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Identification of a Gas Furnace Process Using WSDP Model 

Nguyen-Vu Truong and Nguyen Tran Hiep 

Abstract- This paper presents the identification of a gas fur­
nace process using the so called wavelet based State Dependent 
Parameter (WSDP) models. Here, each of the process' dominant 
dynamics are characterized by a state dependent parameter in 
form of wavelet which is able to provide valuable insight, and 

effective means to measure the system's degree of nonlinearity. 
To illustrate the advantages of the proposed modeling approach, 
the identified model is benchmarked with a few welknown 
reported results, i.e. fuzzy logic, generalised kernel and linear 
ARX models. 

I. INTRODUCTION 

The gas furnance process data set has been used for a long 
time as one of a common benchmark for artificial intelligence 
based modelling approach, i.e. fuzzy logic, generalised ker­
nel models ,  etc .. This dataset consists of 296 data samples 
at Ts = 9s. The input for this system is Methane input into 
gas furnace: cu. ft/ min, while the output is carbon dioxide 
output concentration from gas furnace-% of output gas. In 
the open literature, several techniques have been reported 
to approach the modelling of such a process, including (I) 
Box and Jenkins model [4] in which linear models were 
assumed, (2) a number of fuzzy logic based approach (i.e. 
[6] - [8]  ), generalised kernel models [ 1 6] assuming a certain 
degree of nonlinear dynamics exist in this process. However, 
these assumptions are rather misleading since they did not 
justify the measure and location of the process '  nonlinearity 
/ linearity and their performance were often measured by 
Mean-Squared-Error (MSE). 

Our recent publications (i.e. [ 1  ] - [3 ] )  have presented ap­
proaches to the identification of nonlinear systems using 
wavelet based State Dependent Parameter (SDP) models. 
This model structure expresses the nonlinear system as a set 
of the linear regressive output/input terms (states) mUltiplied 
by associated State Dependent Parameters to characterize the 
nonlinearities. These state dependencies, in the first step, are 
non-parametrically estimated using a SDP algorithm based 
on recursive fixed interval smoothing (i.e. [9] - [ 15 ] ,etc). The 
shapes of the SDP relationships (as defined by the plots 
of the parameters against the state variables) indicate and 
visualize the nature of the most significant nonlinearities 
within the dynamic SDP model. They are then, in the second 
step, parameterized in a compact manner via wavelet series 
expansion by employing appropriate types of wavelet basis 
functions that are selected corresponding to the features of 
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the SDP relationships. This formulates the wavelet based 
SDP model (WSDP). 

Looking back to this identification problem, this paper 
presents the use of WSDP models to model this gas furnace 
process. Here, in the first step, the nonparameterically esti­
mated SDP provides valuable insight, effective measures as 
well as location of the most dominant nonlinearities. Based 
on this measure, the model 's  structure of the process will 
be identified, combining both nonlinear and linear terms. 
The final parameterized model will be then obtained using 
Orthogonal decomposition and PRESS statistics forward 
regression (i.e. [ 1  ] - [3 ] )  which delivers a parsimonious model 
representation of this benchmark systems, that is the WSDP 
model excellently characterizes the system's dynamic be­
haviour in a compactly generalizable manner ( 12  terms) with 
a second order model insteading of upto fourth order models 
as in the previously reported results. 

This paper is organized as follows. Background informa­
tion about WSDP models is provided in Section 2. The 
simulation and benchmark results are reported in Section 3. 
Finally, Section 4 concludes this paper. 

II. WAVELET BASED SDP MODEL 

A wide range of nonlinear systems can be represented 
by a nonlinear autoregressive model with exogenous inputs 
(NARX), as described below: 

y(k) =f{X(k)} =f{y(k-l ), ... ,y(k-nv ), 
u(k), ... , u(k -nu )} + e(k) ( 1 )  

where f{.} i s  a nonlinear function (mapping) ; u(k) and y(k) 
are, respectively, the sampled input-output sequences ; while 
{n", nv} refer to the maximum number of lagged inputs and 
outputs. Finally, e(k) refers to the noise variable, assumed 
initially to be a zero-mean, white noise process that is 
uncorrelated with the input u(k) and its past values. 

