
DEAL: A Direction-Guided Evolutionary

Algorithm

Cuong C. Vu1, Lam Thu Bui1, and Hussein A. Abbass2

1 Le Quy Don Technical University, Vietnam
{cuongvcc,lam.bui07}@gmail.com

2 University of New South Wales, Australia
h.abbass@adfa.edu.au

Abstract. In this paper, we propose a real-valued evolutionary algo-
rithm being guided by directional information. We derive direction of
improvement from a set of elite solutions, which is always maintained
overtime. A population of solutions is evolved over time under the guid-
ance of those directions. At each iteration, there are two types of direc-
tions that are being generated: (1) convergence direction between an elite
solution (stored in an external set) and a second-ranked solution from
the current population, and (2) spreading direction between two elite
solutions in the external set. These directions are then used to perturb
the current population to get an offspring population. The combination
of the offsprings and the elite solutions is used to generate a new set
of elite solutions as well as a new population. A case study has been
carried out on a set of difficult problems investigating the performance
and behaviour of our newly proposed algorithm. We also validated its
performance with 12 other well-known algorithms in the field. The pro-
posed algorithm showed a good performance in comparison with these
algorithms.

Keywords: direction of improvement, evolutionary algorithms.

1 Introduction

Evolutionary algorithms (EAs) have been popular tools for approximating solu-
tions of optimization problems. For real-parameter EAs such as real-parameter
GA, differential evolution (DE), evolutionary strategies (ES) and evolutionary
programming (EP), a real-valued representation of genes is used. In the litera-
ture of evolutionary computation, the use of elitism has been the most popular
one. For it, usually a number of good solutions, the elite set, is (either implicitly
or explicitly) maintained over time. Our motivation is that this set can con-
tribute information to the evolutionary process much more than just storing
some solutions to the next generation.

Our proposal is as follows: we can derive from the elite set some directions of
improvement and use these directions to guide the evolutionary process. Note
that when designing an optimization algorithm, it is desirable to find a good

L.T. Bui et al. (Eds.): SEAL 2012, LNCS 7673, pp. 148–157, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

DEAL: A Direction-Guided Evolutionary Algorithm 149

direction that guides the search process; the steepest gradient descent method is
the most typical example of getting advantage from a good direction to guide
the search. However, in general, defining a good direction is not a trivial task,
especially in the case of non-linear or black-box functions. For evolutionary com-
putation, the use of directions has been shown quite promising. An example is
the case of Differential Evolution (DE), which uses the direction between two
randomly-selected parents to guide the newly-generated offsprings [17]; DE has
been very effective in solving continuous optimization problems.

There are several ways to maintain the elite set (in short, ETS). In this pro-
posal, we select a number of best solutions for ETS. Our main design will focus
on how to use and refine ETS. Its size is set as half of the main population.
ETS is used not only to contribute solutions to the next generation, but also to
generate directions for offspring production. At each generation, a pool of off-
springs (having the same size as the main population) is produced. This is done
via a perturbation process in which randomly-selected parents (from the main
population) are perturbed by directions of improvement. There are two types
of directions presented in this work: (1) convergence direction that is defined as
the direction between an elite solution from ETS and a second-ranked solution
from the main population and (2) spreading direction between two elite solutions
in ETS. This pool of offsprings is combined with ETS in order to generate the
new content of ETS and the next generation. The combined population is then
sorted and copied to ETS as well as the main population. To validate the newly
proposed algorithm, we carried out a case study on 6 benchmark problems with
high modality. The results from these problems showed that our algorithm per-
formed quite well. Further, we also obtained the results from 12 other well-known
algorithms. The results indicated that our algorithm was very competitive with
these algorithms.

The paper is organized in seven sections. Section 2 is dedicated to background
literature and followed by the methodology section. A number of test problems
are presented, solved and studied in Section 4 to demonstrate the concept, and
the paper concludes in Section 5.

