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Random fixed points of
completely random operators
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Abstract. The purpose of this paper is to examine the notion of completely random op-
erators and to prove some random fixed point theorems for such operators. Unlike many
random fixed point theorems for random operators, it seems to be impossible to obtain
them from deterministic fixed point theorems.
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1 Introduction

Let .�;F ;P / be a probability space, let X; Y be separable metric spaces and let
f W � �X ! Y be a random operator in the sense that for each fixed x in X , the
mapping ! 7! f .!; x/ is measurable. An X -valued random variable � is said to
be a random fixed point of the random operator f W � �X ! X if

f .!; �.!// D �.!/ a.s.

Random fixed point theory is an important topic of the stochastic analysis. In re-
cent years, many random fixed point theorems have been proved (see, e.g., [1–4]).
Some authors (see, e.g., [2,6–8]) have shown that under some assumptions the ran-
dom operator f W � �X ! X has a random fixed point if and only if for almost
all ! the deterministic mapping f! W x 7! f .!; x/ has a fixed point. Therefore,
the existence of a random fixed point follows immediately from the existence of
corresponding deterministic fixed point.

A random operator f W � �X ! Y may be considered as an action which
transforms each deterministic input x in X into a random output f .!; x/ with
values in Y . Taking into account many circumstances in which the inputs are also
subject to influence of a random environment, an action which transforms each

This work is supported in part by NAFOSTED (National Foundation for Science and Technology
Development).

Brought to you by | Tokyo Daigaku
Authenticated

Download Date | 5/23/15 9:05 AM



2 D. H. Thang and P. T. Anh

random input with values in X into random output with values in Y is called a
completely random operator from X into Y .

In Section 2, we give some definitions concerning completely random operators
and some properties of such operators. Section 3 involves some results about ran-
dom fixed points of weakly contractive and .f; q/-contractive completely random
operators. It should be noted that the existence of random fixed point of a com-
pletely random operator does not follow from the existence of the corresponding
deterministic fixed point theorem as in the case of random operator. In the last
section, some applications to random equations are presented.

2 Some properties of completely random operators

Let .�;F ;P / be a complete probability space andB be a separable Banach space.
A mapping � W �! B is called a B-valued random variable if � is .F ;B/-meas-
urable, where B denotes the Borel � -algebra of B . The set of all (equivalent
classes) B-valued random variables is denoted by LB

0 .�/ and it is equipped with
the topology of convergence in probability. For each p > 0, the set of B-valued
random variables � such that E k�kp <1 is denoted by LB

p .�/.
At first, recall that (see, e.g., [9]):

Definition 2.1. Let X; Y be two separable Banach spaces.

(1) A mapping f W � �X ! Y is said to be a random operator if for each fixed
x in X , the mapping ! 7! f .!; x/ is measurable.

(2) The random operator f W � �X ! Y is said to be continuous if for each !
in � the mapping x 7! f .!; x/ is continuous.

(3) Let f; g W � �X ! Y be two random operators. Then g is said to be a modi-
fication of f if for each x in X , we have f .!; x/ D g.!; x/ a.s. Note that the
exceptional set can depend on x.

The following is the notion of the completely random operator.

Definition 2.2. Let X; Y be two separable Banach spaces.

(1) A mapping ˆ W LX
0 .�/! LY

0 .�/ is called a completely random operator.

(2) The completely random operator ˆ is said to be continuous if for each se-
quence .un/ in LX

0 .�/ such that limun D u a.s., we have limˆun D ˆu a.s.

(3) The completely random operator ˆ is said to be continuous in probability if
for each sequence .un/ inLX

0 .�/ such that limun D u in probability, we have
limˆun D ˆu in probability.
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Random fixed points of completely random operators 3

(4) The completely random operator ˆ is said to be an extension of a random
operator f W � �X ! Y if for each x in X

ˆx.!/ D f .!; x/ a.s.;

where for each x in X , x denotes the random variable u in LX
0 .�/ given by

u.!/ D x a.s.

Theorem 2.3. Let f W � �X ! Y be a random operator admitting a continuous
modification. Then, there exists a continuous completely random operator

ˆ W LX
0 .�/! LY

0 .�/

such that ˆ is an extension of f .

Proof. Let g be a continuous modification of f . Defineˆ W LX
0 .�/! LY

0 .�/ by

ˆu.!/ D g.!; u.!// (2.1)

for each random variable u in LX
0 .�/. This definition is well-defined. Indeed,

by [5, Theorem 6.1], g W � �X ! Y is measurable, hence ! 7! g.!; u.!// is
measurable. Next, we have to show that if h is another continuous modification
of f , then

g.!; u.!// D h.!; u.!// a.s.

