
Where Should We Stop?
An Investigation on Early Stopping for GP Learning

Thi Hien Nguyen1, Xuan Hoai Nguyen2, Bob McKay3, and Quang Uy Nguyen1

1 Le Quy Don University, Vietnam
2 Hanoi University, Vietnam

3 Seoul National University, Korea

Abstract. We investigate the impact of early stopping on the speed and accuracy
of Genetic Programming (GP) learning from noisy data. Early stopping, using
a popular stopping criterion, maintains the generalisation capacity of GP while
significantly reducing its training time.

1 Introduction

Genetic Programming (GP) [1] describes a class of evolutionary algorithms that solve
problems by finding solutions of non-predefined complexity. GP has often been viewed
as a form of machine learning, as it aims to induce relations between input and output
data in the form of a functional expression or program. Among the successful real-
world applications, learning tasks have been common [2]. Early GP research seldom
attended to the generalisation capacity of GP. The focus was on how GP could fit the
data by finding an exact solution/relation While learning exact solutions may be impor-
tant in some discovery tasks, machine learning (ML) [3] has emphasised generalisation
over unseen data as the most important aspect. A learning machine should avoid over-
fitting the training data. Recently, GP generalisation has caught more attention, with
an increasing number of related publications [4, 5, 6, 7, 8, 9, 10, 11]. In particular, GP
overfitting has been repeatedly demonstrated: while the errors on the training data may
improve over the generations, it may deteriorate on unseen test data.

There are at least two ways to combat over-fitting for learning machines [12] – re-
ducing machine complexity (or regularisation) and early stopping. In the first approach,
based on Occam’s razor [3], the learning process avoids over-fitting by preferring sim-
ple hypotheses. In the second, a learner does not eliminate over-fitting but rather tries
detect it and stops training once it does so. Early stopping is widely used for learn-
ing processes because it is simple, easy to implement, and, in many cases, superior to
regularisation [13]. In GP, there have been a number of attempts to improve GP gen-
eralisation by regularisation, through including the complexity of an individual as part
of its fitness [14, 15, 16, 17, 6]. However, as reported in [18], reducing complexity of
individuals may not lead to better generalisation. To date, the only published work on
early stopping for GP has been two preliminary works, [19] and [20]. In [19]. Tuite et
al. adapted three stopping criteria adopted from [12] to Grammatical Evolution (GE).
These criteria helped GE to detect when to stop during training. However the experi-
ments only covered two simple problems, and no detail of the impact of early stopping

L.T. Bui et al. (Eds.): SEAL 2012, LNCS 7673, pp. 391–399, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



392 T.H. Nguyen et al.

was provided. In [20], we investigated the impact of early stopping on GP learning.
Some results suggested that early stopping could trade off generalisation error and run
time complexity, but the results were mixed. However we can now explain them as due
to ineffective stopping criteria; better criteria lead to better results.

In this paper, we re-investigate the impact of early stopping on GP learning based
on Prechelt’s stopping criterion [12]. In Section 2, we briefly review related work on
GP generalisation, and on the role of early stopping in learning machines. Section 3
introduces our implementation of early stopping. Sections 4 details the experimental
settings. The results are presented and discussed in Section 5. The paper concludes in
Section 6 by highlighting possible future work.

2 Background

2.1 Over-fitting and Generalisation in GP

Although achieving high generalisation capability is the main objective any learning
machine [3], it was neglected in the early work on GP. Before Kushchu published
his seminal paper on generalisation in GP [7], there was little in the literature deal-
ing with GP generalisation. In [21], Francone et al. proposed a system called Com-
piling GP (CGP) and compared its generalisation with that of other machine learning
techniques, demonstrating comparable results. Extending the use of the mutation oper-
ator was shown to improve generalisation. Zhang [14] proposed avoiding over-fitting
through Minimum Description Length (MDL) methods, providing an adaptive mecha-
nism for balancing between accuracy and complexity preferences. He obtained robust
results for tasks with noisy or incomplete data. Hooper et al. [15] argued that expres-
sion simplification may help GP to avoid over-fitting and obtain better generalisation.
In [22], Iba incorporated Bagging and Boosting into GP (BagGP and BoostGP), show-
ing improved generalisation in discovering trigonometric identities, chaotic time series
prediction, and 6 bit multiplexer.

Recently, generalisation in GP has gained more attention. In [9], Panait and Luke
investigated the impact of using six common sampling methods on the robustness of
GP solutions. None dominated on all problems, showing that the impact of sampling
method is problem domain dependent. Paris et al. [23] used GP as the core learning
algorithm in a boosting framework to trigger over-fitting on two problems, demon-
strating much better performance with boosting. Becker and Seshadri [16] compared
two techniques to evolve more comprehensible trading rules. One applied expert-level
knowledge of useful arithmetic operators for technical trading, while the other used a
complexity penalty in the fitness. The second evolved more comprehensible, better-
generalising rules. Mahler et al. [24] tried Tarpeian control on symbolic regression
problems and tested for generalisation accuracy, finding mixed results: the effects of
Tarpeian control are problem-dependent. In [6], Gagné et al. investigated two methods
to improve GP generalisation: the selection of the best-of-run individuals through three
separate data sets (training, validation, and test), and the application of parsimony pres-
sure. The validation set results showed somewhat improved stability than parsimony
pressure.