2 Background

Evolutionary Algorithms (EAs) have been well recognized as a major class of
heuristic techniques in computational optimization and machine learning. They
have been applied widely in many aspects of human life from social and en-
gineering problems to security and military domains. In principle, an EA is a
process that imitates evolution in Nature. It works with a population of solu-
tions in searching for the problem’s optima where the population undergoes an
evolutionary process of many cycles using nature-mimicking crossover, mutation
and/or selection operators. After each cycle, a new population is formed and is
called a generation. With this population-based computational approach, EAs
offer a potential paradigm for solving global optimization problems [9,1,15,16,10].
Originally, there were four classes of EAs; including Genetic Algorithms (GAs),

150 C.C. Vu, L.T. Bui, and H.A. Abbass

Evolutionary Strategies (ES), Evolutionary Programming (EP), and Genetic
Programming (GP). To date, there are several paradigms that have emerged
as alternatives for the conventional EAs, such as Particle Swarm Optimization
(PSO) [12], Ant Colony Optimization (ACO) [7], Differential Evolution (DE)
[17], Estimation of Distribution Algorithms (EDA) [14], and Artificial Immune
Systems (AIS) [3]. For them, mutation and crossover operators might be replaced
by some specific operator inspired by a different phenomenon in nature.

Real-parameter evolutionary algorithms can be classified into different streams.
In general, the difference between these streams is in the way to employ and im-
plement the evolutionary operators. The first stream is the real parameter GA
that has the same framework as the binary-coded GA with a focus on crossover.
As an example, Deb et al [5] introduced a version of the real parameter GA using
the SBX crossover operator that simulates the binary crossover operator. A rea-
sonable overview of real parameter GA can be found in [4]. Meanwhile, ES [18]
and EP [8,20] concentrate more on the mutation operator. The child is generated
by disturbing a selected solution with Gaussian or Cauchy distributed random
deviations. After this phase, all solutions have to undergo a selection process.

In the case of simple DE, it uses one main parent and two supportive parents
[19,2] for generating a child. Basically, the main parent is disturbed by adding
a step length multiplied by the difference between the two supportive parents.
The resultant solution is called the trial/protoype solution. The prototype is
then crossed-over with another pre-selected solution to generate a child. Elitism
is implemented implicitly in the way that the child is inserted into the population
if it outperforms the pre-selected solution. By using difference vectors, DE takes
into account direction information. In some cases, good directions will be gener-
ated and DE will generate good solutions. In other cases, bad directions will be
generated which will deteriorate the solution quality. This poses a question on
whether or not we can systematically maintain good directions?

Several other real-valued versions can be listed here such as covariance ma-
trix adaptation evolution strategy (CMAES) [11] being implemented with an
adaptive covariance matrix to model a second-order approximation of the objec-
tive function, and generalized generation gap model with generic parent-centric
recombination operator (G3PCX) [6] using elite-preservation and the parent-
centric recombination operator. Recently, real-coded version of chemical reaction
optimization emerges as a new paradigm for real-valued optimization [13].

3 Methodology

3.1 Overview

It has been demonstrated that elitism is useful for an EA. However, the issue is
how to use it effectively? Therefore, we will focus our work on this issue when
designing a new EA; especially we will address: (1) Interaction between an ETS
and the main population and (2) updating the ETS.

Our methodology proposes to maintain an ETS during the optimization pro-
cess. This ETS will contribute to the evolutionary process not only the elitist

DEAL: A Direction-Guided Evolutionary Algorithm 151

solutions, but also the directional information (which we call as direction of
improvement). A direction of improvement is considered as a useful piece of in-
formation during optimization process. Our proposal is that at every generation,
the main population will be perturbed by these directions in order to produce
offsprings. Theses offsprings are then combined with the current ETS to form a
temporary population, called “the combined population”. This combined popu-
lation is used subsequently to fill in the new version of ETS. Based on this merit,
we call our algorithm as Direction-guided Evolutionary ALgorithm or DEAL.

3.2 Directional Information

We propose to use two types of directional information: convergence and
spreading.

– Convergence direction: It is defined as the direction from a solution to a
better one. We consider it as the direction between second-ranked solution
and an elite one. If elite solutions are maintained globally, it is considered
as the global direction of convergence. If a solution is guided following this
direction, it will find a better area.

– Spreading direction: It is defined as the direction between two peers. In
this context, it is the direction between two elite solutions. If solutions are
perturbed along these directions, a better spreading within the population
will be obtained.

3.3 General Structure

A step-wise structure of the proposed algorithm is given as follows:

– Step 1: Initialize the main population P with size N
– Step 2: Evaluate the population P
– Step 3: Copy elite solutions to ETS (that has the half size of population P)
– Step 4: Report the elite solutions in ETS
– Step 5: Generate a mixed population M with size of N , and set index = 0
– Loop {

• Copy P (index) to M(index)
• Select a random parent Pr

• Generate a convergence direction d1 from a randomly-selected low-rank
solution in the population P to a randomly-selected solution from ETS.

• Generate a spreading direction d2 between two randomly selected solu-
tions in ETS.

