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We study analytically and numerically the diffractive resonant radiation emitted by spatial solitons,

which is generated in waveguide arrays with Kerr nonlinearity. The phase matching condition between

solitons and radiation is derived and studied for the first time and agrees well with direct pulse propagation

simulations. The folded dispersion due to the Brillouin zone leads to a peculiar anomalous soliton recoil

that we describe in detail.
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Introduction.—Waveguide arrays (WAs) consisting of
identical, equally spaced waveguides, present a unique
discrete platform to explore many interesting fundamental
phenomena such as discrete diffraction [1], discrete
solitons [2,3], and photonic Bloch oscillations [4–7]. In
applications, 2D networks of nonlinear waveguides with
discrete solitons may be useful for designing signal-
processing circuits [8]. Recently, WAs have also been used
to mimic relativistic phenomena typical of quantum field
theory, such as Zitterbewegung [9], Klein paradox [10],
fermion pair production [11], and the Dirac equation [12].

The concept of dispersive resonant radiation (DisRR),
which emerges due to higher-order dispersion (HOD)
terms, has been well studied in the last decade in the
temporal case for optical fibers [13–17]. When an ultra-
short pulse is launched into optical fibers, a DisRR due to
the phase matching between the fiber and the soliton group
velocity dispersion generates one or more new frequencies
[16,17]. This DisRR, together with other nonlinear effects
such as self- and cross-phase modulation, soliton fission
[18], and stimulated Raman scattering [19], are the main
ingredients of the so-called supercontinuum generation
[20,21], particularly in highly nonlinear photonic crystal
fibers [22]. Supercontinuum generation is among the most
important phenomena in nonlinear fiber optics which has
led to a number of important technological advances in
various fields, such as spectroscopy and medical imaging
[23], metrology [24], and the realization of broadband
sources [25].

Inspired by advances in DisRR studies in the last decade,
in this Letter we describe the dynamics of a kind of
resonant radiation—namely, the diffractive resonant radia-
tion (DifRR), which occurs when a continuous-wave (CW)
beam or a relatively spatially long pulse is launched into
WAs. Although clues of the existence of such radiation is
somehow implicit in several previous numerical works on
WAs based on the discrete nonlinear Schrödinger equation,
there is still no systematic description of the details of the
emission of this radiation in the literature. Similarities and

differences between DisRRs and DifRRs are analyzed.
We show that when the phase matching condition is
satisfied, a spatial soliton emits DifRR with a new
well-defined direction, i.e., a transverse wave number.
Moreover, due to the periodicity of discrete systems, and
thus the existence of a Brillouin zone, unusual effects
which cannot exist in continuous media can now occur.
One of these is the anomalous solitonic recoil described in
this Letter for the first time.
Phase matching condition for the diffractive resonant

radiation.—Light propagation in a discrete, periodic array
of Kerr nonlinear waveguides can be described, in the cw
regime, by the following well-known dimensionless set of
ordinary differential equations [3,7,21]:

i
danðzÞ
dz

þc½anþ1ðzÞþan�1ðzÞ�þjanðzÞj2anðzÞ¼0; (1)

where an is the electric field amplitude in the nth wave-
guide, n ¼ f1; . . . ; Ng,N is the total number of waveguides,
z is the longitudinal spatial coordinate, c � C=ð�PÞ, where
C is the coupling coefficient (in units of a wavenumber)
resulting from the field overlap between neighboring wave-
guides, � is the nonlinear coefficient of a single waveguide,
andP is the input beam peak power. Each waveguidewhich
composes the array is nondiffracting and supports a single
fundamental mode. Therefore, it is not necessary to include
intrinsic spatial diffraction via a transverse Laplacian in
Eq. (1)—discrete diffraction occurs only via the coupling
between neighboring waveguides. The main assumptions
on Eq. (1) are (i) that the electric field is monochromatic
(of frequency and wave number !0 and k0, respectively)
and slowly varying in space with respect to a spatial scale
k�1
0 , so that a very precise reduction of the full Maxwell

equations is possible, and (ii) that the most important
interaction between different waveguides is of the
nearest-neighbor type. Both these assumptions are
extremely accurate and it has been proved in many works
that Eq. (1) lead to very reliable predictions, and are
suitable for important analytical manipulations [3,7].
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By using the stationary discrete plane wave solution for
the nth waveguide anðzÞ ¼ a0 exp½iðnkxdþ �zzÞ� one
arrives, in the linear case, at the well-known dispersion
relation between �z and kx [1]:

