
978-1-4799-3400-3/13/$31.00 © 2013 66

A Survey on Hybridizing Genetic Algorithm with Dynamic Programming for
Solving the Traveling Salesman Problem

PHAM Dinh Thanh
Faculty of Mathematics - Physics -

Informatic
Tay Bac University

SonLa, Vietnam
thanhpd05@gmail.com

HUYNH Thi Thanh Binh
School of Information and Communi-

cation Technology
HaNoi University of Science and

Technology
HaNoi, Viet Nam

binhht@soict.hut.edu.vn

BUI Thu Lam
Faculty of Information Technology
Le Quy Don Technical University

HaNoi, Viet Nam
lam.bui07@gmail.com

Abstract— Traveling Salesman Problem (TSP) is a well-known
NP-hard problem. Many algorithms were developed to solve
this problem and gave the nearly optimal solutions within
reasonable time. This paper presents a survey about the com-
bination Genetic Algorithm (GA) with Dynamic Programming
(DP) for solving TSP. We also setup a combination between
GA and DP for this problem and experimented on 7 Euclidean
instances derived from TSP-lib. Experimental results are re-
ported to show the efficiency of the experimented algorithm
comparing to the genetic algorithm.

Keywords-Traveling Salesman Problem, Genetic Algorithm,
Dynamic Programming, Brand & Bound algorithm

I. INTRODUCTION

The traveling salesman problem is an important problem
in computing fields and has many applications in the real-
world such as scheduling, vehicle routing, VLSI layout de-
sign… The problem was first formulated in 1930 and be-
came one of the most intensively studied problems in opti-
mization. Until now, researchers have obtained many signif-
icant results for this problem.

This paper introduces overview of the hybridizing Genet-
ic Algorithms with Dynamic Programming for Solving TSP
and then presents a combination GA with DP (called
CGADP) for solving this problem. In CGADP, the solutions
found by genetic algorithm will be selected for applying a
local search based on DP. We experimented CGADP on 7
Euclidean instances derived from TSP-lib [22] and compare
the result with GA [5]. Experimental results show that the
solutions found by CGADP are better than the ones found
by GA [5] on both the min and the mean cost values. The
convergence rate of the solution found by CGADP is faster
than that of GA.

The rest of this paper is organized as follows. In section
II, we present overview of TSP. Section III surveys the di-
rections of the combination GA with DP for solving TSP.
The details of our experiments and the computational and
comparative results are given in section IV. The paper con-
cludes with section V with some discussions on the future
extension of this work.

II. OVERVIEW OF TSP

TSP is stated as following: Let 1, 2, …, n be the labels of
the n cities and C = [ci,j] be an n x n cost matrix where ci,j

denotes the cost of traveling from city i to city j. TSP is the
problem of finding the n-city closed tour having the mini-
mum cost such that each city is visited exactly once. The
total cost A of a tour is.

1

, 1 ,1
1

()
n

i i n
i

A n c c





 


 

TSP is formulated as finding a permutation of n cities,
which has the minimum cost. This problem is known to be
NP-hard [2, 4, 5]. Many algorithms have been proposed to
solve this problem [2, 3, 4, 5, 7, 10, 11, 12, 14, 15, 17].
There are two main approaches for solving TSP: exact and
approximate.

Exact approaches are almost always based on Dynamic
Programming, Branch and Bound, Integer Linear Program-
ming…and all gave the optimal solutions for TSP. However,
the algorithms basing on these approaches have exponential
running time as M. Held and R. M. Karp [1] pointed out
Dynamic Programming takes O(n2.2n) running time. Hence,
they can only solve TSP with small number of the vertices
as algorithms using branch and bound method are only able
to give solutions for 40 – 60 cities sets and ones using linear
programming solve with maximum for 200 cities sets.

In an attempt to solve larger instances, especially in such
the NP-hard problem, approximation approaches have been
concerned by researchers in recent years. Many approxima-
tion approaches were proposed for solving TSP such as 2-
opt, 3-opt [2], simulated annealing [3], tabu search [4]; na-
ture based optimization algorithms and population based
optimization algorithms: genetic algorithm [16, 19, 20],
evolutionary computation [5], neural networks [6], DNA
computing [9]; swarm optimization algorithms: ant colony
optimization [7], bee colony optimization [8]. The algo-
rithms basing on these approaches can solve large instances
and give approximate solutions near to the optimal solution
within reasonable time.

