have been pub-
lished [3–5]. However, designing these schemes is not easy. Moreover, most of
them have been proven that they are not secure [6–8]. Therefore, it is necessary to
develop new safe signature schemes based on two hard problems.

In bandwidth and resource limited systems, it is important that the signature
schemes have a short signature length. So far, the problem of signature reducing is
only investigated for the schemes with single hard problem [9, 10]. We can easily
implement a combination of two or more hard mathematical problems in a unified
DSS. Breaking such schemes requires simultaneously solving all hard problems.
Such implementations require increasing signature length, because the signatures
must be present elements belonging to different mathematical problems. It is
therefore of interest to develop DSSes, that provide an acceptable signature length.
The rest of this paper is organized as follows. In Sect. 2, describes the DSSes
based on two hard problems (FAC and DL). Section 3, presents the design of two
new DSSes, which requires the simultaneous breaking of FAC and DL problems.
Section 4 proposes a novel and efficient short signature scheme. Section 5,
describes the security analysis of our schemes. Section 6, describes the perfor-
mance analysis of our schemes. In the last section, the conclusion of our research
is presented.

2 Signature Schemes Based on Factoring
and Discrete Logarithms

Previously, DSSes were proposed based on the difficulty in solving the factorization
and discrete logarithm problems. For example, the scheme in [11] used a prime
modulo p with a special structure p = 2n ? 1, where n = q0q, q0 and q are large
prime numbers with at least 512 bits. We use the following notations to describe these
signature schemes. H is a hash value computed from the signed document M. F is a
one-way function, for which can be used to calculate the value of H = FH(M). a is a
primitive element in Z�p with order q satisfying aq : 1 mod p. The value of k is a bit
length of q, where q is a prime divisor value of n.

The public key is a triple of (p, a, k). The private key is q.
Signature generation procedure:

(1) Compute r = FH(ak mod p), where k is a secret random number, 1\k� q� 1:
(2) The equation generating the parameter S is given by the following equation:

S = k(Hr)-1 mod q.
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The signature is a pair of values (r, S), in which the length of the second value is
equal to |S| B k;

When using 1024-bit prime p and a compression function F whose output is a
t-bit length and assuming t = 160 bits, the length of the digital signature is Fj j þ
qj j � 160þ 512 � 672 bits.

Signature verification procedure:
The verification equation is as follow: r = FH(aHSr mod p).
An important part of the verification procedure is to verify the authenticity of a

digital signature with the condition |S| B k, because signature (r, S0) with second
element of which has the size |S0| & 1023 bits (if |p| & 1024 bits) can be easily
generated without knowing of the secret parameter q. Such signature (r, S0) will
satisfy the verification equation. However the signatures (r, S0) do not satisfy the
condition |S0| B k. Computing the forged signature (r, S0) satisfying both the ver-
ification equation and the condition |S0| B k without knowing the private key q is
not easier than factoring the number n = (p - 1)/2 [11]. Security of the considered
DSS is based on the difficulty of solving any of the following two problems,
factorization and discrete logarithm. Indeed, it is easy to show that solving the
factorization problem or solving the discrete logarithm problem allows one to
compute the private key and to forge the signature.

In the Schnorr signature in [1], we can use a prime module with the structure of
p = 2n ? 1. This leads to the DSS with public key in the form of four values (p, a,
k, y), where the first three parameters are defined as in the scheme [11] and y is
calculated by the formula y = ax mod p, where x is one element of the secret key.

Signature generation procedure:

(1) Compute R = ak mod p, where k is a secret random number, 1\k� q� 1:
(2) Compute E = FH(M||R).
(3) Compute S = k – xE mod q, such that R = aSy E mod p.

The signature is the pair (R, S).
Signature verification procedure:

(1) If |S| B k, then calculating the value of R* = aSy E mod p. Otherwise, the
signature is rejected as invalid.

(2) Compute E* = FH(M||R*).
(3) Compare the values E* and E. If E* = E, then signature is valid.

Breaking the last signature scheme can be done by simultaneously solving the
discrete logarithm problem, which allows to find the secret key x and the factor-
ization problem, which allows to find the value of q, required to compute the value
of signature S, whose size will not exceed the value of k qj j.

However, the simultaneously solving of these two independent hard problems is
not necessary to break this scheme. Indeed, the secret parameters of the scheme
can be calculated by solving only the discrete logarithm problem.

This can be done as follow:
We choose an arbitrary number t, the bit length does not exceed the value k - 1.

