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Abstract—Interpolative reasoning is one of the most interested
problems with various approaches for type-1 fuzzy sets, interval
type-2 fuzzy sets, recently. However, the related methods have
not mentioned general type-2 fuzzy sets yet because of their
computational complexity. The paper deals with an approach
to representation theorem of general type-2 fuzzy sets using the
reduced grid. A computational schema for interpolative reasoning
of sparse general type-2 fuzzy rules is also introduced. This
schema is not depended on the shape of membership functions.
Beside, the parallelizing schema for GPU platform is proposed to
speed-up the algorithms. The proposed methods are implemented
on both of GPU and CPU platforms with various membership
functions.

Index Terms—Interpolative reasoning; sparse fuzzy rule; gen-
eral type-2 fuzzy sets; GPU parallel computing;

I. INTRODUCTION

Interpolative reasoning is to find the fuzzy interpolated
result for sparse fuzzy rules to reduce the complexity of fuzzy
models. Many approaches have proposed to gain the qual-
ity interpolated fuzzy sets. However, almost approaches are
for type-1 fuzzy sets. Recently, some interpolative reasoning
methods have mentioned to interval type-2 fuzzy sets. For
type-1 fuzzy sets, Koczy and Hirota [14] firstly proposed
a reasoning approach using linear interpolation based on
the proportion of distances between fuzzy sets. P.Baranyi et
al [8] proposed an interpolation methodology based on the
interpolation of relations in which the fuzzy and semantic-
relations are used. Z. Huang et al [9] proposed an approach to
fuzzy interpolation using means of scale and move transforma-
tions in which interpolating method is designed for complex
polygon, Gaussian or other bell-shaped fuzzy membership
functions. For technique of interpolation for sparse fuzzy rules
based on polygon representation of membership functions,
S.M.Chen et al [10], [11], [12] proposed several methods.
In [10], authors had generalized the membership functions
as polygon fuzzy sets for interpolative reasoning based the
ratio of fuzziness using the area of fuzzy sets. A technique of
interpolation based on α-cuts and ration transformation [11]
had been also proposed for various membership functions. The
weighted fuzzy interpolative reasoning [12] based on weighted
increment transformation and weighted ratio transformation

techniques was also proposed using polygonal membership
functions of fuzzy sets.

Type-2 fuzzy models are normally very complex to infer-
ence, especially general type-2 fuzzy logic systems. Many
studies have done to reduce the computational complexity for
general type-2 fuzzy sets [1], [2], [3], [5], [7]. Several tech-
niques of interpolative reasoning have proposed for interval
type-2 fuzzy sets based on the ratio of fuzziness [19] or com-
bination of ratio of fuzziness and genetic algorithms to learn
optimal interval type-2 Gaussian fuzzy sets [20]. However, no
technique related to interpolation reasoning have mentioned
for general type-2 fuzzy sets because of the computational
complexity.

The paper deals with an approach to interpolative reasoning
for sparse general type-2 fuzzy rules based on the reduced
grid representation and the weight of rules. For type-2 fuzzy
sets, computation approaches depend on their representation
theorem. Hence, this paper has approached the interpolative
reasoning based on reduced grid. The reduced grid representa-
tion for general type-2 fuzzy sets is for optimizing the memory
instead of grid representation. A process of interpolative
reasoning for sparse general type-2 fuzzy rules has proposed
with some experiments. A diagram of parallel computation on
GPU platform is also introduced with various experiments in
comparison with CPU platform. The summarised data shows
the advantage of the proposed methods.

The paper is organized as follows: II presents an overview
on type-2 fuzzy sets; III introduces reduced grid representation
for general type-2 fuzzy sets; IV presents the proposed process
of interpolative reasoning for sparse general fuzzy rules; V
introduces implementation and discussion; VI is conclusion
and future works.

II. PRELIMINARIES

A. Type-2 fuzzy sets

A type-2 fuzzy set in X is denoted Ã, and its membership
grade of x ∈ X is µÃ(x, u), u ∈ Jx ⊆ [0, 1], which is a type-
1 fuzzy set in [0, 1]. The elements of domain of µÃ(x, u)
are called primary memberships of x in Ã and memberships
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of primary memberships in µÃ(x, u) are called secondary
memberships of x in Ã.

