
978-1-4799-3400-3/13/$31.00 © 2013 66

A Survey on Hybridizing Genetic Algorithm with Dynamic Programming for 
Solving the Traveling Salesman Problem 

PHAM Dinh Thanh  
Faculty of Mathematics - Physics - 

Informatic 
Tay Bac University 

SonLa, Vietnam 
thanhpd05@gmail.com 

 

HUYNH Thi Thanh Binh 
School of Information and Communi-

cation Technology 
HaNoi University of Science and 

Technology 
HaNoi, Viet Nam 

binhht@soict.hut.edu.vn 

BUI Thu Lam 
Faculty of Information Technology 
Le Quy Don Technical University 

HaNoi, Viet Nam 
lam.bui07@gmail.com  

Abstract— Traveling Salesman Problem (TSP) is a well-known 
NP-hard problem. Many algorithms were developed to solve 
this problem and gave the nearly optimal solutions within 
reasonable time. This paper presents a survey about the com-
bination Genetic Algorithm (GA) with Dynamic Programming 
(DP) for solving TSP. We also setup a combination between 
GA and DP for this problem and experimented on 7 Euclidean 
instances derived from TSP-lib. Experimental results are re-
ported to show the efficiency of the experimented algorithm 
comparing to the genetic algorithm. 
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I. INTRODUCTION  

The traveling salesman problem is an important problem 
in computing fields and has many applications in the real-
world such as scheduling, vehicle routing, VLSI layout de-
sign… The problem was first formulated in 1930 and be-
came one of the most intensively studied problems in opti-
mization. Until now, researchers have obtained many signif-
icant results for this problem.  

This paper introduces overview of the hybridizing Genet-
ic Algorithms with Dynamic Programming for Solving TSP 
and then presents a combination GA with DP (called 
CGADP) for solving this problem. In CGADP, the solutions 
found by genetic algorithm will be selected for applying a 
local search based on DP. We experimented CGADP on 7 
Euclidean instances derived from TSP-lib [22] and compare 
the result with GA [5]. Experimental results show that the 
solutions found by CGADP are better than the ones found 
by GA [5] on both the min and the mean cost values. The 
convergence rate of the solution found by CGADP is faster 
than that of GA.  

The rest of this paper is organized as follows. In section 
II, we present overview of TSP. Section III surveys the di-
rections of the combination GA with DP for solving TSP. 
The details of our experiments and the computational and 
comparative results are given in section IV. The paper con-
cludes with section V with some discussions on the future 
extension of this work. 

II. OVERVIEW OF TSP 

TSP is stated as following: Let 1, 2, …, n be the labels of 
the n cities and C = [ci,j] be an n x n cost matrix where ci,j 

denotes the cost of traveling from city i to city j. TSP is the 
problem of finding the n-city closed tour having the mini-
mum cost such that each city is visited exactly once. The 
total cost A of a tour is.  
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TSP is formulated as finding a permutation of n cities, 
which has the minimum cost. This problem is known to be 
NP-hard [2, 4, 5]. Many algorithms have been proposed to 
solve this problem [2, 3, 4, 5, 7, 10, 11, 12, 14, 15, 17]. 
There are two main approaches for solving TSP: exact and 
approximate. 

Exact approaches are almost always based on Dynamic 
Programming, Branch and Bound, Integer Linear Program-
ming…and all gave the optimal solutions for TSP. However, 
the algorithms basing on these approaches have exponential 
running time as M. Held and R. M. Karp [1] pointed out 
Dynamic Programming takes O(n2.2n) running time. Hence, 
they can only solve TSP with small number of the vertices 
as algorithms using branch and bound method are only able 
to give solutions for 40 – 60 cities sets and ones using linear 
programming solve with maximum for 200 cities sets.  

In an attempt to solve larger instances, especially in such 
the NP-hard problem, approximation approaches have been 
concerned by researchers in recent years. Many approxima-
tion approaches were proposed for solving TSP such as 2-
opt, 3-opt [2], simulated annealing [3], tabu search [4]; na-
ture based optimization algorithms and population based 
optimization algorithms: genetic algorithm [16, 19, 20], 
evolutionary computation [5], neural networks [6], DNA 
computing [9]; swarm optimization algorithms: ant colony 
optimization [7], bee colony optimization [8]. The algo-
rithms basing on these approaches can solve large instances 
and give approximate solutions near to the optimal solution 
within reasonable time.  