It is assumed that the above system ( 1 )  can be represented 
by the following State Dependent Parameter (SDP) model: 

l1v 

y(k) = LJq{Y(k -q)}y(k -q) 
q=1 
11" 

+ Lgq{u(k-q)}u(k-q)+e(k) (2) 
q=o 

Here, the parameters fq{.}, gq(.} are the State Dependent 
Parameters (SDPs) which are respectively functions of the 
state variables defined by the input and output variables and 
their past sampled values. 
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At this point, the nonlinear system identification problem 
is equivalent to the problem of estimating and parameterizing 
the system's nonlinearities characterized by the respective 
SDPs. More specifically, the nonlinearities carried by these 
SDPs are first non-parametrically estimated as discussed 
in the previous sections. In the transformed space (sorted 
space), the SDP's non-parametric estimate is smoother and 
less rapid variation. As a result, in order to obtain the 
compactness in the SDP's parameterization, linear wavelet 
functional approximation is utilized, in which the respec­
tive SDP is represented by a set of scaled and translated 
wavelet basis functions in combination with a linear function. 
As proposed and discussed in Section 2.3 ,  this functional 
approximation scheme is , particularly, advantageous in ap­
proximating functions with slow variation features like SDP 
relationships. 

These non-parametric estimates are then used as a priori 
knowledge for the selection of wavelet basis functions and 
the associated scaling parameters (i.e. finest and coarsest 
scales imin , imax ) to be used to effectively parameterize the 
system's nonlinearities characterized by the respective SDP 
relationships. 

Using the linear wavelet functional approximation as pro­
posed in Section 2.3 ,  the respective SDPs can be generally 

Let 

{C/>Iq,L;(k) = ['Pi,jillun{y(k � q)}, ... , 'Pi,jimaxjy(k -q)} l} 
AIq,L; - [drq,I,.Jimin' ... ,drq,I,.JilTlaxl 

(7) 
{C/>gq,L;(k) = ['Pi,ji1I1in{u(k �q)}, ... ,'P

.
i,jimaxju(k-q)}l} 

Agq,L; - [dgq,l,J;min' ... , dgq.1,];max] 
(8) 

where jimin and jimax are the lower and upper limits of Li. 
By being defined as in (7) and (8) , C/>Iq,L;(k) and C/>gq,L;(k) 

are functions of y(k-q) and u(k-q) respectively. 
Then, (6) can be re-arranged into the following form: 

y(k) = � [�[ C/>Iq,L;(k)AIq,Li+arq[y(k-q)]+brq] y(k-q) 
q-l l-lmln 

+ � [.�[ C/>gq,L;(k)Agq,L;+agq[U(k-q)]+bgq] u(k-q) 
q-O l-lmin 

+ e(k) (9) 

Now define, {rIq(k) = [C/>I�;lTlin;k
.

)' '''' C/>Iq'L
�
TJa

.

x(k)' Y(k-q), �lY(k-q)} A.tq - [Afq,L;min, .. ·,Afq,L;max,a.tq,b.tq] 
( 10) 

approximated as follows: [ 1 {rgq(k) = C/>gq,L;min(k

.

), ... ,C/>gq,L;max

. 

(k),u(k-q)' i U(k-q)} imax Agq = [AIq,L;min' ... ,AIq,L;max' agq, bgq] 
fq{y(k -q)} = L L d(q,i,j\PU [y(k -q)] + a(q [y(k -q)] + bfq ( 1 1 )  i=imin jEL; 

imax 
(3) 

We obtain, 
fl.V llu 

gq{ u(k -q)} = L L dgq,i,j'Pi,j [u(k -q)] + agq [u(k -q)] + bgq 
y(k) = L rfq(k)Afq + L rgq(k)Agq + e(k) 

q=l q=o 
( 1 2) 

(4) 

(5) 

in which, 'P(x ), imin,imax are selected corresponding to the 
features of the SDP relationships. 

Substitute (3) and (4) into (2), we obtain a wavelet based 
SDP model (WSDP) as follows. 

Here, Afq and Agq are the parameter vectors. Again, as 
defined in ( 10) and ( 1 1 ) ,  rfq(k) and rgq(k) are functions of 
y(k-q) and u(k-q) respectively. 

To integrate ( 12) with measured input and output data, we 
assume thaty(O),y(I), ... ,y(N-l )  and u(O),u(I), ... ,u(N-
I) are available. 