Definition 2.1: A type− 2 fuzzy set, denoted Ã, is char-
acterized by a type-2 membership function µÃ(x, u) where
x ∈ X and u ∈ Jx ⊆ [0, 1], i.e.,

Ã = {((x, u), µÃ(x, u))|∀x ∈ X,∀u ∈ Jx ⊆ [0, 1]} (1)

or
Ã =

∫
x∈X

∫
u∈Jx

µÃ(x, u))/(x, u), Jx ⊆ [0, 1] (2)

in which 0 ≤ µÃ(x, u) ≤ 1.
At each value of x, say x = x′, the 2-D plane whose axes

are u and µÃ(x
′, u) is called a vertical slice of µÃ(x, u). A

secondary membership function is a vertical slice of µÃ(x, u).
It is µÃ(x = x′, u) for x ∈ X and ∀u ∈ Jx′ ⊆ [0, 1], i.e.

µÃ(x = x′, u) ≡ µÃ(x
′) =

∫
u∈Jx′

fx′(u)/u, Jx′ ⊆ [0, 1] (3)

in which 0 ≤ fx′(u) ≤ 1.
Type-2 fuzzy sets are called an interval type-2 fuzzy sets if

the secondary membership function has fx′(u) = 1 ∀u ∈ Jx
i.e. a type-2 fuzzy set is defined as follows:

Definition 2.2: An interval type-2 fuzzy set Ã is character-
ized by an interval type-2 membership function µÃ(x, u) = 1
where x ∈ X and u ∈ Jx ⊆ [0, 1], i.e.,

Ã = {((x, u), 1)|∀x ∈ X,∀u ∈ Jx ⊆ [0, 1]} (4)

Uncertainty of Ã, denoted FOU, is union of primary
functions i.e. FOU(Ã) =

⋃
x∈X Jx. Upper/lower bounds of

membership function (UMF/LMF), denoted µÃ(x) and µ
Ã
(x),

of Ã.

B. Operations

Let Ã, B̃ be type-2 fuzzy sets whose secondary membership
grades are fx(u), gx(w), respectively. Theoretic operations of
type-2 fuzzy sets such as union, intersection and complement
are described [1] as follows:

µÃ∪B̃(x) = µÃ(x)t µB̃(x) =
∫
u

∫
v

(fx(u) ? gx(w))/(u∨w)
(5)

µÃ∩B̃(x) = µÃ(x) u µB̃(x) =
∫
u

∫
v

(fx(u) ? gx(w))/(u ? w)

(6)

µÃ(x) = µ¬Ã(x) =

∫
u

(fx(u))/(1− u) (7)

where ∨, ? are t-cornorm, t-norm, respectively.
Join operation will be used for fusion of interpolated type-

2 fuzzy sets. The following is description in the case of the
discretized domain. Suppose more than one calculation of u
and w gives the same point u∨w, for example, u1 ∨w1 = θ∗

and u2 ∨ w2 = θ∗. Then within the computation of (5), we
would have

fx(u1) ? gx(w1)/θ
∗ + fx(u2) ? gx(w2)/θ

∗ (8)

where + denotes union. Combining these two terms for the
common θ∗ is a type-1 computation in which t-conorm can
be used, e.g. the maximum.

If θ ∈ F t G, the possible {u,w} pairs that can give
θ as the result of the maximum operation are {u, θ} where
u ∈ (−∞, θ] and {θ, w} where w ∈ (−∞, θ]. The process of
finding the membership of θ in Ã t B̃ can be computed as
follows:

fFtG(θ) = φ1(θ) ∨ φ2(θ) (9)

where

φ1(θ) = sup
u∈(−∞,θ]

{
fx(u)∧gx(θ)} = gx(θ)∧ sup

u∈(−∞,θ]

{
fx(u)}

(10)
and

φ2(θ) = fx(θ) ∧ sup
w∈(−∞,θ]

{
gx(w)} (11)