• Generate two offspring solutions S1 and S2 by perturbing the parent
solution using two newly generated directions.
∗ For each dimension i

· If U(0, 1) < pc then S1(i) = Pr(i) + σ1 ∗ d1(i)
· Else S1(i) = Pr(i)
· If U(0, 1) < pc then S2(i) = Pr(i) + σ2 ∗ d2(i)

152 C.C. Vu, L.T. Bui, and H.A. Abbass

· Else S2(i) = Pr(i)
∗ End for

Where U(0, 1) is the random function returning values between 0 and 1,
pc is crossover rate, σ1 = U(0, 1); σ2= a small constant (i.e 0.5).

• Evaluate S1

• S1 is better than M(index) then replace M(index) by S1

• Mutate S2 with a predefined rate pm
• Evaluate S2

• S2 is better than M(index+ 1) then replace M(index+ 1) by S2

index = index+ 2
– } Until (the mixed population is full)
– Step 6: Combine the mixed population M with ETS to form a combined

population C (or M+A → C)
– Step 7: Sort C using fitness values
– Step 8: Determine the new members of ETS by copying first N/2 elite

solutions from the combined population C)
– Step 9: Determine the new population P by copying solutions from M)
– Step 10: Go to Step 4 if stopping criteria is not satisfied

Note that ETS can be maintained implicitly (without an explicit data structure).
The current main population can be classified into two parts: the first half is the
elite solutions copied from the combined population C and this part is actually
ETS and the second half is the lower ranked (or second-ranked) solutions. σ is
the step length for perturbation. For σ1, our finding is that the best strategy is
σ1 = U(0, 1) and σ2 is 0.5 (that basically reduces half of the vector’s magnitude).
The step 5 is the main element in this structure. It shows that for the offsprings,
half of them are created for convergence purpose (exploitation) while the other
half to make it more diverse (exploration).

The main computational cost comes from the task of filling ETS. Filling solu-
tions requires sorting the combined population C. In general, a sorted procedure
requires complexity of O(NlogN). So, the overall complexity of the algorithm is
O(NlogN).

4 A Case Study

4.1 Testing Problems

We considered to test a set of 6 popular continuous test problems with high-
dimensionality and high modality [13]. The only reason for us to select these
problems is that these problems illustrate the highest difficulty facing optimiza-
tion algorithms: multi-modality. They are reported in Table 1.

4.2 Experimental Setup

We selected other well-known algorithms for validating ours with settings used
by authors in [13]: Real-coded version of Chemical Reaction Optimization (RC-
CRO), Genetic Algorithm (GA), Fast evolutionary programming(FEP), Classi-
cal evolutionary programming (CEP), Fast evolutionary strategy (FES), Con-
ventional evolutionary strategy (CES), Particle Swarm Optimization (PSO),

DEAL: A Direction-Guided Evolutionary Algorithm 153

Table 1. Lists of test problems used for experiments in this paper

ID n Description Name Range fmin

F1 30 f(x) = −∑n
i=1(xisin(

√|xi|)) Generalized Schwefel’s [−500, 500] -12569.5
problem

F2 30 f(x) =
∑n

i=1(x
2
i − 10cos(2PIxi) + 10) Generalized Rastrigin’s [−5.12, 5.12] 0

problem

F3 30 f(x) = −20 exp(−0.2
√

1
n

∑n
i=1(x

2
i)) Ackley’s [−32, 32] 0

− exp(1
n

∑n
i=1(cos(2PIxi)) + 20 + e problem

F4 30 f(x) = 1
4000

∑n
i=1(x

2
i)−

∏n
i cos(xi√

i
) + 1 Generalized Griewank’s [−600, 600] 0

problem

F5 30 f(x) = PI
n
{10sin2(PIy1) +

∑n−1
i=1 (yi − 1)2 Generalized [−50, 50] 0

[1 + 10sin2(PIyi+1)] + (yn − 1)2}
+
∑n

i=1 u(xi, 10, 100, 4) Penalized
yi = 1 + 1

4
(xi + 1) problem

u(xi, a, k,m) =

⎧
⎨

⎩

k(xi − a)m, xi > a
0, otherwise.
k(−xi − a)m, xi < −a

F6 30 f(x) = 0.1{sin2(3PIx1) +
∑n−1

i=1 (xi − 1)2[1+ Generalized [−50, 50] 0
sin2(3PIxi+1)] + (xn − 1)2[1 + sin2(2PIxn)]} Penalized
+
∑n

i=1 u(xi, 5, 100, 4) problem

Group search optimizer (GSO), Real-coded biogeography-based optimization
(RCBBO), Differential evolution (DE), Covariance matrix adaptation evolution
strategy (CMAES), and Generalized generation gap model with generic parent-
centric recombination operator (G3PCX).