By the separability of X , there exists a sequence .xn/ dense in X . For each xn,
there exists a set �n of probability one such that g.!; xn/ D h.!; xn/ for all !
in �n. Let �0 D

T1
nD1�n. Clearly, �0 has probability one and we have

g.!; xn/ D h.!; xn/ for all ! 2 �0; for all n: (2.2)

Fix ! in �0. By the density of .xn/ in X , there exists a subsequence .xnk
/ con-

verging to u.!/. By the continuity of the mapping x 7! g.!; x/ and the mapping
x 7! h.!; x/, we have

lim
k!1

g.!; xnk
/ D g.!; u.!//;

lim
k!1

h.!; xnk
/ D h.!; u.!//:

(2.3)

By (2.2) and (2.3), we conclude that

h.!; �.!// D g.!; �.!// for all ! 2 �0

as claimed.
From (2.1), it is easy to show that the completely random operator ˆ is contin-

uous and is an extension of f .
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4 D. H. Thang and P. T. Anh

Proposition 2.4. Let ˆ W LX
0 .�/! LY

0 .�/ be a completely random operator.
Then, the continuity of ˆ implies the continuity in probability of ˆ.

Proof. Let .un/ be a sequence in LX
0 .�/ such that p-limun D u. We have to

show that p-limˆun D ˆu. On the contrary, suppose thatˆun does not converge
to ˆu in probability. Then, there exist t > 0; " > 0 and a subsequence .unk

/ such
that for all unk

P .kˆunk
�ˆuk > t/ � ":

Since p-limunk
D u, there is a subsequence .u0nk

/ converging a.s. to u. By the
continuity of ˆ, .ˆu0nk

/ converges a.s. to ˆu, so converges to ˆu in probability.
Hence,

0 D lim
k

P .kˆu0nk
�ˆuk > t/ � ":

We get a contradiction.

Definition 2.5. Let ˆ W LX
0 .�/! LY

0 .�/ be a completely random operator.

(1) The operator ˆ is said to be k.!/-Lipschitz if there is a positive random vari-
able k.!/ such that for each pair u; v in LX

0 .�/

kˆu.!/ �ˆv.!/k � k.!/ku.!/ � v.!/k a.s.

Note that the exceptional set depends on u; v in general.

(2) The operator ˆ is said to be probabilistic k.!/-Lipschitz if there is a real-
valued random variable k.!/ such that for each pair u; v in LX

0 .�/ and t > 0

P .kˆu.!/ �ˆv.!/k > t/ � P .k.!/ku.!/ � v.!/k > t/:

(3) The operator ˆ is said to be a (probabilistic) k.!/-contraction if ˆ is (proba-
bilistic) k.!/-Lipschitz with k.!/ < 1 for all !.

(4) The operator ˆ is said to be a (probabilistic) non-expansive completely ran-
dom operator if ˆ is (probabilistic) 1-Lipschitz.

Clearly, if ˆ is k.!/-Lipschitz, then ˆ is probabilistic k.!/-Lipschitz.

Proposition 2.6. The following hold:

(1) If ˆ W LX
0 .�/! LY

0 .�/ is a k.!/-Lipschitz completely random operator,
then ˆ is continuous.

(2) Ifˆ W LX
0 .�/! LY

0 .�/ is a probabilistic k.!/-Lipschitz completely random
operator, then ˆ is continuous in probability. In particular, a probabilistic
non-expansive completely random operator is continuous in probability.
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Random fixed points of completely random operators 5

Proof. The first assertion is easy to prove. We prove the second assertion. For each
u; v in LX

0 .�/, we have

P .kˆu �ˆvk > t/ � P .k.!/ku � vk > t/

D P .k.!/ku � vk > t; ku � vk 6 r/C P .ku � vk > r/

� P .rk.!/ > t/C P .ku � vk > r/

D P .k.!/ > t=r/C P .ku � vk > r/:

Suppose that p-limun D u. Then, we have

P .kˆun �ˆuk > t/ � P .k.!/ > t=r/C P .kun � uk > r/:

So, for each r > 0

lim sup
n

P .kˆun �ˆuk > t/ � P .k.!/ > t=r/:

Leting r ! 0, we get

lim sup
n

P .kˆun �ˆuk > t/ D 0:

3 Random fixed points of some completely random operators

Let f W � �X ! X denote a random operator. Recall that (see, e.g., [1, 2, 4])
an X -valued random variable � is said to be a random fixed point of the random
operator f if

f .!; �.!// D �.!/ a.s.

Assume that the operator f is continuous. Then, by Theorem 2.3, the mapping
ˆ W LX

0 .�/! LX
0 .�/ defined by

ˆu.!/ D f .!; u.!//

is a completely random operator extending f . For each random fixed point � of f ,
we get

ˆ�.!/ D �.!/ a.s.