III. INTERPOLATIVE REASONING FOR GENERAL TYPE-2
FUZZY RULES

A. The reduced grid representation of general T2FS

In [4], [6], a grid representation of general type-2 fuzzy sets
has been proposed for speed-up computation based on GPU
platform. This section re-describes with some improvement of
grid representation, called reduced grid, for computation of
interpolative reasoning of sparse general type-2 fuzzy rules.
This grid only describes cells that belong to the FOU of type-
2 fuzzy sets. Hence, some concepts are described as follows:

Let X be domain of type-2 fuzzy set Ã and U =
[umin, umax] ⊆ [0, 1] be secondary domain of Ã. Suppose
that X = [xmin, xmax]. The space X × U can be divided
into a grid being union of M × N cells, in which M =
[(xmax−xmin)/dx] and N = [(umax−umin)/du]. According
to this way, a sub type-2 fuzzy set Ãij in domain of the cell
(i, j) is described as follows:

Ãij = {((x, u), µÃ(x, u)|x ∈ Xi = [xi, xi], u ∈ Uj = [uj , uj ]}
(12)

in which xi = xmin+i∗dx, xi = xi+dx, uj = umin+j∗du,
uj = uj + du, i = 0, N − 1 and j = 0,M − 1.

To define grid type-2 fuzzy set, called Ãg , an approximate
representation of sub type-2 fuzzy set Ãij by a cell type-2
fuzzy set Ãcij is introduced.

Provide that (x, u) is a point in the cell (i, j) then the
membership grade at (x, u) of Ã is computed as:

fij(x, u) = hÃcij
(x, u) =

4∑
k=1

f (k)/4 (13)

in which f (k) is membership grade at the kth vertex and hÃcij
is also called the height of the cell Ãcij .

Definition 3.1: A cell type-2 fuzzy set, denoted Ãcij , is
approximate representation of sub type-2 fuzzy set Ãij and
is defined as follows:

Ãcij = {((x, u), µÃcij (x, u))|x ∈ [xi, xi], u ∈ [ui, ui]} (14)
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in which µÃcij (x, u)) = fij(x, u),
∑4
k=1 f

(k) > 0.
Definition 3.2: A reduced grid type-2 fuzzy set, denoted

Ãg , is union of above defined cell type-2 fuzzy set, i.e

Ãg =
N−1⋃
i=0

M−1⋃
j=0

Ãcij (15)

FOUÃ ' FOUÃg =
N−1⋃
i=0

M−1⋃
j=0

FOUÃcij
(16)

Definition 3.3: The degree of approximation (DoA) is the
difference between original type-2 fuzzy set Ã and reduced
grid type-2 fuzzy set Ãg and is defined as follows:

DoA =
N−1∑
i=0

M−1∑
j=0

4ij/nc (17)

in which 4ij = |µÃ(xci , ucj)− fij(xci , ucj)|, xci =
1

2
(xi + xi),

uci =
1

2
(ui + ui) and nc is the number of cells.

Example 3.1: Let Ã is a general type-2 fuzzy set. The
feature membership functions of Ã are described as follows:

FOU is Gaussian function with upper MF and lower MF as
follows:

Upper MF of FOU:

fu(x) =


e−

1
2 (
x−m1
σ )2 if x < m1

1 if m1 ≤ x ≤ m2

e−
1
2 (
x−m2
σ )2 if x > m2

(18)

Lower MF of FOU:

fl(x) =

{
e−

1
2 (
x−m2
σ )2 if x < m1+m2

2

e−
1
2 (
x−m1
σ )2 if otherwise

(19)

where m1 = 3.0, m2 = 4.0 and σ = 0.5.
The next feature of Ã is set of points where µÃ(x, u) = 1.0,

involves points belong to the MF described as follows:

fm(x) = e−
1
2 (
x−(m1+m2)/2

σ )2 (20)

The secondary membership function at x of Ã are Gaussian
functions that are described as follows:

g(u) =

{
e−

1
2 (

u
σ1

)2 if u ≥ u0
e−

1
2 (

u
σ2

)2 if u < u0
(21)

in which u0 = fm(x), σ1 = 3.035 ∗ |u − u0| and σ2 =
3.035 ∗ |u− u0|.

Fig. 1 depicts a reduced grid T2FS with various parameters
of M,N . The implementation has gained the results as Table
I.