In addition to above original approximation approaches, 
there is a different one combining basic heuristic methods 
called meta-heuristics. In [18], the authors applied local 
search heuristics to GA for solving TSP. The local search 
method they used is 2-opt. They presented three crossover 
operators (PMX, OX, POS) and two mutation operators 
(IVM, EM), then combine 2-opt with one pair of crossover 
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and mutation operator in turn. After experimenting their 
algorithms on kroA100, kroB100 and kroC100 instances, 
they found that the combination of two genetic operators 
(IVM and POS) with 2-opt gave better solutions than the 
others did for solving TSP problem. They also implemented 
this combination but with 3-opt instead of 2-opt and came to 
the conclusion that the combination with 3-opt gave better 
solutions but converged to global optimum in more time. 

Also using local search, Bernd Freisleben et al. proposed 
Genetic Local Search (GLS) for the TSP [20]. Their algo-
rithm used the idea of hill climber to develop local search in 
GA. Their experiment showed that GLS is more effective in 
terms of not only running time, but also cost than ones in 
[21]. 

Besides exact and approximate approaches, a different 
one that is the combination of these two approaches, in 
which the combination GA with DP is most popular and it 
will be introduced in the next section.  

III. THE COMBINATION GA WITH DP FOR 

SOLVING TSP 

Algorithms using DP can give optimal solutions, but their 
computation time is too large whereas GA is inverse. So by 
combination GA with DP, researchers try to keep these al-
gorithms’ advantages and reduce their defects so as to not 
only give optimal solutions, but also shorten the running 
time. There are two popular ways of this combination to 
solve TSP: create new genetic operators using DP and to use 
DP as one step in GA.  

A. Create new genetic operators using DP 

By this way, DP algorithm is usually applied to crosso-
ver operators. Authors build DP functions or fitness func-
tions based on DP.  

In [16], Mutsunori Yagiura et al. proposed a new GA 
called genetic DP, in which they applied DP to create a new 
crossover operator. To implement this crossover, they de-
fined a new concept called the partial order common of two 
candidate solutions (σ1, σ2). Its definition is as following: 
The partial order common of (σ1, σ2) is a set (denotes D) of 
the cities pairs (i, j) such that the city i is visited before the 
city j in both σ1 and σ2.  
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Then they argued that good solutions usually have a lot 
of common structures. Basing on this argument, they creat-
ed their crossover operator, in which children σ are born 
such that the number of pairs (i, j) ( ( , ) )with i j D  in σ is 

maximum. Hence, with supposing that a tour always starts 
from vertex 1, they built a DP formula to find the best child 
(which has minimum cost) of each pair of parents (formula 
(3)).  

Basing on (3), the idea of crossover operator can be pre-
sented as follows: after choosing a pair of parents (σ1, σ2) 
randomly, they build a set D by (2). Then, the child σ12 start-
ing from the vertex 1 will add the next vertex j. So, the chil-
dren created by this crossover operator are always the best 

as possible. Genetic DP, therefore, is expected to find better 
solutions for this problem than the traditional genetic. 
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Besides, genetic DP also creates a new mutation opera-
tor. However, this mutation can be used or not. The muta-
tion is implemented by randomly perturbing the common 
partial order D as follows: choose a pair ,i j D  such that 

1 1
1 1( ) (j)i   , and relax D by one of the following two 
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Then they apply DP formula on the new D to obtain a 
new solution.    

To show the efficiency of Genetic DP, the authors [16] 
experimented on 15 randomized Euclidean instances (5 
instances for each n = 100, 200, 500). The experimental 
results showed that solutions found by Genetic DP were 
better than ones found by Multi-Local, Genetic-Local and 
Or-opt when sufficient computational time was allowed. But 
comparing with Lin-Kernighan algorithm [17], Genetic DP 
is worse in term of not only solutions quality, but also run-
ning time. 