The experiments for our algorithm are carried out on all 6 test problems and
with the following parameters: The population size was also 100 solutions, the
number of evaluations are 150000, 250000, 150000, 150000, 150000, and 150000
for all problems respectively, the mutation rate was kept at the same small rate of
0.01, and the crossover rate was 0.9. Further, there were 100 runs with different
random seeds for testing each problem.

4.3 Results and Discussion

Behavior Analysis: To analyze the behavior of DEAL, we first tested it on
a spherical problem, the easiest problem: f(x) =

∑n
i=1 x

2
i , with n = 30, x ∈

[−100, 100] (the optimal point is at the origin and we call it as the zero point). We
recorded the objective value of the best solution found over time. After 150000
evaluations, DEAL obtained a near-zero average objective value (in different 100
runs) of 1.558E-12 (standard deviation is 6.158E-12).

From Figure 1, it is obvious that DEAL stably converged towards the optimal
solution among all 100 runs. After 250 generations, solutions found by DEAL’s
100 runs were almost close to the optimal point (the left graph). The right graph
is magnified by logarithmic transformation and shows the constant convergence
towards the zero point. In the decision space, all the points have xi values being
around the zero point with radius of 10e-8.

Another look at can be seen at Figure 2 where we displayed the behavior
of DEAL on a multi-modal problem: the Akley problem (F3). The difficulty

154 C.C. Vu, L.T. Bui, and H.A. Abbass

5 10 15 20 25
0

1

2

3

4

5

6

7

8
x 10

4

generations(x10)

f

20 40 60 80 100 120 140
10

−20

10
−15

10
−10

10
−5

10
0

10
5

generations(x10)

f

Fig. 1. Visualization of the best solution for the spherical problem found by DEAL in
all 100 runs. Left graph: the convergence curve during the first 250 generations. Right
graph: the convergence curve with log-transformation during all 1500 generations.

of multi-modality clearly made DEAL longer to converge. In contrast the case
of the spherical problem, at generation 25rd (where DEAL converged for the
spherical problem), DEAL stilled far from the optimal point. In all 100 runs, it
converged almost at generation 500rd. After that the optimization still refining
its best solution until the end (see the right logarithmic-transformed graph)

5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

Generations (x10)

f

20 40 60 80 100 120 140
10

−8

10
−6

10
−4

10
−2

10
0

10
2

Generations (x10)

f

Fig. 2. Visualization of the best solution for Akley problem found by DEAL in all 100
runs. Left graph: the convergence curve during the first 500 generations. Right graph:
the convergence curve with log-transformation during all 1500 generations.

Comparison with Others: In comparison with other approaches, we recorded
the best objective value obtained by approaches for all problems in Table 1 and
then calculated the mean and standard deviation. They are reported in Table 2
together with results obtained from [13]. From the table we can see that there is
no clear winer among all 13 approaches. However, it indicates that 8 approaches
(GA, FEP, CEP, FES, CES, PSO, RCBBO, and G3PCX)were inferior in all 6

DEAL: A Direction-Guided Evolutionary Algorithm 155

test problems. The remaining 5 algorithms are seemed better in which each had
at leat the result on one problem with 1st rank. Within this set of approaches,
DEAL and DE emerged with more competitive results. While DEAL has two
problems ranked No1 (the most case), DE has 1 problem ranked 1st and 3
problems ranked 2rd. The interesting note here is that both DEAL and DE
used direction explicitly: while DE used direction between two randomly-selected
parents, DEAL used direction of improvement.

Table 2. Obtained results for all test problems (Mean, Standard deviation and rank)

F1 F2 F3 F4 F5 F6
DEAL Mean -1.085E+04 3.482E-15 3.097E-07 1.305E-02 3.619E-07 1.099E-04

Std 3.996E+02 5.888E-15 8.720E-07 1.721E-02 1.268E-06 1.099E-03
Rank 9 1 1 5 3 5

RCCRO1 Mean -1.257E+04 9.077E-04 1.944E-03 1.117E-02 2.074E-02 7.048E-07
Std 2.317E-02 2.876E-04 4.190E-04 1.622E-02 5.485E-02 5.901E-07
Rank 2 3 5 3 7 1