TABLE I
GRID TYPE-2 FUZZY SETS WITH VARIOUS PARAMETERS

M × N DoA M × N DoA

64 × 16 0.05493 1024 × 256 0.00083

256 × 64 0.00745 4096 × 1024 0.00009

Fig. 1. Reduced grid type-2 fuzzy set; Top: M = 64, N = 16; Middle:
M = 256, N = 64; Bottom: M = 1024, N = 256 .

B. Proposed method for interpolative reasoning of sparse
general type-2 fuzzy rules

Let us consider the following fuzzy rules interpolation
schema in which Ãi,j , B̃i (i = 1, 2, . . . , k, j = 1, 2, . . . ,m)
are reduced grid - based general T2FSs.

Rule 1: If X1 is ˜A1,1 and X2 is ˜A1,2 and . . . and Xm is
˜A1,m Then Y is B̃1

Rule 2: If X1 is ˜A2,1 and X2 is ˜A2,2 and . . . and Xm is
˜A2,m Then Y is B̃2

...

Rule n: If X1 is ˜An,1 and X2 is ˜An,2 and . . . and Xm is
˜An,m Then Y is B̃n.
Observation: X1 is Ã∗1 and X2 is Ã∗2 and . . . and Xm is

Ã∗m

Conclusion: Y is B∗.
For interpolative reasoning of above fuzzy rule schema, we

define some concepts related to a general T2FS.
Definition 3.4: Let Ã be the reduced grid general T2FS

with grid size M ×N . A representative point of Ã is its cen-
troid and representative value, denoted Rep(Ã), is computed
as follows:

Re(Ã) =

∑
0≤i<M,0≤j<N

(
cÃcij
× vÃcij

)
∑

0≤i<M,0≤j<N

(
vÃcij

) (22)

where cÃcij
, vÃcij

is the centroid and the volume of the cell

T2FS Ãcij that are computed as cÃcij = (xi+xi)/2 and vÃcij =
dx× du× hÃcij .

For each rule, its weight is defined as the rate between
the one and observation in comparison with other ones. The
rule’s weights are computed as the way described in [20], i.e.,
assume that Ãlj ,j , Ãrj ,j are the left nearest antecedent fuzzy
set and the right nearest antecedent fuzzy set with respect to
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the observation fuzzy set Ã∗j , respectively, where 1 ≤ lj ≤ n,
1 ≤ rj ≤ n and 1 ≤ j ≤ m, then let

wk = min1≤j≤m

(
1−

|Re(Ã∗j )−Re(Ãk,j)|
Re(Ãlj ,j)−Re(Ãrj ,j)

)
(23)

Wk =
wk∑n
i=1 wk

(24)

The proposed approach for interpolative reasoning of re-
duced grid general type-2 fuzzy rules is described as follows:

Step 1: Compute the representative values (using equation
(22)) of all reduced grid general T2FSs of the observation Ã∗j ,
0 ≤ j ≤ m.

Step 2: For the rule k (0 ≤ k ≤ n), compute the
representative values (using equation (22)) of all reduced grid
general T2FSs appearing in the antecedent part of the rule
Ãk,j , 0 ≤ j ≤ m.

Step 3: Compute the weights of all rules in the fuzzy rule
schema Wk, 0 ≤ k ≤ n, using the equations (23) and (24).

Step 4: Compute the representative values of consequence
type-2 fuzzy sets B̃k, 0 ≤ k ≤ n. The representative value of
B̃∗ is computed as follows:

Re(B̃∗) =
n∑
k=1

Wk ×Re(B̃k) (25)

Step 5: The algorithm for computing membership grade of
B̃∗ is described as the following algorithms:

1. Compute k0 =

[
Re(B̃∗)− xmin

dx

]
, where xmin is

smallest value of the domain X , dx is size of grid along
x-axis and [ ] is integer part operation.
2. As the same way, the indices in the grid of the represen-
tative values of the consequence T2Fs B̃k are computed as
follows:

ki =

[
Re(B̃i)− xmin

dx

]
(26)