Then calculate the value of Z = at mod p. After that we find the logarithm of Z on
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the basis of a, using the index calculus algorithm [1]. This gives a value of T,
calculated modulo n = (p - 1)/2. With a probability close to 1, the size of this
value is equal to Tj j � nj j[ tj j: Because a is number with order q over Z�p then we
have t ¼ T mod q; so q evenly divides the difference between T � t: This means
that by following the factorization of T � t; we can find the secret parameter q. The
probability that a factorization of T � t will have a relatively low complexity is
quite high. This means that following the above procedure several times, we will
find the value of T � t; which can be easily factored.

Thus, for breaking of the two DSSes in this section, we only need to solve
discrete logarithm problem modulo a prime. In order to design the DSS, which
requires simultaneous solving both the factorization problem and the discrete
logarithm problem to break, the last signature scheme should be modified. For
example, one can use the value a having order equal to n and introduce a new
mechanism for calculating the value S, which will require knowledge of the factors
of n while computing S.

3 New Signature Schemes Based on Difficulty of Solving
Simultaneously Two Hard Problems

In this section, we propose two new signature schemes from two hard problems.
Breaking the modified signature schemes described below requires simultaneous
solving two different hard problems, computing discrete logarithm in the ground
field GF(p) and factoring n.

3.1 The First Scheme

The following modifications have been introduced in the first signature scheme:
(i) as parameter a it is used a value having order equal to n modulo p; (ii) instead
of the value S in the signature verification equation it is introduced the value S2.

Key generation:

(1) Choose large distinct primes q0 and q in the form 4r ? 3, and compute
n = q0q.

(2) Choose randomly a secret key x with x 2 Z�p :

(3) Compute y ¼ ax mod p:

The public key is (p, a, y). The secret key is (x, q0, q).
Signature generation procedure:

(1) Compute R = ak mod p, where k is a secret random number, 1\k� n� 1:
(2) Compute E = FH(M||R).
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(3) Calculate the value S, such that S2 = k – xE mod n.

The signature is the pair (E, S).
Signature verification procedure:

(1) Compute R* = aS2y E mod p
(2) Compute E* = FH(M||R*).
(3) Compare the values E* and E. If E* = E, then signature is valid.

It is easy to see that, the advantage of using this exponent 2 (calculate the value S) is
computational load smaller compared to larger exponents. The disadvantage is if
S2 = k – xE mod n has no solution, the signature cannot be directly generated [1].

3.2 The Second Scheme

The following modifications have been introduced in the second signature scheme:
(i) as parameter a it is used a value having order equal to n modulo p; (ii) it is used
one additional element e of the public key; (iii) it is used one additional element
d of the private key; (iv) instead of the value S in the signature verification
equation it is introduced the value Se. The values e and d are generated like in the
RSA cryptosystem [1].

Key generation:

(1) Choose randomly an integer e 2 Zn such that gcd (e, n) = 1.
(2) Calculate a secret d such that ed : 1 mod /(n).
(3) Choose randomly a secret key x with x 2 Z�p :

(4) Compute y ¼ ax mod p:

The public key is (e, a, y). The secret key is (x, d).
Signature generation procedure:

(1) Compute R = ak mod p, where k is a secret random number.
(2) Compute E = FH(M||R).
(3) Calculate the value S, such that Se = k – xE mod n, i.e. S = (k - xE)d mod

n such that R = aSey E mod p.

The signature is the pair (E, S). It is easy to see that the length of signature is
|E| ? |S| C 1184 bits.

Signature verification procedure:

(1) Compute R* = aSey E mod p.
(2) Compute E* = FH(M||R*).
(3) Compare the values E* and E. If E* = E, then signature is valid.
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4 Novel Short Signature Scheme

One of important problems is developing digital signature schemes with short
signature length [9]. To reduce the signature length in the case of DSSes from two
hard problems we use signature formation mechanism, which is based on solving a
system of equations [10].

We use the signature formation mechanism that can be applied while devel-
oping DSSes with three-element signature denoted as (k, g, v).

The mechanism is characterized in using a three element public key with the
structure ðy; a; bÞ;where y ¼ ax mod p; a is the d order element modulo p, i.e.
ad mod p ¼ 1; b is the c order element modulo n, i.e. bc mod n ¼ 1 (p = 2n ? 1,
where n = q0q) and in solving a system of three equations while generating sig-
nature. The secret key is c.

In this scheme, q and q0 are strong primes and easy to generate using Gordon’s
algorithm [1]. The prime q and q0 are supposed to be of large size qj j � q0j j � 512
bits. Gordon’s algorithm allows to generate strong primes q and q0 for which the
numbers q - 1 and q0 - 1 contain different prime devisors c0 and c00, respectively.