The authors [23] also applied DP to crossover operator 
in GA for solving TSP, but the difference is that they used 
Hill-Climbing (HC) instead of building a DP formula as in 
[16]. This HC method name is “Simplex”, so their crossover 
operator was called “Simplex crossover”.  

The main idea of “Simplex” is that from an initial sim-
plex with (n+1) points (where n is the number of cities) in a 
n-dimensional space, implement a sequence of elementary 
geometric transformations including reflection, contraction 
and extension such that the simplex adapts to the function 
landscape and finally surrounds the optimum. Hence, they 
implement “Simplex crossover” as following: find the best 
(xmax) and the worst (xmin) in the selected (n+1) individuals, 
then calculate by (5) to find the centroid (xc) of these (n+1) 
individuals.  
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After, they calculated “reflected point” (xr), “expanded 
point” (xe), “contracted point” (xi), “contracted point 
towards the best one” (xo) by (6). 
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Based on these calculated value, one of three elementary 
geometric transformations is implemented.  

The results of hybrid method have high reliability and 
computing time is approximately 5 times smaller than GA's 
time. With larger test sets this hybrid method still maintains 
high reliability level, whereas the performance of the other 
methods decreases significantly. 

B. Using DP as a stage in GA 

Instead of using DP to intervene genetic operators as 
presented in the previous section, this section presents the 
ways to use DP as a preprocess step before implementing 
genetic operators. 

In [23], addition to create a new genetic operator using 
HC as presented in subsection A of section III, Renders et 
al. also used HC to optimize the parents before applying 
crossover and mutation operators.  

By this combination, they proposed GHL (Genetic algo-
rithms hybridized with a Hill-climbing method following a 
Lamarckian). In the GHL, the solutions found by HC are 
used for performing crossover and mutation operator. And 
when evaluating the fitness of each individual, GA uses the 
results of HC working with an initial guess corresponding to 
this individual. 

This hybrid method gave not only better solutions but al-
so faster than GA.  

The other combination between GA and DP is used for 
solving the single-vehicle pickup and delivery problem [24], 
in which, the DP is implemented before GA and used to find 
the optimal routing. The model of the hybrid genetic algo-
rithms is showed in figure 1. 

 
Figure 1.  Model of hybrid GA 

 Figure 1 depicts the model of the hybrid genetic algo-
rithm with DP, where a pre-planned module will arrange the 
tasks and prepare the information for the DP module. The 
DP module performs a dynamic programming algorithm. 
When a specific time is expired, the DP module will move 
its unfinished sub-routes to a temporary result pool; these 
unfinished sub-routes will be the initial population of genetic 
algorithm. 

 In [24] the authors also modified the objective function 
to accomplish a route in real time. A modified objective 
function is defined as follows: 
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In experiments, the authors tested the hybrid genetic al-
gorithm on five problems consisting of 10, 20, 30, 40 and 50 
tasks and distance is Euclidean distance. The results show 
that, the proposed algorithm always obtains the lower solu-
tion cost than the traditional GA. Further, the proposed algo-
rithm can generate incrementally better solutions at any time.  

As previously mentioned, DP method found the best so-
lution for TSP. However this approach has a large computa-
tional complexity and it is only suitable to small instances. 
Besides, GA can solve TSP problem with large instances [5, 
13, 19, 20], but in some cases, GA gave worse solutions or 
slow convergence. So, in this paper, we present the combina-
tion of DP and GA [5]. This algorithm will be presented in 
the next section. 

IV. CASE STUDIES 

A. The combination of genetic algorithm and dynamic 
programming 

This section presents the combination of genetic algo-
rithm and dynamic programming (CGADP) for solving TSP, 
in which genetic algorithm was presented in [5]. 

 
Figure 2.  The combination of genetic algorithm and dynamic 

programming. 
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Figure 2 shows the flowchart of CGADP. This algorithm 
starts with randomly initializing the population in GA. We 
improve the GA for solving TSP by using local search. After 
each generation, it selects pdp% individuals of the current 
population randomly and uses a local search procedure 
based on DP (in subsection B of section III) to generate new 
better individuals. The algorithm stops after the fixed 
number of generations. 