where 0 ≤ i ≤ n.
3. Let sB̃∗,j = {uk1 , uk1+1, ..., uk2 |0 ≤ k1 ≤ k2 < N} be
the set of vertices in the grid of B̃j along vertical slide xj
then the support ‖sB̃∗,j‖ ≤ N . Compute the membership
grade at vertices of B̃∗ is described as follows:
3.1. The meet operation: sC̃,i =Meet(sÃ,i, sB̃,i)
1) Call i1 = min{k|hÃ(xi, uk) > 0 or hÃ(xi, uk+1) > 0}
i2 = maxk{k|hÃ(xi, uk) > 0 or hÃ(xi, uk+1) > 0}.
As similar way, j1, j2 are responding to B̃.
2)
for k = 0 to N − 1 do

a) ip = k > i1?k : i1.
b) f1 = maxN−1j=iphÃ(xi, uj)

c) f2 = maxN−1j=iphB̃(xi, uj)
d) t1 = min(hB̃(xi, uj), f1).
e) t2 = min(hÃ(xi, uj), f2).

f) hC̃(xi, uk) = max(t1, t2);
end for
3.2. The algorithm for computing membership grades
for i = 0 to M − 1 do

1) x0 = k1 − (k0 − i);
2) sC̃,i = sB̃1,x0

.
for j = 2 to n do

a) x0 = kj − (k0 − i);
b) sD̃,i =Meet(sC̃,i, sB̃j ,x0

);
c) sC̃,i ←− sD̃,i;

end for
end for
The proposed method of interpolative reasoning is general

computational process for sparse type-2 fuzzy rules based
on reduced grid representation. This method is not depended
on the shape of membership functions, i.e can be applied
for Triangular/Trapezoid functions, Gaussian functions, Bell-
shaped functions or other shaped functions.

C. GPU implementation

GPU is the computing platform for speeding up problems
with huge computational complexity. The reduced grid repre-
sentation results in the high accuracy by using smaller size
of grid, i.e. it takes the huge computational time. GPU-based
acceleration is the suitable approach for this problems.

Firstly, we organize memory for parallelizing the process of
interpolation reasoning related the data structures and move or
copy easy between host memory and device memory. Fig. 2
shows the way to organize a memory for reduced grid general
T2FS. In which, each vertical slide of the grid is stored in a
memory segment with ki2 − ki1 + 2 blocks. Two head blocks
are used to store indices of the first index and last index of
sÃ,i, i.e. ki1 and ki2. The remaining blocks are used to store
the membership grades of vertices in sÃ,i. In the case of
‖sÃ,i‖ = �, memory is only used one blocks for ”-1” flag
to skip the slide. These memory segments are joined to an
one-dimensional array. Hence, total of the used memory is
less than

∑M
i=1(k

i
2 − ki1 + 2) blocks.

Fig. 2. Memory for reduced grid general T2FS with ki,1 = 0.

Secondly, we have organized procedures which are im-
plemented on GPU platform, involving ComputeRep, Com-
puteConclusion. ComputeRep is to compute the representative
value of the reduced grid general T2FS. If there are more
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than one T2FS, a computational matrix on GPU device is
made to compute parallel all of these T2FSs. In that case,
the memory of grids is 2-dimentional matrix described as Fig.
3. ComputeConclusion is a procedure to compute parallel the
membership grade at grid’s vertices of B̃∗ as described in
Step 5.3. A 2-dimensional computational matrix is set up to
compute these membership grades concurrently.

Fig. 3. Memory used in the case of multi T2FSs.

Computational schema on both of GPU and CPU platforms
is described as Fig. 4 in which two color-filled blocks (no.
1 and 5) are implemented on GPU. Other blocks are imple-
mented on CPU involving block no. 2, 3 and 4.

Fig. 4. Diagram of interpolative reasoning schema.

IV. EXPERIMENTAL RESULTS

In this section, we mention some examples of fuzzy inter-
polation schemas with various shaped functions as Gaussian
functions, Trapezoid functions.

Experiment 4.1: Suppose that we have fuzzy rule schema
as the Fig. 5 with four rules as follows:

Rule 1: If X1 is ˜A1,1 and X2 is ˜A1,2 Then Y is B̃1

Rule 2: If X1 is ˜A1,1 and X2 is ˜A2,2 Then Y is B̃2

Rule 3: If X1 is ˜A2,1 and X2 is ˜A1,2 Then Y is B̃3

Rule 4: If X1 is ˜A2,1 and X2 is ˜A2,2 Then Y is B̃4

Observation: X1 is Ã∗1 and X2 is Ã∗2

Conclusion: Y is B∗.
in which Ã11, Ã12, Ã∗1, Ã21, Ã22, Ã∗2, B̃1, B̃2, B̃3, B̃4,

B̃∗ are reduced grid general T2FSs with their membership
functions in Fig. 5.