�zðkxÞ ¼ 2c cosðkxdÞ; (2)

where d is the center-to-center spacing between two adja-
cent waveguides, and kx is the transverse wave number; see
solid blue line of Fig. 1(a). It is clear from Eq. (2) that �z is
periodic in � � kxd, which represents the phase difference
between adjacent waveguides. Thus, within the coupled
mode approximation, it suffices to investigate the first
Brillouin zone of the folded dispersion, �� � � � �.

Since a typical input beam has a finite width covering
several waveguides, its Fourier spectrum has a certain
bandwidth with a central transverse wave number �0,
which is fixed by the input angle of incidence of the
exciting beam. We can then use a Taylor expansion of
Eq. (2) as follows:

�zð�Þ ¼ �zð�0Þ þ
X
m�1

Dm

m!
��m; (3)

where �� � �� �0, and Dm � ðdm�z=d�
mÞj�0

is the

mth order diffractive Taylor coefficient [thus, D1 ¼
�2c sinð�0Þ, D2 ¼ �2c cosð�0Þ; etc., all the derivatives
can obviously be calculated explicitly]. In Fig. 1(a) we
plot a typical curve for D2ð�Þ (dashed red line), showing
the existence of two zero-diffraction points located at � ¼
��=2. In a sense, this shape of D2 is analogous to the

group velocity dispersion of photonic crystal fibers in the
temporal case [22]. In this Letter, we make full use of this
analogy when we shall describe the dynamics and the
formation of the DifRR.
Following Refs. [7,26], we now approximate the discrete

variable n with a continuous one. This is justified since we
shall use pulses and solitons that extend for several wave-
guides (typically 5 waveguides or more are enough for the
continuous model to give excellent results), and this
approximation will be fully vindicated by our numerical
simulations in the next section. Defining n as a continuous
variable of the distributed amplitude function �ðn; zÞ ¼
an;z expð�i�0nÞ, we eliminate the zeroth order term

�zð�0Þ, which is responsible for a general phase evolution
through the substitution �ðn; zÞ ! �ðn; zÞ exp½i�zð�0Þz�.
The first order term, �iD1@n, takes into account the trans-
verse velocity and can also be eliminated by introducing a
comoving frame, n ! nþD1z. After dropping these two
low-order terms one arrives at the following equation:�
i@z�D2

2
@2nþ

X
m�3

Dm

m!
ð�i@nÞmþj�ðn;zÞj2

�
�ðn;zÞ¼0:

(4)

Equation (4) is formally identical to the well-known
generalized nonlinear Schrödinger equation (GNLSE),
which describes the evolution of pulses in a single optical
fiber, plus HOD terms [25]. In Eq. (4) we have the trans-
verse spatial variable n instead of the temporal variable t of
the conventional GNLSE. Unlike the temporal GNLSE,
where a Taylor series for the fiber dispersion can usually be
expanded up to a small number of terms (because HOD
coefficients become rapidly very small), in Eqs. (3) and (4)
many higher-order diffraction terms Dm�2 should be taken
into account, since their absolute values will be either
j2c sinð�0Þj, or j2c cosð�0Þj, and the sum only converges
due to the factorial in the denominator.
In the temporal version of the GNLSE, it is well known