Sketch of the CGADP algorithm is presented below: 
Algorithm 1: CGADP 
Input: The initial population P 
Output: The optimization population P’ 
1. Begin 
2.  Evaluate the fitness of individu-
als in P 
3.  i ← 0 
4.  Pi ← P 
5.  ng ← maximum number of generations 
6.  While i < ng do 
7.   ps ← size of the population   
8.   for j := 1 to ps/2 do 
9.    do crossover and mutation 
10.    Insert offspring into Pi+1 
11.   end for 
12.   ndp ← number of individuals for 
applying DP 
13.   l ← length of a segment 
14.   for j := 1 to ndp do 
15.    c ← select a random individual 
from Pi+1 
16.    k ← random gen position 
17.    c’ ← apply DP(c, k, l); 
18.    replace c by c’ in Pi+1 
19.   end for 
20.   i ← i+1 
21.  end while 
22.  P’ ← Pi 
23.  return P’ 

B. Local Search using Dynamic Programming 

Dynamic programming is a method which solves com-
plex problems by decomposing them into simpler sub-
problems. There are many algorithms that apply DP. In this 
paper, we use the combination of local search using DP and 
GA for solving TSP. 
DP is applied to find a better segment to replace in each 
tour. The main idea is described as following: 

 Choose an individual and its gen randomly. 
 Use DP to find the optimal value on the segment 

with a given length l beginning at the just chosen 
tour.  

The cost function of a segment from k-th city to (k+l-1)-th 
city is calculated by: 
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,i j
c  : cost of traveling from city πi  to πj. 

k: a random gen position.  
l: the length of segment (sub-tour). 
π1, π2, …, πn: the permutation of cities 1,…, n. 

 
Figure 3.  Calculation the cost of segment from k-th city to (k+l-1)-th city 

When each city in the segment is visited, the cost of the 
segment which is from the starting position to the current 
city is calculated and compared with the current best cost of 
the segment. 
 If the cost of this segment is greater than the current 

best cost of the segment, this segment will be dis-
carded.  

 Otherwise, the next city in the segment is visited and 
the cost of the segment is calculated to this city. If the 
next city is the last of this segment, its cost is com-
pared to the current best cost of the segment. Any 
better cost will be kept. 

Sketch of applying DP to the tour is presented bellow. 
Algorithm 2: ADPT(c) 
Input: A individual T(c1,c2,...,cn) 
Output: The optimization individual T 
1. Begin 
2.  l ← length of the segment (sub-tour) 
3.  k ← a random gen position 
4.  S ← cites in the segment  
5.  dmin ← cost of the initial segment 
6.  SC ← Ø 
7.  for each position p in the segment do 
8.   for each random s in (S\SC) do    
9.     cp ← s 
10.     ct ← cost of segment from 
position k-1 to p 
11.     if ct > dmin then  break end if 
12.     add s to SC 
13.     if (p is last position of the 
segment)then 
14.      ct ← ct + cost of traveling 
between cp and ck+l 
15.      if (ct < dmin)then 
16.       dmin ← ct 
17.       update T 
18.       SC ← Ø 
19.      end if 
20.     end if 
21.   end for 
22.  end for 
23.  return T 
24. end 

C.  Computational results 

1) Problem instances 
The results are reported for the symmetric TSP by ex-

tracting benchmark instances from the TSP-lib [22]. The 
instances chosen for our experiments are eil51.tsp, 
kroA150.tsp, lin318.tsp, rat575.tsp, rat783.tsp, pr1002.tsp 
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and nrw1379.tsp. The number of vertices: 51, 150, 318, 575, 
783, 1002, 1379. Their weights are Euclidean distance in 2-
D. 

2) System setting 
In the experiment, the system was run 10 times for each 

problem instance. All the programs were run on a machine 
with Intel Core 2 Duo T6400 2.0GHz, 2GB RAM, and were 
installed by C# language. 

3) Experimental setup 
To evaluation the proposed algorithm, we have two ex-

periments. One is to re-implemented GA [5], the other is to 
implement the proposed algorithm, CGADP. 