GA Mean -1.257E+04 6.509E-01 8.678E-01 1.004E+00 4.372E-02 1.681E-01
Std 2.109E+00 3.594E-01 2.805E-01 6.755E-02 5.058E-02 7.068E-02
Rank 2 7 9 3 10 10

FEP Mean -1.255E+04 4.600E-02 1.800E-02 1.600E-02 9.200E-06 1.600E-04
Std 5.260E+01 1.200E-02 2.100E-02 2.200E-02 6.140E-05 7.300E-05
Rank 8 5 7 6 4 6

CEP Mean -7.917E+03 8.900E+01 9.200E+00 8.600E-02 1.760E+00 1.400E+00
Std 6.345E+02 2.310E+01 2.800E+00 1.200E-01 2.400E+00 3.700E+00
Rank 11 12 12 9 12 12

FES Mean -1.256E+04 1.600E-01 1.200E-02 3.700E-02 2.800E-02 4.700E-05
Std 3.253E+01 3.300E-01 1.800E-03 5.000E-02 8.100E-11 1.500E-05
Rank 7 6 6 8 8 4

CES Mean -7.550E+03 7.082E+01 9.070E+00 3.800E-01 1.180E+00 1.390E+00
Std 6.314E+02 2.149E+01 2.840E+00 7.700E-01 1.870E+00 3.330E+00
Rank 12 11 11 11 11 11

PSO Mean -9.660E+03 2.079E+01 1.340E-03 2.323E-01 3.950E-02 5.052E-02
Std 4.638E+02 5.940E+00 4.239E-02 4.434E-01 9.142E-02 5.691E-01
Rank 10 9 4 10 9 9

GSO Mean -1.257E+04 1.018E+00 2.655E-05 3.079E-02 2.765E-11 4.695E-05
Std 2.214E-02 9.509E-01 3.082E-05 3.087E-02 9.167E-11 7.001E-04
Rank 2 8 2 7 1 3

RCBBO Mean -1.257E+04 2.620E-02 2.510E-02 4.820E-01 3.280E-05 3.720E-04
Std 2.200E-05 9.760E-03 5.510E-03 8.490E-02 3.330E-05 4.630E-04
Rank 2 4 8 12 5 7

DE Mean -1.257E+04 7.261E-05 7.136E-04 9.054E-05 1.886E-07 9.519E-07
Std 2.333E-05 3.376E-05 6.194E-05 3.402E-05 4.266E-08 2.021E-07
Rank 2 2 3 1 2 2

CMAES Mean -9.873E+07 4.950E+01 4.607E+00 7.395E-04 5.167E-03 1.639E-03
Std 8.547E+08 1.229E+01 8.725E+00 2.389E-03 7.338E-03 4.196E-03
Rank 1 10 10 2 6 8

G3PCX Mean -2.577E+03 1.740E+02 1.352E+01 1.127E-02 4.593E+00 2.349E+01
Std 4.126E+02 3.199E+01 4.815E+00 1.310E-02 5.984E+00 2.072E+01
Rank 13 13 13 4 13 13

Effect of the Step length: In this section, we will discuss the effect of the
step length σ on the performance of our proposed approach. We call the above
version of DEAL is as Option 1 where σ1 = U(0, 1) and σ2 = 0.5. We tested 3
other options as follows:

- Option 2: σ1 = 1 and σ2 = 0.5
- Option 3: σ1 = U(0, 1) and σ2 = U(0, 0.5)
- Option 4: σ1 = 1 and σ2 = U(0, 0.5)

156 C.C. Vu, L.T. Bui, and H.A. Abbass

Table 3. Obtained results for all test problems from all options of DEAL

F1 F2 F3 F4 F5 F6
Option1 Mean -1.085E+04 3.482E-15 3.097E-07 1.305E-02 3.619E-07 1.099E-04

Std 3.996E+02 5.888E-15 8.720E-07 1.721E-02 1.268E-06 1.099E-03
Option2 Mean -1.064E+04 8.419E-05 3.977E-05 1.546E-02 1.063E-03 6.594E-04

Std 3.479E+02 5.599E-04 3.433E-04 1.737E-02 1.037E-02 2.622E-03
Option3 Mean -1.097E+04 1.785E-14 4.213E-06 1.350E-02 6.433E-06 8.790E-04

Std 3.028E+02 1.594E-14 4.641E-06 1.423E-02 3.494E-05 2.996E-03
Option4 Mean -1.064E+04 8.419E-05 3.977E-05 1.546E-02 1.063E-03 6.594E-04

Std 3.479E+02 5.599E-04 3.433E-04 1.737E-02 1.037E-02 2.622E-03

We can observe from Table 3 that there were no large change in the results
obtained by all options, except the slightly better results of Option 1. This
indicates that the use of either random or fixed value of σ does not significantly
effect on the performance of DEAL.