With 

y = [y(O), ... ,y(N -IW ( 1 3) 

Y(k)={ � [�[ Ld(q,i,j'Pi,j[Y(k-q)]+afq[y(k-q)]+bfq]} X 
q-l l-lmin JEL, 

U = [u(O), ... ,u(N -IW 
Z = [e(O), ... ,e(N -IW 

( 1 4) 

( 1 5) 

xy(k-q)+ Equation ( 12) is written into the matrix form as below 

{� [.�[ Ldgq,i,j'Pi,i[U(k-q)]+agq[U(k-q)]+bgq]} X y= [, rfqAfq+[ rgqAgq+Z ( 16) 
q-O l-llTlln .JEL, q=l q=O 

X u(k-q) +e(k) (6) where, 

In this WSDP model, the parameters are the coefficients 
of the respective wavelet/linear functions, i.e. d fq,i,j, a(q, b fq 
and dgq,i,j, agq, bgq. With given information of the basis 
functions (wavelets/linear function) and {ny, nu l as well as 
the associated scaling parameters imin and imax, the next task 
here is to formulate (6) as an estimation problem of a linear­
in-the-parameter regression equation, starting from the inner­
most summation (j ) to the outer-most summation (q). 
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rIq= [r�q(O), ... ,rjq(N-I)lT 

C/>Iq,L;min (O)y( -q) 

C/>Iq,L;max (O)y( -q) 
y( -q)2 
y( -q) 

T C/>Iq,L;lTlin (N -I )y(N -I -q) 

C/>Iq,L;max (N -I )y(N -I -q) 
y(N - 1-q)2 
y(N-l -q) 

( 17) 
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19q= [lrq(O), ... ,lrq(N-I)f 
<Pgq,LilTlin (O)u( -q) <Pgq,LilTlin (N - 1 )u(N - 1 -q) 

<Pgq,LilTlax(O)u( -q) 
u( _q)2 

<Pgq,LilTlax (N - 1 )u(N - 1 - q) 
u(N -I -q)2 

u( -q) u(N - 1- q) 
( 1 8) 

Let us define {AI = [A�l,,,.'A�nYr } 
AI,' = [ArO' ... ,Ar,lur 

( 1 9) 

{lI:: [1{1, ... , lIn,]} 
11,' - [11,'0, ... , 19n,,] (20) 

Here, AI and AI,' are the parameter matrices while 11 and 
11,' are the data matrices. 

Substitute ( 1 9) and (20) into ( 16), we obtain 

(2 1 )  

A s  a result, (6) can b e  written i n  the following matrix form 
which is a standard least squares parameter estimation: 

where, 

Y = PB+3 

{ P = [11,11,'] } 
B = [A:?-,Af]T 

(22) 

(23) 

III. MODEL S TRUCTURE IDENTIFICATION AND PRES S 

S TATISTICS 

The model as described in (22) is often over­
parameterized, since it consists of all the possible combina­
tions of regression terms as derived from the selected finest 
and coarsest scales. With these redundancies, the data matrix 
is often numerically ill-conditioned, leading to a number of 
disadvantages in both the computation as well as efficiency 
associated with the parameter estimation. An approach to 
overcome this is to use Orthogonal Decomposition (OD) 
algorithm (as described in Section 2.4. 1 ). In the proposed 
approach, it is incorporated into the model structure selection 
algorithm to enable the algorithm to automatically eliminate 
any associated ill-conditioning problems. 

The principle of a model structure determination algorithm 
lies on the selection of a final model structure which is simple 
but adequate to explain the essentials of the underlying 
system's dynamics. The key here is to justify the significance 
of each terms within the original over-parameterized model 
based on a criterion, and determine which term is necessary 
to be included into the final model. 

A well known approach to this problem for a linear-in­
the-parameter model is to use the Predicted Residual Sums 
of Squares (PRESS) statistic and forward regression. Here, 
these methods are used to detect the most significant terms 
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for the optimized SDP parameterization, as discussed in the 

T following. 

For this model (22), as described in Section 2.4, its 
associated PRESS value is calculated as 

N-I 
PRESS(m) = L ��k(k l m ) (24) 

k=O 

This value measures the predictive capabilities of the esti­
mated model, thus accesses the model 's  structure selection 
problem. If the addition of a term into the model yields 
a positive increment of the PRESS value, it means that 
term is decreasingly significant for the parameterization, 
and vice versa. Consequently, the PRESS statistic can be 
used as criteria to detect the significance of each term in 
the model. It is, in fact, the incremental value of PRESS 
resulted from excluding a term from the model that reflects 
its contribution in the model. If we let PRESS;;/ (m -I) be 
the value calculated from a (m - 1 ) -term model by excluding 
the ilh term from the original m-term model, then f:"PRESSi = 
PRESS;;/(m - 1 )  -PRESS(m) can be used as criterion for the 
new term selection algorithm. 