In addition to above original approximation approaches,
there is a different one combining basic heuristic methods
called meta-heuristics. In [18], the authors applied local
search heuristics to GA for solving TSP. The local search
method they used is 2-opt. They presented three crossover
operators (PMX, OX, POS) and two mutation operators
(IVM, EM), then combine 2-opt with one pair of crossover

672013 International Conference of Soft Computing and Pattern Recognition (SoCPaR)

and mutation operator in turn. After experimenting their
algorithms on kroA100, kroB100 and kroC100 instances,
they found that the combination of two genetic operators
(IVM and POS) with 2-opt gave better solutions than the
others did for solving TSP problem. They also implemented
this combination but with 3-opt instead of 2-opt and came to
the conclusion that the combination with 3-opt gave better
solutions but converged to global optimum in more time.

Also using local search, Bernd Freisleben et al. proposed
Genetic Local Search (GLS) for the TSP [20]. Their algo-
rithm used the idea of hill climber to develop local search in
GA. Their experiment showed that GLS is more effective in
terms of not only running time, but also cost than ones in
[21].

Besides exact and approximate approaches, a different
one that is the combination of these two approaches, in
which the combination GA with DP is most popular and it
will be introduced in the next section.

III. THE COMBINATION GA WITH DP FOR

SOLVING TSP

Algorithms using DP can give optimal solutions, but their
computation time is too large whereas GA is inverse. So by
combination GA with DP, researchers try to keep these al-
gorithms’ advantages and reduce their defects so as to not
only give optimal solutions, but also shorten the running
time. There are two popular ways of this combination to
solve TSP: create new genetic operators using DP and to use
DP as one step in GA.

A. Create new genetic operators using DP

By this way, DP algorithm is usually applied to crosso-
ver operators. Authors build DP functions or fitness func-
tions based on DP.

In [16], Mutsunori Yagiura et al. proposed a new GA
called genetic DP, in which they applied DP to create a new
crossover operator. To implement this crossover, they de-
fined a new concept called the partial order common of two
candidate solutions (σ1, σ2). Its definition is as following:
The partial order common of (σ1, σ2) is a set (denotes D) of
the cities pairs (i, j) such that the city i is visited before the
city j in both σ1 and σ2.

1 1 1 1

1 1 2 2
{(,) | () () and () ()}D i j i j i j         

Then they argued that good solutions usually have a lot
of common structures. Basing on this argument, they creat-
ed their crossover operator, in which children σ are born
such that the number of pairs (i, j) ((,))with i j D in σ is

maximum. Hence, with supposing that a tour always starts
from vertex 1, they built a DP formula to find the best child
(which has minimum cost) of each pair of parents (formula
(3)).

Basing on (3), the idea of crossover operator can be pre-
sented as follows: after choosing a pair of parents (σ1, σ2)
randomly, they build a set D by (2). Then, the child σ12 start-
ing from the vertex 1 will add the next vertex j. So, the chil-
dren created by this crossover operator are always the best

as possible. Genetic DP, therefore, is expected to find better
solutions for this problem than the traditional genetic.

() { }

(V)

*({1},1) 0

*(,) min { *({ },) d } *()

*() min{ *(,) }

*() { | and (,) }

() { | no satisfies and (,) }

ij
j I S i

ij
i I

f

f S i f S i j with S V D

f V f V i d

V D S V j S i j D i S

I S i S j S j j i j D

 





   

 

     

    



Besides, genetic DP also creates a new mutation opera-
tor. However, this mutation can be used or not. The muta-
tion is implemented by randomly perturbing the common
partial order D as follows: choose a pair ,i j D such that

1 1
1 1() (j)i   , and relax D by one of the following two

operations:


1 1 1

1 1 1

1 1 1

1 1 1

: {(,) | () () ()},

: {(,) | () () ()}.

D D i k i k j

D D k j i k j

  

  

  

  

   

   


Then they apply DP formula on the new D to obtain a
new solution.

To show the efficiency of Genetic DP, the authors [16]
experimented on 15 randomized Euclidean instances (5
instances for each n = 100, 200, 500). The experimental
results showed that solutions found by Genetic DP were
better than ones found by Multi-Local, Genetic-Local and
Or-opt when sufficient computational time was allowed. But
comparing with Lin-Kernighan algorithm [17], Genetic DP
is worse in term of not only solutions quality, but also run-
ning time.