The parameters for two experiments: 
 Population size: ps = 100 
 Mutation rate: pm = 1/n 
 Crossover rate: pc = 0.9 

4) Experimental results 
The experiments were implemented in order to compare 

GA [5] with CGADP in term of the min, mean, standard 
deviation values and running times. 

Table 1 shows the results found by GA and CGADP al-
gorithm for TSP instances (Eil51, Kro150, Lin318, Rat575, 
Rat738, Pr1002, Nrw1379). The experiment results show 
that the solutions found by CGADP algorithm are better 
than the ones found GA algorithm on the min, mean values 
and particularly on standard deviation values with large 
problem instances (Lin318, Rat738, Pr1002, Nrw1379). 
This proves that CGADP is quite effective with large in-
stances. 

 
Figure 4.  The average running time of the GA and CGADP algorithm on 

TSP-lib instances after 10 running times. 

 

Figure 5.  The convergence rate of GA and CGADP to find the best 
solution on the Eil51 instance 

Figure 4 shows that CGADP takes more time than GA 
[5] to find the best solutions with the same number of fitness 
calculations. 

Figures 5, 6 illustrate the convergence rates of GA and 
CGADP algorithms on TSP-lib instances. The diagrams 
show that CGADP converged faster than GA. This proves 
the effectiveness of DP-based local search. 

In order to select the best value for the length of the 
segment which is used local search in DP, we experimented 
l = 2, 3, 4, 5, 6, 7. The figure 7 shows the dependence be-
tween the length of the segment, mean cost value found by 
10 running times, and the running time of CGADP algo-
rithm. According to the experiment in the figure 7, selecting 
(l = 5) is quite reasonable in our algorithm. 

 
Figure 6.  The convergence rate of GA and CGADP to find the best 

solution on the Nrw1379 instance. 

 
Figure 7.  The relationship between the length of the segment, mean cost 

found by 10 running times, and the running time on Eil51 instance. 

 
Figure 8.  The relationship between the percent of individuals, mean cost 

found by 10 running times, and the running time on KroA150 instance. 
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In addition, we also tested the percentage of individuals 
to apply dynamic programming. We experimented with 5, 
10, 30, 50 and 70 percent of the population size. The figure 
8 shows that, CGADP algorithm is effective with 5 percent 
of the population size. 

V. CONCLUSION 

This paper gives a brief survey of combination between 
GA and DP for solving TSP. We discuss two ways of this 
combination: Using DP as a stage in GA and creating new 
genetic operators using DP. Two ways of this combination 
tend to attain better solution quality than GA. 

Besides, we also implemented our combination of DP 
and GA. We experimented on 7 Euclidean instances derived 
from TSP-lib with the number of vertices: 51, 150, 318, 
575, 783, 1002, 1379. On the TSP-lib instances, the best 
cost and the mean cost found by CGADP are better than the 
one found by GA. The results show that the combination 
algorithm approach can be attractive for solving TSP, par-
ticularly on large problem instances. 

In the future, we are planning to improve the algorithm 
to reduce the running time. Moreover, a direction for further 
research could be a study of the Multi-objective TSP. 
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TABLE 1. THE RESULTS FOUND BY GA AND CGADP ALGORITHM FOR TSP INTSTANCES. 

No. Problems NCity 
CGADP GA 

Min Mean Std Min Mean Std 

1 Eil51 51 502.3 589.2 40.5 612.7 652.6 36.0 

2 Kro150 150 61076.8 66212.0 4310.3 72136.0 75507.8 2450.6 

3 Lin318 318 150438.6 158795.5 5233.9 177488.0 185148.2 5696.8 

4 Rat575 575 27896.5 29183.6 878.0 33191.4 34140.6 562.1 

5 Rat783 783 44148.3 45241.3 640.8 53274.2 54335.8 797.9 

6 Pr1002 1002 1627014.0 1682714.7 39166.9 1941224.0 2015872.1 39877.5 

7 Nrw1379 1379 365986.2 373284.4 3868.7 434914.0 447344.2 6526.5 

NCity: Number of city; Min: Minimum cost; Mean: Mean cost; Std:  Standard Deviation of minimum cost  

 