Note that traditional approaches that use the PRESS statis­
tic in term selection are based on the so called 'growing 
model' concept . This normally starts from an initial small 
term subset and gradually adds in new terms based on the 
reduction in the PRESS value caused from adding these 
terms. But, in this case, how can we ensure that the selected 
initial subset contains the most significant terms? Otherwise, 
it might easily lead to model over-parameterization. 

In order to avoid the possibility of such over­
parameterization, in our new algorithm, we first detect the 
significance and contribution of each term in the model, 
based on the incremental value MRESSi = PRESS;;/(m-
1 )  -PRESS(m). In this way, the maximum f:"PRESSi signi­
fies the most significant term, while its minimum reflects the 
least significant term. Based on this, in the next step, forward 
regression is employed to select the system's model structure. 
By doing so, we can ensure that the algorithm initializes 
with the initial subset being the most significant term. It then 
starts to grow to include the subsequent significant terms in a 
forward regression manner, until a specified performance is 
achieved. To be more specific, the forward regression-based 
PRESS term selection algorithm is described below. 

A. The PRESS Term Selection Algorithm 

For the ease of representation, let us denote <Pi be the (i + 
1 )' h column of 4>: <Pi = 4>(:, i + 1 ) ,  and pH) denotes the 
matrix which is resulted from excluding the i,h column from 
the original matrix P. 

1) Initialize 4> = P, [N,m] = size(P) 
2) Orthogonal Decomposition 

T 

a) [N,mJ] = size(4)). Initialize 0J0 = <Po, go = 
Wy Y . 

W
o Wr) 
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b) For 1'-::: i'-::: ml -I, compute 

w T <Pi aj,i=+- ,j=O,I, ... ,i -l Wj Wj 
i-I 

Wi = <Pi -L aj,iWj 
j=O 

w Ty _ I gi - wr Wi 
3) PRESS computation 

N-l 
PRESS = L ��k(k) 

k=O 
4) PRESS(m ) = PRESS. For 1'-::: i1 .-::: m, 

a) Set <P = p( -ill. Repeat steps 2 and 3. 
b) PRESS,--;/I (m -I) = PRESS. Calculate 

MRESSil = PRESS;;/l (m -1) -PRESS(m ) 

5) Based on the largest t:.PRESSij value, select the most 
significant term to be added to the regressor matrix. 

6) Solve for the intermediate parameter estimate in a least 
squares manner. 

7) Calculate the approximation accuracy, and compare it 
to the desired value: 

• If satisfactory performance is achieved, stop the 
algorithm; 

• Otherwise, add extra terms into the regressor ma­
trix based on the next largest t:.PRESSij values ,  
and repeat from step 6 to 7.  

B.  Nonlinear System Parameter Estimation 
Even though the model parameter estimate can be obtained 

as a by-product of the above described model structure se­
lection algorithm, to facilitate the understanding and support 
the presentation of the subsequent chapters, in the following, 
we formulate a standard least squares parameter estimation 
framework. 

Upon completing the above model structure selection 
procedure, the optimized functional structures for all the 
SDPs are revealed. They are defined in the following manner: 

llIq 
fq(x ) = Larq,j1rq,j(x ) 

j=O 
llgq 

gq(x ) = Lagq,iZgq,j(x ) 
j=o 

(25) 

where, L!q = {l!q,o, ... ,l!q,l1fq}' Lgq = { Zgq,o, ... ,Zgq,llgq } are, 

respectively, the optimized sets of wavelet functions and/or 
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the linear function (ax+b ) used for parameterization of fq(x ) 
and gq(x ). Substituting (25) into (2) yields 

l1y l1jq 
y(k) = L L[a!q,jZlq,j{y(k-q)}]y(k-q) 

q=1 j=O 
llu ngq 

+ L L [agq,jlgq,j{u(k -q) }]u(k -q) 
q=Oj=O 

+e(k) 
Let us define 

(Jlq = [a!q,o, ... , alq,l1Iqf 
(Jgq = [agq,o, ... ,agq,l1gq]T 

LkJq = [lrq,o{y(k-q)}, ... ,lrq,l1jq {y(k-q)}]y(k-q) 