The authors [23] also applied DP to crossover operator
in GA for solving TSP, but the difference is that they used
Hill-Climbing (HC) instead of building a DP formula as in
[16]. This HC method name is “Simplex”, so their crossover
operator was called “Simplex crossover”.

The main idea of “Simplex” is that from an initial sim-
plex with (n+1) points (where n is the number of cities) in a
n-dimensional space, implement a sequence of elementary
geometric transformations including reflection, contraction
and extension such that the simplex adapts to the function
landscape and finally surrounds the optimum. Hence, they
implement “Simplex crossover” as following: find the best
(xmax) and the worst (xmin) in the selected (n+1) individuals,
then calculate by (5) to find the centroid (xc) of these (n+1)
individuals.

1

min

n

i
i

c

x

x
n






 

After, they calculated “reflected point” (xr), “expanded
point” (xe), “contracted point” (xi), “contracted point
towards the best one” (xo) by (6).

68 2013 International Conference of Soft Computing and Pattern Recognition (SoCPaR)

min

min

min

min max

()

()

() / 2

() / 2

r c c

e r r

i c

o

x x x x

x x x x

x x x

x x x

  

  

 

 



Based on these calculated value, one of three elementary
geometric transformations is implemented.

The results of hybrid method have high reliability and
computing time is approximately 5 times smaller than GA's
time. With larger test sets this hybrid method still maintains
high reliability level, whereas the performance of the other
methods decreases significantly.

B. Using DP as a stage in GA

Instead of using DP to intervene genetic operators as
presented in the previous section, this section presents the
ways to use DP as a preprocess step before implementing
genetic operators.

In [23], addition to create a new genetic operator using
HC as presented in subsection A of section III, Renders et
al. also used HC to optimize the parents before applying
crossover and mutation operators.

By this combination, they proposed GHL (Genetic algo-
rithms hybridized with a Hill-climbing method following a
Lamarckian). In the GHL, the solutions found by HC are
used for performing crossover and mutation operator. And
when evaluating the fitness of each individual, GA uses the
results of HC working with an initial guess corresponding to
this individual.

This hybrid method gave not only better solutions but al-
so faster than GA.

The other combination between GA and DP is used for
solving the single-vehicle pickup and delivery problem [24],
in which, the DP is implemented before GA and used to find
the optimal routing. The model of the hybrid genetic algo-
rithms is showed in figure 1.

Figure 1. Model of hybrid GA

 Figure 1 depicts the model of the hybrid genetic algo-
rithm with DP, where a pre-planned module will arrange the
tasks and prepare the information for the DP module. The
DP module performs a dynamic programming algorithm.
When a specific time is expired, the DP module will move
its unfinished sub-routes to a temporary result pool; these
unfinished sub-routes will be the initial population of genetic
algorithm.

 In [24] the authors also modified the objective function
to accomplish a route in real time. A modified objective
function is defined as follows:

1 2[() ()]dynamic objective delay overload

r V V r V V

Z Z f r f r 
      

    (7)

 The objective function Zdynamic is based on the objective
function of the static case, but with some penalties. For any,

r V V
 

  , the function fdelay(r) and foverload(r) represent
the vehicle delay time and overload at location r
respectively where α1 and α2 are penalty coefficients.

The function fdelay(r) and foverload(r) are defined as follow-

ing (any r V V
 

 ):

, if a vehicle arrives at location lately;
()

0, otherwise.

, if the current load ,

() exceeds the vehicle capacity Q;

0, otherwise.

r r

delay

r r

overload

t b r
f r

l Q l

f r




















In experiments, the authors tested the hybrid genetic al-
gorithm on five problems consisting of 10, 20, 30, 40 and 50
tasks and distance is Euclidean distance. The results show
that, the proposed algorithm always obtains the lower solu-
tion cost than the traditional GA. Further, the proposed algo-
rithm can generate incrementally better solutions at any time.

As previously mentioned, DP method found the best so-
lution for TSP. However this approach has a large computa-
tional complexity and it is only suitable to small instances.
Besides, GA can solve TSP problem with large instances [5,
13, 19, 20], but in some cases, GA gave worse solutions or
slow convergence. So, in this paper, we present the combina-
tion of DP and GA [5]. This algorithm will be presented in
the next section.