that a temporal soliton propagating in a fiber emits small
amplitude, dispersive, and quasimonochromatic waves at
well-defined frequencies (the DisRR) when the linear fiber
dispersion and the nonlinear soliton dispersion (which is
constant and proportional to its peak power) are matched
[16,17]. It is thus natural to conjecture that, in a WA, a
spatial soliton, which in the continuous variable approxi-
mation extends over several waveguides, emits during the
propagation a similar kind of small-amplitude diffractive
radiation, within a narrow wave number range, due to the
phase matching between the spatial soliton nonlinear dis-
persion and the linear array dispersion given by Eq. (2). By
using the perturbation approach, which was developed for
DisRRs in Ref. [16], here we derive the phase-matching
condition for the DifRR in a similar way. We first find the
unperturbed soliton solution of Eq. (4) where all diffractive
terms Dm�3 are dropped. Under these conditions, the
soliton solution is given by
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FIG. 1 (color online). (a) Solid blue line: WA dispersion �z vs
�. Dashed red line: D2 vs �, showing the two zero-diffraction
points located at � ¼ ��=2. (b) Wave number �RR of the
generated DifRR, as a function of the input soliton wave number
�0. The red dashed line indicates the approximated formula
�RR ’ �0 þ 3= tanð�0Þ for the position of the resonant radiation,
while the blue solid line is the result of the exact implicit formula
given by Eqs. (6) and (7). In both (a),(b) the gray shaded area
indicates the region where bright solitons can propagate. (c),(d)
Beam propagation in the (n, z) plane (c) and (�, z) plane.
(d) Parameters are A0 ¼ 0:8, c ¼ 1:2, �0 ¼ 0:7, N ¼ 100.
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asolðz; nÞ ¼ A0sech

 
nA0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2c cosð�0Þ
p

!
expðiksolzÞ; (5)

where ksol ¼ A2
0=2 is the spatial soliton longitudinal wave

number, identical to its temporal counterpart. The bright
soliton solution (5) only exists when 2c cosð�0Þ> 0,
i.e., only in half of the Brillouin zone, where ��=2<
�0 <�=2. Now we look for the linearized dispersion
relation of plane wave solutions of Eq. (4), by substituting
exp½iðklinzþ ��nÞ� into Eq. (4) and using Eq. (3). We
obtain

klinð��Þ �
X
m�2

Dm

m!
��m

¼ 2c½cosð�Þ � cosð�0Þ þ sinð�0Þ���: (6)

In Eq. (6), �0 is the central wave number (which is related
to the incident angle) of the incident beam, while �� is the
detuning from �0, and � ¼ �0 þ ��. Energy exchange
between radiation and solitons is possible for those values
of �� that satisfy

klinð��Þ ¼ ksol; (7)

where ksol is constant and has been defined above. This
phase matching condition, an implicit equation for the
radiation wave number detuning ��, is the central result
of this Letter. Even though there are hints in previous
works on the existence of the DifRR in WAs, this phase-
matching condition is given for the first time here and it
leads to a complete understanding of the dynamics of such
radiation. It is important to note that although the phase-
matching condition expressed in Eq. (7) has been derived
from the continuous model of Eq. (4), such a formula very
accurately predicts the DifRR wave number in the full
original discrete model of Eq. (1), as we shall show below.

Incidentally, if we would have followed what is com-
monly done for optical fibers, i.e., taking into account only
D2 and D3 in Eq. (6), and ignoring the power dependence
(ksol ! 0), one can easily get the approximate DifRR wave
number in the form �RR ’ �0

RR � �0 þ 3= tanð�0Þ. Such
approximations are perfectly fine in fiber optics when deal-
ing with DisRR—they lead to very accurate predictions of
the DisRR frequency. However, the same approximation is
not good enough for the case of WAs, since, as explained
above, the coefficients (Dm=m!) decay not as rapidly as in
the temporal case, and a large number of orders must be
taken into account, as we show explicitly in the next
section. However, even if not explicit as in the case of
the temporal DisRR, Eq. (7) is exact and can be easily
solved numerically.

Emission of DifRR and soliton anomalous recoil.—We
now prove numerically the formation of DifRR in the full
discrete model of Eq. (1), and the accuracy of the predic-
tions made by the phase-matching condition Eq. (7).