This leads us to the following definition:

Definition 3.1. Let ˆ W LX
0 .�/! LX

0 .�/ be a completely random operator. An
X -valued random variable � in LX

0 .�/ is called a random fixed point of ˆ if

ˆ� D � a.s.
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6 D. H. Thang and P. T. Anh

Definition 3.2. Let f W � � Œ0;1/! Œ0;1/ be a mapping such that for each !
in �, f .!; t/ D 0 if and only if t D 0.

(1) The completely random operator

ˆ W LX
0 .�/! LX

0 .�/

is said to be f .!; t/-weakly contractive if for each pair u; v in LX
0 .�/

kˆu.!/ �ˆv.!/k 6 ku.!/ � v.!/k � f .!; ku.!/ � v.!/k/ a.s. (3.1)

(2) The completely random operator

ˆ W LX
0 .�/! LX

0 .�/

is said to be probabilistic f .!; t/-weakly contractive if for each pair u; v in
LX

0 .�/, and t > 0

P .kˆu.!/ �ˆv.!/k > t/

6 P .ku.!/ � v.!/k � f .!; ku.!/ � v.!/k/ > t/:
(3.2)

Clearly,

� If the operator ˆ is probabilistic f .!; t/-weakly contractive, then it is proba-
bilistic non-expansive, so it is continuous in probability.

� If the operator ˆ is a (probabilistic) k.!/-contraction, then ˆ is a (probabilis-
tic) f .!; t/-weakly contractive completely random operator where

f .!; t/ D .1 � k.!//t :

Theorem 3.3. Let ˆ W LX
0 .�/! LX

0 .�/ be an f .!; t/-weakly contractive com-
pletely random operator where for each ! in �, the function t 7! f .!; t/ is non-
decreasing. Then, ˆ has a unique random fixed point.

Proof. Let u0 be an arbitrary X -valued random variable. We define the sequence
.un/ � L

X
0 .�/ by

unC1 D ˆun; n D 0; 1; : : : : (3.3)

By (3.1), for each pair .i; j /, we have

kˆui �ˆuj k � kui � uj k � f .!; kui � uj k/ a.s.

Hence, there is a set D of probability one such that for each ! in D and for all
pairs .i; j /

kˆui .!/ �ˆuj .!/k � kui .!/ � uj .!/k � f .!; kui .!/ � uj .!/k/: (3.4)
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Random fixed points of completely random operators 7

In particular, for each ! in D and for all pairs .i; j /

kˆui .!/ �ˆuj .!/k � kui .!/ � uj .!/k: (3.5)

Claim 1. For each ! in D, we have

lim kuiC1.!/ � ui .!/k D 0:

By (3.5), we receive

kuiC1.!/ � ui .!/k D kˆui .!/ �ˆui�1.!/k

� kui .!/ � ui�1.!/k:

This implies that

lim kuiC1.!/ � ui .!/k D L.!/ � 0 for all ! 2 D:

We have to show that L.!/ D 0 for all ! in D. On the contrary, suppose that
there exists ! in D such that L.!/ > 0. Then, kuiC1.!/ � ui .!/k � L.!/ and
f .!; kuiC1.!/ � ui .!/k/ � f .!;L.!// D L > 0. Hence, for each i

kuiC2.!/ � uiC1.!/k D kˆuiC1.!/ �ˆui .!/k

� kuiC1.!/ � ui .!/k � f .!; kuiC1.!/ � ui .!/k/

� kuiC1.!/ � ui .!/k � f .!;L.!//

D kuiC1.!/ � ui .!/k � L:

Adding the above inequalities for i D 0; 1; : : : ; n � 1, we get for all n

kunC1.!/ � un.!/k � ku1.!/ � u0.!/k � nL

which is a contradiction.

Claim 2. There exists � in LX
0 .�/ such that

limun D � a.s.

Fix ! in D. Given " > 0. By Claim 1, there exists N such that

kuNC1.!/ � uN .!/k < min¹"; f .!; "/º:

We shall show that for each n > N ,

kun.!/ � uN .!/k � 2": (3.6)
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8 D. H. Thang and P. T. Anh

Prove by induction. For n D N C 1, inequality (3.6) holds. Suppose that (3.6)
holds for n > N . If kun.!/ � uN .!/k � ", then by (3.5)

kunC1.!/ � uN .!/k � kˆun.!/ �ˆuN .!/k C kˆuN .!/ � uN .!/k

� kun.!/ � uN .!/k C kuNC1.!/ � uN .!/k � 2":

If " � kun.!/ � uN .!/k � 2", then

kunC1.!/ � uN .!/k � kˆun.!/ �ˆuN .!/k C kˆuN .!/ � uN .!/k

� kun.!/ � uN .!/k � f .!; kun.!/ � uN .!/k/

C kuNC1.!/ � uN .!/k

� kun.!/ � uN .!/k � f .!; "/C kuNC1.!/ � uN .!/k

� kun.!/ � uN .!/k � 2";

i.e. (3.6) holds for nC 1. Hence (3.6) is proved. From this, .un.!// is a Cauchy
sequence for each ! in D, which implies Claim 2.