IV. CASE STUDIES

A. The combination of genetic algorithm and dynamic
programming

This section presents the combination of genetic algo-
rithm and dynamic programming (CGADP) for solving TSP,
in which genetic algorithm was presented in [5].

Figure 2. The combination of genetic algorithm and dynamic

programming.

692013 International Conference of Soft Computing and Pattern Recognition (SoCPaR)

Figure 2 shows the flowchart of CGADP. This algorithm
starts with randomly initializing the population in GA. We
improve the GA for solving TSP by using local search. After
each generation, it selects pdp% individuals of the current
population randomly and uses a local search procedure
based on DP (in subsection B of section III) to generate new
better individuals. The algorithm stops after the fixed
number of generations.

Sketch of the CGADP algorithm is presented below:
Algorithm 1: CGADP
Input: The initial population P
Output: The optimization population P’
1. Begin
2. Evaluate the fitness of individu-
als in P
3. i ← 0
4. Pi ← P
5. ng ← maximum number of generations
6. While i < ng do
7. ps ← size of the population
8. for j := 1 to ps/2 do
9. do crossover and mutation
10. Insert offspring into Pi+1
11. end for
12. ndp ← number of individuals for
applying DP
13. l ← length of a segment
14. for j := 1 to ndp do
15. c ← select a random individual
from Pi+1
16. k ← random gen position
17. c’ ← apply DP(c, k, l);
18. replace c by c’ in Pi+1
19. end for
20. i ← i+1
21. end while
22. P’ ← Pi
23. return P’

B. Local Search using Dynamic Programming

Dynamic programming is a method which solves com-
plex problems by decomposing them into simpler sub-
problems. There are many algorithms that apply DP. In this
paper, we use the combination of local search using DP and
GA for solving TSP.
DP is applied to find a better segment to replace in each
tour. The main idea is described as following:

 Choose an individual and its gen randomly.
 Use DP to find the optimal value on the segment

with a given length l beginning at the just chosen
tour.

The cost function of a segment from k-th city to (k+l-1)-th
city is calculated by:

1

1
'

,
1

i i

k l

i k

C c  

 

 

   

,i j
c  : cost of traveling from city πi to πj.

k: a random gen position.
l: the length of segment (sub-tour).
π1, π2, …, πn: the permutation of cities 1,…, n.

Figure 3. Calculation the cost of segment from k-th city to (k+l-1)-th city

When each city in the segment is visited, the cost of the
segment which is from the starting position to the current
city is calculated and compared with the current best cost of
the segment.
 If the cost of this segment is greater than the current

best cost of the segment, this segment will be dis-
carded.

 Otherwise, the next city in the segment is visited and
the cost of the segment is calculated to this city. If the
next city is the last of this segment, its cost is com-
pared to the current best cost of the segment. Any
better cost will be kept.

Sketch of applying DP to the tour is presented bellow.
Algorithm 2: ADPT(c)
Input: A individual T(c1,c2,...,cn)
Output: The optimization individual T
1. Begin
2. l ← length of the segment (sub-tour)
3. k ← a random gen position
4. S ← cites in the segment
5. dmin ← cost of the initial segment
6. SC ← Ø
7. for each position p in the segment do
8. for each random s in (S\SC) do
9. cp ← s
10. ct ← cost of segment from
position k-1 to p
11. if ct > dmin then break end if
12. add s to SC
13. if (p is last position of the
segment)then
14. ct ← ct + cost of traveling
between cp and ck+l
15. if (ct < dmin)then
16. dmin ← ct
17. update T
18. SC ← Ø
19. end if
20. end if
21. end for
22. end for
23. return T
24. end

C. Computational results

1) Problem instances
The results are reported for the symmetric TSP by ex-

tracting benchmark instances from the TSP-lib [22]. The
instances chosen for our experiments are eil51.tsp,
kroA150.tsp, lin318.tsp, rat575.tsp, rat783.tsp, pr1002.tsp

70 2013 International Conference of Soft Computing and Pattern Recognition (SoCPaR)

and nrw1379.tsp. The number of vertices: 51, 150, 318, 575,
783, 1002, 1379. Their weights are Euclidean distance in 2-
D.