In Fig. 1(b) we show the DifRR wave number �RR � �0 þ
�� as a function of the input soliton wave number (which
is related to the angle of incidence) �0. The blue solid
curve is obtained by finding numerically the roots �� of
Eq. (7), while the dashed red curve shows the approxi-
mated analytical expression given in the previous section.
It is clear that �0

RR is not accurate enough to be used in

practice, when compared to the solid line, which shows a
complexity that goes beyond any truncation of the Taylor
expansion in Eq. (3), especially when the power depen-
dence is included via the right-hand side of Eq. (7).
In Fig. 1(b) we depict the full range of the first Brillouin

zone for completeness, but only the interval��=2< �0 <
�=2 (indicated by a gray shaded area), in which pulses
experience ‘‘anomalous’’ diffraction (i.e., D2 < 0), should
be considered, since this is the only region where solitons
can form in the WA (for focusing nonlinearity), analo-
gously to the anomalous dispersion frequency range of
optical fibers. Parameters used in Fig. 1 are A0 ¼ 0:8,
c ¼ 1:2, and �0 ¼ 0:7. For these parameters, in the range
0:235< j�0j<�=2, one can find only one solution for
�RR, but when 0< j�0j � 0:235, Eq. (7) shows several
roots [see the solid blue curve in Fig. 1(b)]. Thus, one
should expect to simultaneously generate several DifRRs
with different wave numbers in the latter interval.
However, full numerical simulations of Eq. (1) show that
only the solution corresponding to the branch that is the
closest to the central horizontal axis (i.e., the axis �RR ¼ 0)
can be generated and observed, and all other DifRR waves
corresponding to roots from other branches are too weak to
be seen numerically, since the overlap between the soliton
spectral tail and the radiation wave numbers becomes
exponentially small. When �0 ¼ 0, i.e., for a normal inci-
dence of the input CW beam, there is no solution for
Eq. (7), regardless of the parameters used. This is also
confirmed by the direct simulation of Eq. (1).
The evolution of a CW beam along z according to

Eq. (1) is shown in Fig. 1(c), for an input beam ainðnÞ ¼
A0sech½nA0=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2c cosð�0Þ

p �ei�0n (i.e., the approximate soli-
ton solution in the continuous limit), and for a WAmade of
N ¼ 100 waveguides. After some propagation, around
z ’ 3, a DifRR is emitted by the soliton. The evolution
of the Fourier transform of the field aðnÞ of Fig. 1(c) along
z is shown in Fig. 1(d). The dashed green horizontal line
represents the input wave number (�0 ¼ 0:7), while the
solid white line is obtained by solving Eq. (7) numerically,
showing excellent agreement with the pulse propagation.
In Fig. 1(b) one can notice that the soliton emits the
DifRR with a positive detuning �� when 0< �0 <�=2.
For instance, when �0 ¼ 0:7, then from Eq. (7) one gets
�RR � �0 þ�� ’ 3:53. However, since the Brillouin zone
has a limited extension, when 2�> �RR >� the DifRR
will be emitted with a negative detuning due to the folding
of the band structure. In the example shown in Fig. 1(d)
the effective DifRR wave number will be equal to
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�RR � 2� ’ �2:75 [see the white solid line in Fig. 1(d)].
This means that in real space the soliton, instead of recoil-
ing in an opposite direction than the DifRR, will recoil
towards the DifRR itself, see the white arrows in Fig. 1(c).
The same phenomenon occurs in the wave number space:
the soliton spectral momentum, instead of recoiling
away from the radiation, moves slightly towards it [see
Fig. 1(d)]. We call this unique effect (which cannot be
found in continuous media such as fibers due to the lack of
a Brillouin zone) anomalous recoil.

Conclusions.—We have numerically demonstrated the
existence and studied the properties of diffractive resonant
radiation emitted by discrete spatial solitons in waveguide
arrays. Because of the periodicity, several new effects can
take place, which have no counterpart in continuous sys-
tems, such as the anomalous soliton recoil. The analysis of
these unusual phenomena are applicable to virtually any
nonlinear discrete periodic system supporting solitons,
therefore making our results very general and of relevance
for a number of very diverse communities.
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