Sinceˆ is continuous in probability, from (3.3), let n!1 we get � D ˆ� a.s.
Therefore, � is a random fixed point of ˆ.

Suppose that � is another random fixed point of ˆ. There is a set D0 of proba-
bility one such that for all ! in D0

k�.!/� �.!/k D kˆ�.!/�ˆ�.!/k � k�.!/� �.!/k � f .!; k�.!/� �.!/k/:

Hence, f .!; k�.!/��.!/k/D 0which implies k�.!/��.!/k D 0 for all! inD0,
i.e. � D � a.s.

As a consequence of Theorem 3.3, we get

Theorem 3.4. If the completely random operator ˆ is a k.!/-contraction, then ˆ
has a unique random fixed point.

Theorem 3.5. Let ˆ be a probabilistic f .t/-weakly contractive completely ran-
dom operator where the function f .!; t/ D f .t/ < t for all t > 0. For each t > 0,
define

h.t/ D inf
s�t

f .s/

s
:

Assume that h.t/ > 0 for all t > 0. Then,

(1) ˆ has a random fixed point if and only if there exist a random variable u0 in
LX

0 .�/ and p > 0 such that

E kˆu0 � u0k
p <1: (3.7)

In this case, ˆ has a unique random fixed point.
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Random fixed points of completely random operators 9

(2) Let .un/ in LX
0 .�/ be a sequence given by

unC1 D ˆun; n D 0; 1; : : : ; (3.8)

and � be the random fixed point of ˆ. Then, we have the following estimation:

P .kun � �k > t/ �
M

.1 � q
p

1Cp /1Cp

.qp/n

tp
;

where M D E kˆu0 � u0k
p, q D 1 � h.t/.

Proof. (1) If ˆ has a random fixed point �, then (3.7) holds with u0 D � for any
p > 0:

Conversely, suppose that E kˆu0 � u0k
p <1 for some u0 2 L

X
0 .�/, p > 0.

We will show that .un/ given by unC1 D ˆun .n D 0; 1; : : : / is a Cauchy se-
quence in LX

0 .�/. Define the function g.t/, t > 0, by

g.t/ D 1 �
f .t/

t
:

So, we have
f .t/ D .1 � g.t//t:

Since f .t/ > 0 for all t > 0, we get g.t/ < 1 for all t > 0. For any u; v inLX
0 .�/,

we have

P .kˆu.!/ �ˆv.!/k > t/ 6 P .ku.!/ � v.!/k � f .ku.!/ � v.!/k/ > t/:

Equivalently,

P .kˆu.!/ �ˆv.!/k > t/ 6 P .g.ku.!/ � v.!/k/ku.!/ � v.!/k > t/: (3.9)

Fix t > 0. For each s � t > 0, we have

g.s/ D 1 �
f .s/

s
� 1 � h.t/ D q.t/:

Since g.t/ < 1, we get

¹g.ku � vk/ku � vk > tº � ¹ku � vk > tº:

Hence,

P .kˆu �ˆvk > t/ � P .g.ku � vk/ku � vk > t/

D P .g.ku � vk/ku � vk > t; ku � vk > t/

� P .q.t/ku � vk > t; ku � vk > t/

� P .q.t/ku � vk > t/

D P .ku � vk > t=q.t// D P .ku � vk > t=q/

where q D q.t/. Note that q < 1 since h.t/ > 0.

Brought to you by | Tokyo Daigaku
Authenticated

Download Date | 5/23/15 9:05 AM



10 D. H. Thang and P. T. Anh

From this for each n, we obtain

P .kunC1 � unk > t/ D P .kˆun �ˆun�1k > t/ � P .kun � un�1k > t=q/:

By induction and Chebyshev’s inequality, we get

P .kunC1 � unk > t/ � P .kun � un�1k > t=q/

� � � � � P .ku1 � u0k > t=q
n/

D P .kˆu0 � u0k > t=q
n/

� E kˆu0 � u0k
p .q

n/p

tp
DM

.qn/p

tp
:

Let r D x
q

where q < x < 1. Then, we have r > 1 and

.r � 1/

�
1

r
C
1

r2
C � � � C

1

rm

�
C

1

rm
D 1 for all m � 1.