5 Conclusion

In this paper, we introduced a novel technique for employing directions of im-
provement for EAs; we call it a direction-guided evolutionary algorithm. With
this new algorithm, a population of solutions is evolved over time under guid-
ance of directions of improvement. At each generation, there are two types of
directions are generated: (1) convergence direction between an elite solution and
a solution from the current population, and (2) spreading direction between two
elite solutions in ETS. These directions are then used to perturb the current
population to get a temporary population of offsprings. The combination (com-
bined population) of this offspring population and the current ETS is used to
generate the next content of ETS and the main population.

A case study has been carried out to investigate the performance and be-
haviour of our newly proposed algorithm. We also validated its performance
with 12 other well-known algorithms in the field. Our algorithms showed a good
performance in comparison with these algorithms.

Acknowledgement. The authors gratefully acknowledge the financial support
from the Vietnam Institute for Advanced Study in Mathematics (VIASM) and
the University of New South Wales at Australian Defence Force Academy.

References

1. Back, T.: Evolutionary Algorithms in Theory and Practice. Oxford University
Press, New York (1996)

2. Corne, D., Dorigo, M., Glover, F.: New Ideas in Optimization. McGraw Hill, Cam-
bridge (1999)

3. Dasgupta, D.: Artificial Immune Systems and Their Applications. Springer, Berlin
(1998)

4. Deb, K.: Multiobjective Optimization using Evolutionary Algorithms. John Wiley
and Son Ltd., New York (2001)

DEAL: A Direction-Guided Evolutionary Algorithm 157

5. Deb, K., Agrawal, R.B.: Simulated binary crossover for continuous search space.
Complex Systems 9, 115–148 (1995)

6. Deb, K., Anand, A., Joshi, D.: A computationally efficient evolutionary algorithm
for real-parameter optimization. Evolutionary Computation 4, 371–395 (2002)

7. Dorigo, M., Stutzle, T.: Ant Colony Optimization. MIT Press, USA (2004)
8. Fogel, L.J., Angeline, P.J., Fogel, D.B.: An evolutionary programming approach to

self-adaptation in finite state machines. In: McDonnell, J.R., Reynolds, R.G., Fogel,
D.B. (eds.) Proc. of Fourth Annual Conference on Evolutionary Programming, pp.
355–365. MIT Press, Cambridge (1995)

9. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Addison-Wesley Longman Publishing Co., Inc., Boston (1989)

10. Goldberg, D.E.: The design of innovation: lessons from and for competent genetic
algorithms. Kluwer Academic Publishers, Massachusetts (2002)

11. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution
strategies. Evolutionary Computation 9, 159–195 (2001)

12. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of IEEE
International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)

13. Albert, Y.S., Lam, V.O.K.: Li, and James J.Q. Yu. Real-coded chemical reaction
optimization. IEEE Transactions on Evolutionary Computation (accepted for pub-
lication, 2012)

14. Larraanaga, P., Lozano, J.A.: Estimation of Distribution Algorithms: A New Tool
for Evolutionary Computation. Kluwer Academic Publishers, Norwell (2002)

15. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs,
3rd edn. Springer, London (1996)

16. Mitchell, T.: Machine Learning. McGraw Hill, Singapore (1997)
17. Price, K., Storn, R., Lampinen, J.: Differential Evolution - A Practical Approach

to Global Optimization. Springer, Berlin (2005)
18. Rudolph, G.: Evolution strategy. In: Handbook of Evolutionary Computation. Ox-

ford University Press (1997)
19. Storn, R., Price, K.: Differential evolution - a simple and efficient adaptive scheme

for global optimization over continuous spaces. Technical report tr-95-012. Techni-
cal report, ICSI (1995)

20. Yao, X., Liu, Y., Lin, G.: Evolutionary programming made faster. IEEE Transac-
tions on Evolutionary Computation 3(2), 82–102 (1999)

	DEAL: A Direction-Guided Evolutionary Algorithm
	Introduction
	Background
	Methodology
	Overview
	Directional Information
	General Structure

	A Case Study
	Testing Problems
	Experimental Setup
	Results and Discussion

	Conclusion
	References