2) System setting
In the experiment, the system was run 10 times for each

problem instance. All the programs were run on a machine
with Intel Core 2 Duo T6400 2.0GHz, 2GB RAM, and were
installed by C# language.

3) Experimental setup
To evaluation the proposed algorithm, we have two ex-

periments. One is to re-implemented GA [5], the other is to
implement the proposed algorithm, CGADP.

The parameters for two experiments:
 Population size: ps = 100
 Mutation rate: pm = 1/n
 Crossover rate: pc = 0.9

4) Experimental results
The experiments were implemented in order to compare

GA [5] with CGADP in term of the min, mean, standard
deviation values and running times.

Table 1 shows the results found by GA and CGADP al-
gorithm for TSP instances (Eil51, Kro150, Lin318, Rat575,
Rat738, Pr1002, Nrw1379). The experiment results show
that the solutions found by CGADP algorithm are better
than the ones found GA algorithm on the min, mean values
and particularly on standard deviation values with large
problem instances (Lin318, Rat738, Pr1002, Nrw1379).
This proves that CGADP is quite effective with large in-
stances.

Figure 4. The average running time of the GA and CGADP algorithm on

TSP-lib instances after 10 running times.

Figure 5. The convergence rate of GA and CGADP to find the best
solution on the Eil51 instance

Figure 4 shows that CGADP takes more time than GA
[5] to find the best solutions with the same number of fitness
calculations.

Figures 5, 6 illustrate the convergence rates of GA and
CGADP algorithms on TSP-lib instances. The diagrams
show that CGADP converged faster than GA. This proves
the effectiveness of DP-based local search.

In order to select the best value for the length of the
segment which is used local search in DP, we experimented
l = 2, 3, 4, 5, 6, 7. The figure 7 shows the dependence be-
tween the length of the segment, mean cost value found by
10 running times, and the running time of CGADP algo-
rithm. According to the experiment in the figure 7, selecting
(l = 5) is quite reasonable in our algorithm.

Figure 6. The convergence rate of GA and CGADP to find the best

solution on the Nrw1379 instance.

Figure 7. The relationship between the length of the segment, mean cost

found by 10 running times, and the running time on Eil51 instance.

Figure 8. The relationship between the percent of individuals, mean cost

found by 10 running times, and the running time on KroA150 instance.

712013 International Conference of Soft Computing and Pattern Recognition (SoCPaR)

In addition, we also tested the percentage of individuals
to apply dynamic programming. We experimented with 5,
10, 30, 50 and 70 percent of the population size. The figure
8 shows that, CGADP algorithm is effective with 5 percent
of the population size.

V. CONCLUSION

This paper gives a brief survey of combination between
GA and DP for solving TSP. We discuss two ways of this
combination: Using DP as a stage in GA and creating new
genetic operators using DP. Two ways of this combination
tend to attain better solution quality than GA.

Besides, we also implemented our combination of DP
and GA. We experimented on 7 Euclidean instances derived
from TSP-lib with the number of vertices: 51, 150, 318,
575, 783, 1002, 1379. On the TSP-lib instances, the best
cost and the mean cost found by CGADP are better than the
one found by GA. The results show that the combination
algorithm approach can be attractive for solving TSP, par-
ticularly on large problem instances.

In the future, we are planning to improve the algorithm
to reduce the running time. Moreover, a direction for further
research could be a study of the Multi-objective TSP.

REFERENCES

[1] Held, M., Karp, R.M.: A dynamic programming approach to
sequencing problems. Journal of the Society for Industrial and
Applied Mathematics. vol. 10, pp. 196--210 (1962)

[2] Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the
traveling salesman problem. Operations Research, vol. 21, pp. 498--
516 (1973)

[3] Kirkpatrick, S., Gelatt, C.D., Vechi, M.P.: Optimization by simulated
annealing. Science, new series, vol. 220, pp. 671--680 (1983)

[4] Aarts, H., Lenstra, H.L, Lenstra, K.: Local Search in Combinatorial
Optimization, pp. 215--310. Princeton University Press (1997)

[5] Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing
Natural Computing. Series 1st edition. Springer (2003)

[6] Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd
Edition. Prentice-Hall (1999)

[7] Dorigo, M., Stutzle, T.: Ant Colony Optimization. Bradford Books,
MIT Press (2004)