Thus, for any t > 0 and m; n in N, we have

P .kunCm � unk > t/ � P .kunCm � unk > .1 � 1=r
m/t/

� P .kunCm � unCm�1k > t.r � 1/=r
m/

C � � � C P .kunC1 � unk > t.r � 1/=r/

�
M

Œ.r � 1/t �p

�
.rm/p.qnCm�1/p C � � � C rp.qn/p

�
D

M

Œ.r � 1/t �p
.qn/prp

�
.qr/p.m�1/

C � � � C .qr/p C 1
�

D
M

Œ.r � 1/t �p
.qn/prp 1 � .qr/

mp

1 � .qr/p

<
Mrp

Œ.r � 1/t �pŒ1 � .qr/p�
.qp/n (3.10)

which tends to 0 as n!1. It implies that .un/ is a Cauchy sequence in LX
0 .�/.

Hence, there exists � inLX
0 .�/ such that p-limun D � . Let n!1 in (3.8). Since

ˆ is continuous in probability, we get that � D ˆ� a.s.
Let � be another random fixed point of ˆ. Then, for any t > 0, we have

P .k� � �k > t/ D P .kˆ� �ˆ�k > t/

� P .k� � �k > t=q/ � � � � � P .k� � �k > t=qn/

for all n > 0. Let n!1, we have P .k� � �k > t/ D 0 for any t > 0, i.e. � D �
a.s. Thus, ˆ has a unique random fixed point.
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Random fixed points of completely random operators 11

(2) From (3.10), letting m!1, we have

P .kun � �k > t/ �M
.qp/n

tp

�
r

r � 1

�p 1

1 � .qr/p

DM
.qp/n

tp

�
x

x � q

�p 1

1 � xp

for any x in .q; 1/. Let f .x/ be a function defined in .q; 1/ by

f .x/ D

�
x

x � q

�p 1

1 � xp
:

By a standard argument, we get

min
x2.q;1/

f .x/ D
1

.1 � q
p

1Cp /1Cp
:

Hence,

P .kun � �k > t/ �
M

.1 � q
p

1Cp /1Cp

.qp/n

tp
:

Ifˆ W LX
0 .�/! LX

0 .�/ is a probabilistic k-contraction, thenˆ is a probabilis-
tic f .t/-weakly contractive completely random operator where f .t/ D .1 � k/t .
In this case, 0 < h.t/ D 1 � k < 1 for all t > 0. Hence, we get the following
corollary:

Corollary 3.6. Let ˆ W LX
0 .�/! LX

0 .�/ be a probabilistic k-contraction. Then,
ˆ has a unique random point if and only if there exist a random variable u0 in
LX

0 .�/ and p > 0 such that

E kˆu0 � u0k
p <1:

Definition 3.7. Let f W Œ0;1/! Œ0;1/ be a continuous, increasing function such
that f .0/ D 0; limt!1 f .t/ D1 and let q be a positive number.

(1) The completely random operator ˆ W LX
0 .�/! LX

0 .�/ is said to be proba-
bilistic .f; q/-Lipschitz if for each pair u; v in LX

0 .�/

P .kˆu.!/ �ˆv.!/k > f .t// 6 P .ku.!/ � v.!/k > f .t=q//: (3.11)

(2) The completely random operator ˆ W LX
0 .�/! LX

0 .�/ is said to be proba-
bilistic .f; q/-contractive if ˆ is probabilistic .f; q/-Lipschitz with q < 1.

Remark. If ˆ is probabilistic q-Lipschitz, then it is probabilistic .f; q/-Lipschitz
for f .t/ D t . In particular, if ˆ is probabilistic q-contractive, then it is probabilis-
tic .f; q/-contractive for f .t/ D t .
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12 D. H. Thang and P. T. Anh

Proposition 3.8. Ifˆ W LX
0 .�/! LY

0 .�/ is probabilistic .f; q/-Lipschitz, thenˆ
is continuous in probability.

Proof. Let t > 0, and let g D f �1 be the inverse function of f . Put s D g.t/. For
each u; v in LX

0 .�/, we have

P .kˆu �ˆvk > t/ D P .kˆu �ˆvk > f .s//

� P .ku � vk > f .s=q// D P .g.ku � vk/ > s=q/: (3.12)

Let r > 0 be sufficiently small such that s=r > q. Then,

P .g.ku � vk/ > s=q/ � P .g.ku � vk/ > r/ D P .ku � vk > f .r//: (3.13)

From (3.12) and (3.13), we obtain

P .kˆu �ˆvk > t/ � P .ku � vk > f .r//:

Suppose that .un/ is a sequence in LX
0 .�/ such that p-limun D u. Since

P .kˆun �ˆuk > t/ � P .kun � uk > f .r//;

we get that
lim

n
P .kˆun �ˆuk > t/ D 0:

Hence, ˆ is continuous in probability.