(26) 

Lk,gq = [lgq,o{ u(k -q)}, ... , 19q,llgq {u(k -q)} ]u(k -q) (27) 

Equation (26) can be rewritten in to the following form: 

Let 

ll}, l1u 
y(k) = L LkJq(Jfq + L Lk,gq(Jgq + e(k) 

q=l q=O 

(J = [(JIl, ... ,(J�ly,(JJo, ... ,(J;'Ur 
Lk = [LkIl, ... , Lkfl1y, LkgO, ... , Lkgl1ul T 

By substituting (29) into (28), we obtain: 

y(k) = L[ (J + e(k) 
Assume 

y = [y(O), ... ,y(N -IW 
U = [u(O), ... ,u(N -IW 

to be the measurement output-input data. 

(28) 

(29) 

(30) 

Equation (30) is written into the following matrix form: 

Y = L(J +3 (31) 

in which, 

L = [Lo, ... ,LN_l] T 

3 = [e(O), ... ,e(N -IW (32) 

Via Orthogonal Decomposition, L is orthogonally decom­
posed into 2 components: mL x mL upper triangular matrix 
T, and N x mL matrix W with orthogonal columns of Wi, 

L = WT (33) 

Doing so, the estimate {j of the parameter vector (J is 
obtained in an Orthogonal Least Squares manner, i.e. 

in which, 

A .  1 1 1 [ T ] 
G = dzag[-T-""'-T-"'" T ] W Y 

Wo 0J0 WI WI wml. _ 1 Wml. -1 

(34) 

(35) 
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This linear least squares estimate will have optimal statis­
tical properties if e(k) is a zero-mean, normally distributed, 
white noise process, independent of the input signal u(k). 
However, depending on the nature of the data and the 
SDP model, these assumptions may not be applicable. In 
this situation, other estimation solutions are necessary: for 
instance, Instrumental Variable (IV) ; nonlinear least squares 
based on a response error function; or maximum likelihood 
estimation based on prediction errors, etc. In particular, the 
standard and optimal IV approaches, which have proven 
so useful in the linear model estimation context, are very 
robust in practical application, can be developed for use in 
IV estimation of the parameters in this model setting. 

C. Identification Procedure 
The overall nonlinear system identification using the pro­

posed approach can be summarized into the following steps: 

I) Determining the SDP model's order. This includes the 
selection of the initial values! of ny and nu. 

2) Non-parametrically estimating the associated SDP pa­
rameters. 

3) SDP's optimized parameterization structure selection. 
This involves the following steps: 

a) Based on the features of the respective SDP 
non-parametric estimate, determine an appropri­
ate wavelet function and the associated scaling 
parameters (i.e. finest and coarsest scaling param­
eters) to be used for the parameterization. 

b) Using the PRESS based selection algorithm, de­
termine an optimized functional structure used for 
the respective SDP's parameterization. 

4) Final parametric optimization. 
a) Substitute the optimized SDP functional struc­

tures into the original SDP model. 
b) Using the measured data, estimate the associated 

parameters via an Orthogonal Least Squares al­
gorithm. 

5) Model validation. 
• If the identified values of ny and nu as selected in 

step I provide a satisfactory performance over the 
considered data, terminate the procedure. 

• Otherwise, increase the model 's  order, i.e. ny = 
ny + 1 and/or nu = nu + 1 ,  and repeat steps 2 
through 5. 

IV. THE CHOISE OF WAVELET BASIS FUNCTION 

It is obvious that the choice of the wavelet basis function 
in the linear wavelet functional approximation may well be 
different for each SDP. In order to simplify the general 
procedure, therefore, in this chapter, we use a simple form of 
the radial mother wavelet called the Mexican Hat Wavelet as 
described in (36) which is compactly supported in (-4, 4). 
Of course, there may be cases where the SDP relationships 
are more volatile and rich in frequency features than allowed 

1 Which normally start with lower values. 
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by this mother wavelet and then a more complicated basis 
function may be necessary ( for example, the Morlet wavelet 
or other well known wavelet forms). The Mexican hat 
wavelet takes the following form: 

65 

60 

55 

50 

45 
0 

-2 

if x E (-4 , 4) } 
otherwise 

Fig. 1 .  Compactly supported Mexican hat wavelet function. 