[8] Teodorovic, D., Lucic, P., Markovic, G., Dell’Orco, M.: Bee Colony
Optimization: Principles and Applications. In: 8th Seminar on Neural
Network Applications in Electrical Engineering, pp. 151--156. IEEE
Press (2006)

[9] Adlema, L.M.: Molecular Computation of Solutions to Combinatorial
Problems, vol. 266, pp. 1021—1024. Science (1994)

[10] Henry-Labordere, A.: The record balancing problem: A dynamic
programming solution of a generalized traveling salesman problem.
RAIRO Operations Research B2, 43--49 (1969)

[11] Fischetti, M., Salazar, J.J., Toth, P.: A branch-and-cut algorithm for
the symmetric generalized traveling salesman problem. vol. 45, pp.
378--394. Operations Research (1997)

[12] Noon, C.E., Bean, J.C.: A Lagrangean based approach to the
asymmetric generalized traveling salesman problem. Operations
Research. 39, 623--632 (1991)

[13] Snyder, L.V., Daskin, M.S.: A random-key genetic algorithm for the
generalized traveling salesman problem. European Journal of
Operational research. 174, 38--53 (2006)

[14] Paquete, L., Stützle, T.: A Two-Phase Local Search for the
Biobjective Traveling Salesman Problem. In: Second International
Conference (EMO 2003), pp. 479--493. Springer, Heidelberg (2003)

[15] Chentsov, A.G., Korotayeva, A.G.: The dynamic programming
method in the generalized traveling salesman problem. Mathematical
and Computer Modeling. 25, 93--105 (1997)

[16] Yagiura, M., Ibaraki, T.: The Use of Dynamic Programming in
Genetic Algorithms for Permutation Problems. European Journal of
Operational Research. 92, 387--401 (1996)

[17] Lin, S., Kernighan, B.M.: An Effective Heuristic Algorithm for the
Traveling-Salesman Problem. Operations Research. 21, 498--516
(1973)

[18] Nourolhoda Alemi Neissi, Masoud Mazloom: GLS Optimization
Algorithm for Solving Travelling Salesman Problem. Second
International Conference on Computer and Electrical Engineering
(2009)

[19] Bernd Freisleben, Peter Merz: New Genetic Local Search Operators
Traveling Salesman Problem. In: The 4th International Conference on
Parallel Problem Solving from Nature, pp. 890--899. Springer,
Heidelberg (1996)

[20] Bernd Freisleben, Peter Merz: New Genetic Genetic Local Search for
the TSP: New Results. In: International Conference on Evolutionary
Computation, pp. 159--164. IEEE Press (1997)

[21] Freisleben, B., Merz, P.: A Genetic Local Search Algorithm for
Solving Symmetric and Asymmetric Traveling Salesman Problems.
In: Proceedings of the 1996 IEEE International Conference on
Evolutionary Computation, pp. 616—621 (1996)

[22] TSPLIB, http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

[23] Renders, J.M.,Bersini, H.: Hybridizing genetic algorithms with hill-
climbing methods for global optimization: two possible ways. In:
Evolutionary Computation, 1994. IEEE World Congress on
Computational Intelligence., Proceedings of the First IEEE
Conference on. 1, 312 – 317 (1994)

[24] Wan-rong Jih, Hsu, J.Y.-J.: Dynamic vehicle routing using hybrid
genetic algorithms. In: International Conference on Robotics &
Automation. 1, 453 – 458 (1999).

TABLE 1. THE RESULTS FOUND BY GA AND CGADP ALGORITHM FOR TSP INTSTANCES.

No. Problems NCity
CGADP GA

Min Mean Std Min Mean Std

1 Eil51 51 502.3 589.2 40.5 612.7 652.6 36.0

2 Kro150 150 61076.8 66212.0 4310.3 72136.0 75507.8 2450.6

3 Lin318 318 150438.6 158795.5 5233.9 177488.0 185148.2 5696.8

4 Rat575 575 27896.5 29183.6 878.0 33191.4 34140.6 562.1

5 Rat783 783 44148.3 45241.3 640.8 53274.2 54335.8 797.9

6 Pr1002 1002 1627014.0 1682714.7 39166.9 1941224.0 2015872.1 39877.5

7 Nrw1379 1379 365986.2 373284.4 3868.7 434914.0 447344.2 6526.5

NCity: Number of city; Min: Minimum cost; Mean: Mean cost; Std: Standard Deviation of minimum cost