Theorem 3.9. Letˆ W LX
0 .�/! LX

0 .�/ denote a probabilistic .f; q/-contractive
completely random operator.

(1) If ˆ has a random fixed point, then it has a unique one. Moreover, there exist
a random variable u0 in LX

0 .�/ and p > 0 such that

M D sup
t>0

tpP .kˆu0 � u0k > f .t// <1: (3.14)

(2) Assume that there exists c in .q; 1/ such that
1X

nD1

f .cn/ <1: (3.15)

Then, condition (3.14) is sufficient for ˆ to have a unique random fixed point.

(3) Assume that for each t; s > 0

f .t C s/ � f .t/C f .s/: (3.16)

Then, condition (3.14) is also sufficient for ˆ to have a unique random fixed
point.
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Random fixed points of completely random operators 13

Proof. Let g D f �1 be the inverse function of f . Then, g W Œ0;1/! Œ0;1/ is
increasing with g.0/ D 0; limt!1 g.t/ D1. Condition (3.11) is equivalent to
the following:

P .g.kˆu �ˆvk/ > t/ � P .g.ku � vk/ > t=q/: (3.17)

Let u0 in LX
0 .�/ such that (3.14) holds. Define a sequence .un/ in LX

0 .�/ by

unC1 D ˆun; n D 0; 1; : : : : (3.18)

From (3.17)

P .g.kunC1 � unk/ > t/ D P .g.kˆun �ˆun�1k/ > t/

� P .g.kun � un�1k/ > t=q/:

By induction, we obtain for each n

P .g.kunC1 � unk/ > t/ � P .g.ku1 � u0k/ > t=q
n/: (3.19)

(1) Let �; � be two random fixed points of ˆ. Then, for each t > 0, we have

P .k� � �k > f .t// D P .kˆ� �ˆ�k > f .t// � P .k� � �k > f .t=q//:

By induction, it follows that

P .k� � �k > f .t// � P .k� � �k > f .t=qn// for all n:

Since limn!1 f .t=q
n/ D1, we conclude that P .k� � �k > f .t// D 0 for each

t > 0. Hence, g.k� � �k/ D 0 a.s. So, we have � D � a.s. as claimed.
Suppose that ˆ has a random fixed point �. Then take u0 D � and we obtain

M D 0.
(2) From (3.14), we have

P .g.ku1 � u0k/ > s/ �
M

sp
: (3.20)

From (3.19) and (3.20), we get

P .g.kunC1 � unk/ > t/ �
Mqnp

tp
: (3.21)

Taking t D cn, from (3.21) we get

P .g.kunC1 � unk/ > c
n/ �M

qnp

cnp
(3.22)

i.e.

P .kunC1 � unk > f .c
n// �M

qnp

cnp
: (3.23)
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14 D. H. Thang and P. T. Anh

Since
1X

nD1

P .kunC1 � unk > f .c
n// �M

1X
nD1

qnp

cnp
<1;

by the Borel–Cantelli Lemma, there is a set D with probability one such that for
each ! in D there is N.!/

kunC1.!/ � un.!/k � f .c
n/ for all n > N.!/:

By (3.15), we conclude that
1X

nD1

kunC1.!/ � un.!/k <1

for all ! in D which implies that there exists limun.!/ for all ! in D. Conse-
quently, the sequence .un/ converges a.s. to � in LX

0 .�/. Since ˆ is continuous in
probability, from (3.18), letting n!1, we get � D ˆ� a.s.

(3) It is easy to see that for each t; s > 0

g.s C t / � g.t/C g.s/:

Hence, for a D
Pm

iD1 si , we have

P .g.kunCm � unk/ > a/ � P

 
g

 
mX

iD1

kunCi � unCi�1k

!
> a

!

� P

 
mX

iD1

g.kunCi � unCi�1k/ > a

!

�

mX
iD1

P .g.kunCi � unCi�1k/ > si /:

From (3.21), we have

P .g.kunCi � unCi�1k/ > si / �
Mq.nCi�1/p

s
p
i

: (3.24)

Put r D x
q

where q < x < 1 and si D s.r � 1/=r i . An argument similar to that in
the proof of Theorem 3.5 yields

lim
n!1

P .g.kunCm � unk/ > s/ D 0 for all s > 0;

so
lim

n!1
P .kunCm � unk > f .s// D 0 for all s > 0:

Thus, we obtain

lim
n!1

P .kunCm � unk > t/ D 0 for all t > 0:
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Random fixed points of completely random operators 15

Consequently, the sequence .un/ converges in probability to � in LX
0 .�/. Since

ˆ is continuous in probability, letting n!1 in (3.18), we get � D ˆ� a.s.