V. RESULTS 

(a) 

100 150 200 250 

(36) 

300 

-30�-
---�-----'�00�--�'5=0-----=20�0-----2=50�--�300 Sampling Index 

Fig. 2. (a) output, (b) input. 

Consider input-output data from a gas furnace process, 
sampled at Ts = 9s. The input for this system is Methane 
input into gas furnace: cu. ftl min, while the output is 
carbon dioxide output concentration from gas furnace-% 
of output gas. This 296-input-output data set (Figure 2) is 
separated into: estimation data set consisting of 200 data 
points, and the remaining 96 data points for model testing. 
For the convenience of implementation,the recorded output 
data was standardized: Yd(k) = {y(k) -mean(y )}/std(y ), and 
the standardized output sequence is still designated as y(k). 
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Using discrete model for this system, the SDP model 
structure is identified as below 

y(k) =h{y(k-l )}y(k-I)+h{y(k-2 )}y(k-2 )  
+ go{ u(k ) }u(k ) + g2{ u(k -2 ) }u(k -2 ) (37) 

The non-parametrically estimated dependencies for this 
model are shown in Figure 5 where all SDPs are modelled 
as Integrated Random Walk (IRW) processes. Carrying out 
the similar process as the above, the final parametric model 
is found to be 

y(k) = [ -0.0336'P2,_1 (x ) -0. 1 3 l4'P2,o(x ) ] y(k -I) + 1.456 1 y(k-l) 

+ 
[ 0.7572'P2,-1(X )

.

+0.4528 l'P2•O(X ) ] y(k-2 ) + 1.023 1 'P3 ,l (x ) + 2.2873 y(k-2) 

+ 
[ 0.0627'P2,o(X )

.

+0.01 l0'P2,_1 (X ) ] u(k ) +0.0408'P2._2(X ) -0.0083 u(k) 
-0. 1 837u(k -2 ) (38) 

where, 

(0) 

Sampling Index 

Fig. 3. (a) Comparison between the actual output (solid) and model (38) 
prediction (dot-dot) which are very well overlapped, and (b) the associated 
residual. 

Fig. 4. (a) Comparison between the actual output (solid) and model iterative 
output of (38) (dot-dot), and (b) their difference 
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Figure 3 compares the model prediction (which is re­
covered to the original amplitude by de-standardization) to 
the actual output over the whole data. The model 's  iterative 
(simulated) output2 is shown in Figure 4 in comparison to 
the actual output signal, implying that the l2-term identi­
fied model excellently characterizes the system's dynamic 
behaviour. In fact, this application example was also studied 
in [ 1 6] (Example 2), where generalized Kernel model is used 
to model the system. Nevertheless, in comparison to the 
work in the present study, the proposed approach may be 
more advantageous over the generalized kernel model [ 1 6] 
for this particular example, in the sense that the system is 
well represented with a smaller number of terms ( 12  versus 
2 1 ,  or 43% term's reduction) , smaller order (2 versus 3) and 
using less training data (200 versus 296) while producing 
much better result (MSE = 0.0285 versus 0.053482 of the 
generalized kernel model [ 1 6] over the considered data set). 
In comparison with other approaches, i.e. one of the best 
results of fuzzy based systems as reported in [6] , the MSE 
is 0.068, third order, linear models at fourth order delivers 
MSE at 0.06 1 [5]. This, again, confirms the efficiency of the 
proposed approach. 

(a) 

(0) 
O.07,-----��----.----__, 

0.06 , 

0.05 / ----'�� \, 
0.04 . . . .  _ . , '  , . ' . 

0.03 
_

-,-- ------_ • . . . 

0.02 " -

(b) 

-0.45 � 
(d) 

-0.18,--------------, 

-0.185 

-0.19 ______________ _ 

-O-1�3'-----_�2--�, �-��---" 

Fig. 5. Non-parametrically estimated (dot-dot), and actual SDPs (solid) : (a) 
fdy(k-I)} versus y(k-I) (b) h{y(k-2)} versus y(k-2) (c) go{u(k)} 
versus u(k), (d) g2{u(k-2)} versus u(k-2) , and standard en'or bound 
(dash). 

VI. C ONCLUSIONS 

Benchmark is vital to the validation of various identifi­
cation techniques. In this paper, WSDP model is applied in 
the study of a commonly used benchmark: the gas furnace 
process data set. It has been demonstrated that WSDP 
models are able to provide a effective analytical insights, 
efficient measures of the nature and location of the nonlinear 
dynamics within this systems . 
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