Fig. 5. Fuzzy rule schema and the fuzzy interpolated results of the proposed
method.

Now, we apply the above proposed method to find the
conclusion T2FS B̃∗. The result is described as follows:

Step 1: The representative values of the consequent T2FSs
with M × N = 1024 × 256: Re(B̃1) = 2.045, Re(B̃2) =
6.000, Re(B̃3) = 9.999 and Re(B̃4) = 14.193.

Step 2: The representative values of the antecedent T2FSs
with M × N = 1024 × 256: Re(Ã11) = 3.036, Re(Ã12) =
2.727, Re(Ã21) = 14.038 and Re(Ã22) = 13.189.

Step 3: The weights of rules: W1 = 0.362, W2 = 0.172,
W3 = 0.294 and W4 = 0.172.

Step 4: The representative value of conclusion: Re(B̃∗) =∑4
i=1Wi ×Re(B̃i) = 7.153.
Step 5:

1. k0 =

[
Re(B̃∗)− xmin

dx

]
= 406 ∈ [0,M ] ≡ [0, 1024].

2. k1 = 116, k2 = 341, k3 = 568 and k4 = 806 ∈ [0,M ] ≡
[0, 1024] .

3. Compute membership grade at vertices of B̃∗. The fuzzy
interpolated result of B̃∗ is depicted as Fig. 5. Fig. 6 shows the
interpolated result for interval type-2 fuzzy sets of the Chen’s
method [19]. These two results are similar with respect to B̃∗’s
FOU.

Experiment 4.2: GPU implementation.
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Fig. 6. The fuzzy interpolated results of the Chen’s method [19].

The proposed method is implemented on the GPU in com-
parison with the one on the CPU. The experimental platform
is on the computer with operating system Windows 7 64bit
and nVIDIA CUDA support with specifications: CPU Core
i7-460M 3.6 GHz; 8 Gb RAM (DDR3); GPU is nVIDIA
Gerforce GTX 680 with 1536 CUDA cores, 2GB of texture
memory.

We summarised the computational time of two operations
in which the one is the single operation for computing
representative value, the one is the process of interpolative
reasoning. The operation for computing representative value is
for T2FS Ã∗1 with various size of the grid. The computational
time is summarised in the table II in which the one on GPU
platform takes few time even thought in the case of large size
of grid. Secondly, all process of interpolative reasoning as the
experiment 4.1 are implemented. The summarized data in the
table III show that the speed-up rate are much larger if the
size of grid is much larger. The fuzzy interpolated results are
similar the ones on CPU in Fig. 5.

TABLE II
COMPUTING REPRESENTATIVE VALUE

M × N GPU (ms) CPU (ms) Rate

512 × 128 0.298 0.430 1.444

1024 × 256 0.435 1.578 3.629

2048 × 512 0.751 6.320 8.417

4096 × 1024 1.572 25.147 15.996

8192 × 2048 4.088 100.596 24.607

V. CONCLUSION

The paper introduces an approach to interpolative reasoning
for sparse general type-2 fuzzy rules based on reduced grid
representation of general T2FS. The fuzzy interpolated results
are computed using the weights of rules. The interpolative
reasoning processes are described on sequence algorithms

TABLE III
COMPUTATIONAL TIME OF INTERPOLATIVE REASONING

M × N GPU (ms) CPU (ms) Rate

256 × 64 56.982 14.749 0.258

512 × 128 58.895 85.342 1.449

1024 × 256 68.575 555.017 8.094

2048 × 512 112.907 3898.604 34.529

4096 × 1024 376.891 29158.566 77.366

8192 × 2048 2268.398 227748.063 100.400

on GPU and parallel algorithms of GPU. Experiments are
implemented on both GPU/GPU platforms.

Further researches about interpolative reasoning for general
type-2 fuzzy rules may be developed based on this represen-
tation with different approaches.
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