4 Applications to random equations

In the last section, we will give some applications of above results to random
equations.

Theorem 4.1. Let ˆ W LX
0 .�/! LX

0 .�/ be a probabilistic .f; q/-Lipschitz com-
pletely random operator where f is a function satisfying either (3.15) or (3.16).
Consider a random equation of the form

ˆu � �u D �; (4.1)

where � is a real number and � is a random variable in LX
0 .�/.

Assume that

j�j � sup
t>0

f . q
q0
t /

f .t/
; (4.2)

where q0 2 .0; 1/. Then equation (4.1) has a unique random solution if and only if
there exist a random variable u0 in LX

0 .�/ and a number p > 0 such that

M D sup
t>0

tpP .kˆu0 � �u0 � �k > j�jf .t// <1: (4.3)

Proof. Define a completely random operator ‰ by

‰u D
ˆu � �

�
:

Let g D f �1 be the inverse function of f . Then, g W Œ0;1/! Œ0;1/ is continu-
ous, increasing with g.0/ D 0; limt!1 g.t/ D1. For each t > 0, there exists t 0

so that f .t 0/ D j�jf .t/, i.e. t 0 D g.j�jf .t//. So, we have

P .k‰u �‰vk > f .t// D P .kˆu �ˆvk > j�jf .t//

D P .kˆu �ˆvk > f .t 0//

� P .ku � vk > f .t 0=q//

D P .ku � vk > f ..t=q0/.q0t 0=qt///:

From (4.2), we receive j�jf .t/ � f . q
q0
t /. Then, we deduce g.j�jf .t// � q

q0
t .

So, t 0 � q
q0
t and q0t 0

qt
� 1. Direct computation shows that

P .k‰u �‰vk > f .t// � P .ku � vk > f .t=q0//

which implies that ‰ is .f; q0/-contractive.
By Theorem 3.9, ‰ has a unique random fixed point � which implies that equa-

tion (4.1) has a unique solution �.
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16 D. H. Thang and P. T. Anh

Corollary 4.2. Letˆ W LX
0 .�/! LX

0 .�/ denote a probabilistic q-Lipschitz com-
pletely random operator. Consider the random equation

ˆu � �u D �; (4.4)

where � is a real number satisfying j�j > q and � is a random variable in LX
p .�/,

p > 0. Then, the random equation (4.4) has a unique solution if and only if there
exists a random variable u0 in LX

0 .�/ such that

E kˆu0 � �u0k
p <1: (4.5)

Proof. Suppose that equation (4.4) has a solution �. Then, condition (4.5) holds
for u0 D � .

Conversely, suppose that there exists a random variable u0 in LX
0 .�/ such that

(4.5) holds. So, ˆ is .f; q/-Lipschitz where f .t/ D t is the function satisfying
(3.15). Take q < s < j�j. Then q0 D q=s < 1 and

j�j > s D
q

q0
D
f . q

q0
t /

f .t/
:

Moreover, for each t > 0

tpP .kˆu0 � �u0 � �k > j�jt / �
Ekˆu0 � �u0 � �k

p

j�jp
<1

since

E.kˆu0 � �u0 � �k
p/ � CpE.kˆu0 � �u0k

p/C Cp E k�kp <1;

where Cp is a constant. Hence, condition (4.3) is satisfied. By Theorem 4.1, we
conclude that equation (4.4) has a unique random solution.

Theorem 4.3. Suppose that f W Œ0;1/! Œ0;1/ is a function such that f .0/ D 0,
f .t/ < t and

h.t/ D inf
s�t

f .s/

s
> 0 for all t > 0:

Let ˆ;‰ W LX
0 .�/! LX

0 .�/ be two completely random operators satisfying the
following conditions:

(a) ‰.LX
0 .�// is closed in LX

0 .�/,

(b) ˆ.LX
0 .�// � ‰.L

X
0 .�//,

(c) ˆ;‰ are continuous in probability,

(d) for any u; v in LX
0 .�/ and t > 0, we have

P .kˆu �ˆvk > t/ � P .k‰u �‰vk � f .k‰u �‰vk/ > t/:
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Random fixed points of completely random operators 17

Then, the random equation
ˆu D ‰u (4.6)

has a solution if and only if there exist a random variable u0 in LX
0 .�/ and p > 0

such that
E kˆu0 �‰u0k

p <1: (4.7)

Proof. If (4.6) has a solution �, then (4.7) holds with u0 D � and any p > 0.
Conversely, suppose that (4.7) holds. By condition (a), there exists an X -valued

random variable u1 such that ‰u1 D ˆu0. By induction, there is a sequence of
X -valued random variables .un/ such that ‰un D ˆun�1; n � 1. Let �n D ‰un