Some internal relation between the b and n values provides potentially some
additional possibilities to factorize modulus n. This defines special requirements to
the b element of the public key [10]. One should use composite c, i.e. c = c0c00,
where c0|q - 1, c00|q0 - 1, c00

�
j q� 1 and c0

�
j q0 � 1. To choose the size of the c

value we should take into account that the b value can be used to factorize the
n modulus calculating gcd(bi mod n - 1, n) for i = 1, 2,… min{c0, c00}. Therefore
we should use the 80-bit values c0 and c00. Thus, for c we get the following required
length: cj j ¼ 160 bits.

A secure variant of the DSS with the 480-bit signature length is described by
the following verification equation: k ¼ ykagH mod p þ bkgvþH mod n

� �
mod d;

where d is a specified prime number and H is the hash value of the signed message.
The signature generation is performed as follows:

(1) Generate two random number u1 and u2 calculate z1 = au1 mod p and z2 = bu2

mod n.
(2) Solve simultaneously three equations:

k = (z1 ? z2) mod d; g = (u1 - kx)H-1 mod d; v = (u2 - H)k-1g-1 mod c.

Breaking this scheme requires the simultaneously solving of the factorization
the modulus n and the discrete logarithm modulo p.

In this scheme the signature length is compared for different DSSes in the case
of minimum security level that can be estimated at present as 280 operations [1].
The minimum level of security provided under the following size parameters:
|p| C 1024 bits, |n| C 1024 bits, |d| C 160 bits and |c| C 160 bits. It is easy to see
that the size of a digital signature is |k| ? |g| ? |v| C 480 bits.
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5 Security Analysis

This section presents an analysis on the security of the proposed signature
schemes. The results show that the new schemes are only broken when two hard
problems, DL and FAC, are solved simultaneously.

The first scheme: In this scheme, solving the DL problem in GF(p) is not
sufficient for breaking the modified scheme. The solution of the DL problem leads
to the computation of the secret key x and to the possibility to calculate the value
S* = (k - xE) mod n. However, calculating the signature S requires to extract the
square root modulo n from the value S*. The last represent a hard problem until the
value n is factorized.

The second scheme: Similar to the first scheme, solving the DL problem in
GF(p) is not sufficient for breaking the modified scheme. To break this signature
scheme it is required to know the factorization of n. The solution of the DL
problem leads to the computation of the secret key x and to the possibility to
calculate the value S* = (k - xE) mod n. However, to calculate the signature S, it
is required to extract the eth root modulo n from the value S*. This requires
factoring the modulus n.

Theorem 1 If an ORACLE O can solve DL and FAC problems, then it can break
the proposed schemes.

In other words, if an ORACLE O has the prime factors (q0, q) of n and (x, k) by
solving FAC and DL problems, then (E, S) will be the eligible sign of document M
generated by the proposed methods.

We indicate that the following attacks can be used to break the proposed
schemes.

Attack 1: In order to break these schemes, the adversary needs to calculate all
secrete elements in the systems. In this case, the adversary needs to
solve DL problem to calculate values (x, k). Moreover, the adversary
also have to solve FAC problem. It means that the adversary have to
solve both DL and FAC problems in order to break the proposed
schemes.

Attack 2: The adversary may receive values (R, E, S). By selecting S arbitrarily
and computing E = FH(M||R), the adversary try to find S satisfying
equation R = aSeyE mod p. In order to solve this equation, the adversary
also needs to solve both DL and FAC problems.

Attack 3: All attacks on RSA, Rabin, Schnorr [1] can not be successful on the
proposed schemes, because these schemes are the combination of two
fundamental algorithms.
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6 Performance Analysis

The performance of the proposed algorithms is evaluated based on the complexity
of the following procedures: key generation, signing generation and verification.
For the sack of comparison, we use the following notations. TEXP denotes Time
complexity for executing the modular exponentiation. TMUL denotes Time com-
plexity for executing the modular multiplication. TH denotes Time complexity for
performing hash function. TSR denotes Time complexity for executing the modular
square root computation. TINV denotes Time complexity for executing the modular
inverse computation.

The results in Table 1 show that the proposed scheme have better performance
than the previous scheme in [5].

7 Conclusion

This paper presents the ability to efficiently develop signature schemes based on
the widely used fundamental schemes. Based on some well-know schemes, RSA,
Rabin and Schnorr, we proposed two new signature schemes. The proposed
schemes possess the higher security than well-know schemes because they are
based on two independently difficult problems.

The paper also introduces a new method for reducing signature length. This
leads to the proposed signature schemes have the shortest signature length in
comparison with the other schemes based on two hard problems.
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