.n D 1; 2; : : : /. We will show that .�n/ is a Cauchy sequence in probability.
Set

g.t/ D 1 �
f .t/

t
; t > 0:

We have f .t/ D .1 � g.t//t and g.t/ 2 .0; 1/ for all t > 0.
For any u; v 2 LX

0 .�/, we have

P .kˆu �ˆvk > t/ 6 P .k‰u �‰vk � f .k‰u �‰vk/ > t/:

Equivalently,

P .kˆu �ˆvk > t/ 6 P .g.k‰u �‰vk/k‰u �‰vk > t/: (4.8)

Fix t > 0. For each s � t , we have

g.s/ D 1 �
f .s/

s
� 1 � h.t/ D q.t/:

Since g.t/ < 1, we get ¹g.k‰u �‰vk/k‰u �‰vk > tº � ¹k‰u �‰vk > tº.
Hence,

P .kˆu �ˆvk > t/ � P .g.k‰u �‰vk/k‰u �‰vk > t/

D P .g.k‰u �‰vk/k‰u �‰vk > t; k‰u �‰vk > t/

� P .q.t/k‰u �‰vk > t; k‰u �‰vk > t/

� P .q.t/k‰u �‰vk > t/

D P .k‰u �‰vk > t=q.t// D P .k‰u �‰vk > t=q/;

where q D q.t/. Note that q < 1 since h.t/ > 0. We obtain

P .k�nC1 � �nk > t/ D P .kˆun �ˆun�1k > t/

� P .k‰un �‰vn�1k > t=q/

D P .k�n � �n�1k/ > t=q/:
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18 D. H. Thang and P. T. Anh

By similar arguments as in the proof of Theorem 3.5, it implies that .�n/ is a
Cauchy sequence in probability. Hence, there exists � in LX

0 .�/ such that

p-lim �n D �:

From the assumption (a), there exists u� in LX
0 .�/ such that ‰u� D �. So, we

have

P .k‰unC1 �ˆu
�
k > t/ D P .kˆun �ˆu

�
k > t/

� P .k‰un �‰u
�
k � f .k‰un �‰u

�
k/ > t/

� P .k�n � �k > t/:

Let n!1. We receive P .k� �ˆu�k > t/ D 0 implying ˆu� D � a.s. Hence,
u� is a solution of the random equation (4.6).

Remark. The following simple example shows that the random equation (4.6)
needs not to have a unique solution.

Example 4.4. Define two completely random operators ˆ;‰ W LR
0 .�/! LR

0 .�/

by ˆu D kjuj C �;‰u D juj, where � is a positive random variable, k 2 .0; 1/.
It is easy to check that ˆ;‰ satisfy all assumptions of Theorem 4.3 with

f .t/ D k0t; k0 2 .0; 1 � k/;

and the random equation (4.6) has two solutions

�1 D
1

1 � k
�; �2 D �

1

1 � k
�:

Corollary 4.5. Letˆ;‰ be two completely random operators satisfying the condi-
tions stated in Theorem 4.3 andˆ;‰ commute, i.e.ˆ‰u D ‰ˆu for any random
variable u in LX

0 .�/. Then, ˆ and ‰ have a unique common random fixed point
if and only if there exist u0 in LX

0 .�/ and p > 0 such that (4.7) holds.

Proof. If ˆ and ‰ have a common random fixed point � , then (4.7) holds with
u0 D � and any p > 0.

Conversely, suppose that (4.7) holds. By Theorem 4.3, there exists � such that
ˆ� D ‰�. Put � D ˆ� D ‰� . For t > 0, we have

P .kˆ� � �k > t/ D P .kˆ� �ˆ�k > t/

� P .k‰� �‰�k > t=q/

D P .k‰ˆ� � �k > t=q/

D P .kˆ‰� � �k > t=q/ D P .kˆ� � �k > t=q/:
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Random fixed points of completely random operators 19

By induction, it follows that P .kˆ� � �k > t/ � P .kˆ� � �k > t=qn/ for any
n in N. Letting n!1, we have P .kˆ� � �k > t/ D 0 for any t > 0. Thus,
ˆ� D � , i.e. � is a random fixed point of ˆ. We have

‰� D ‰ˆ� D ˆ‰� D ˆ� D �:

So � is also a random fixed point of ‰.
Let �1 and �2 be two common random fixed points of ˆ and ‰. For each t > 0,

we have

P .k�1 � �2k > t/ D P .kˆ�1 �ˆ�2k > t/

� P .k‰�1 �‰�2k > t=q/

D P .k�1 � �2k > t=q/ � � � � � P .k�1 � �2k > t=q
n/:

Letting n!1, we have

P .k�1 � �2k > t/ D 0 for all t > 0.

Hence �1 D �2 a.s.
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