Where Should We Stop? An Investigation on Early Stopping for GP Learning 393

More recently, Costelloe and Ryan [4] investigated the role of generalisation in GP.
They showed that linear scaling [25] improves GP training performance, but not test
performance. They proposed combining Linear Scaling and the No Same Mate strategy
[26] for better performance. Vanneschi and Gustafson [11] improved GP generalisation
through a crossover based similarity measure. They keep a list of over-fitted individuals,
and eliminate individuals that are too similar (based on structural distance or a subtree
crossover metric) to individuals in that list. The method was tested on a real-life drug
discovery regression problem and showed improvements in GP generalisation. Nguyen
Quang Uy et al. [8] showed that semantic information could guide GP crossover to re-
ducing code bloat and improve generalisation on real-valued symbolic regression prob-
lems. In [27], Vanneschi at el. proposed a method to quantify/detect over-fitting during
GP learning.

2.2 Early Stopping for Learning Machines

The preceding work has focused on avoiding over-fitting to improve GP generalisa-
tion, generally through reducing individual complexity. This resembles the common
machine learning technique of regularisation. While regularisation often works in GP,
recent work has shown that reducing individual complexity does not guarantee better
generalisation in GP [18]. Over-fitting is sometimes inevitable. Machine learning also
uses another approach: is stopping training when over-fitting is detected [12]. Early
stopping has been widely used in neural networks (NN) because of its simplicity and
effectiveness. In [12], Prechelt considered three criteria for stopping training. The first
criterion stops as soon as the generalisation loss (on an independent validation set)
exceeds a predetermined threshold. The second criterion uses the quotient of generali-
sation loss and progress, while the third stops when generalisation error first increases
over s successive training strips. None of the criteria dominated the others in terms
of average generalisation performance. However ”slower” criteria, stopping later than
others, on average improve generalisation, but at the cost of greater training time [12].

In other word, early stopping embodies a trade-off between training time and gener-
alisation. In [28], Shafi and Abbass investigated the effects of early stopping in learning
classifier system (LCS); as with NN, they found that early stopping improves general-
isation. The preliminary work of Tuite et al. [19] i and of ourselves [20] in applying
early stopping to GP was described in the preceding section.

3 Methods

Our method is inspired by Prechelt’s work [12] on early stopping criteria for NNs and
that of Tuite et al. [19] on early stopping for GE. We use three data sets: training,
testing and validation. The validation set is used to estimate the generalisation error of
individuals during evolution. Our stopping criterion is the second from [12].1

1 We have investigated 5 different stopping criteria, but only report the best due to space limita-
tions. Tuite et al. [19] reported the third criterion from [12] as best-performing, but we found
the second (with a different parameter setting) better.



394 T.H. Nguyen et al.

To specify the stopping criterion, we first define generalisation loss during the evo-
lutionary process in equation 1:

GL(g) = 100.(
Eva(g)

Eopt(g)
− 1) (1)

where Eva(g) is the validation error of the best individual at generation g. Eopt(g) is
the lowest validation error up to generation g:

Eopt(g) = min
g′≤g

Eva(g
′) (2)

Sharp generalisation loss is an indication of ineffective learning. However, if the train-
ing error is still decreasing rapidly, generalisation loss might recover, since we assumed
that over-fitting only begins when the error decreases slows [12]. Training progress
is defined over a training strip of length k: a sequence of k successive generations
n + 1, .., n+ k with k|n. It measures by how much the average training error exceeds
the minimum training error within the strip:

Pk(t) = 1000.(

∑g
t′=g−k+1 Etr(g)

kming
t′=g−k+1 Etr(g)

− 1) (3)

where Etr(g) is the training error of the best individual at generation g. We use the
stopping criterion from [12] defined as:
PQα: stop after the first end-of-strip generation g satisfying GL(g)

Pk(t)
> α

(In this criterion, α is a tuning parameter, permitting small excursions in the validation
error.)

4 Experiments

We conducted experiments on fifteen regression problems, including both synthetic and
real-world data sets. The ten synthetic data sets are given in Table 1. These test functions
have been extensively used in the GP and Machine Learning literature.

Table 1. The Synthetic Test Functions

1 F1(x) = x4 + x3 + x2 + x
2 F2(x) = cos(3x)
3 F3(x) =

√
x

4 F4(x) = x1x2 + sin ((x1 − 1)(x2 − 1))

5 F5(x) = x4
1 − x3

1 +
x2
2
2 − x2

Friedman1 F6(x) = 10 sin (πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5

Friedman2 F7(x) =
√

x2
1 + (x2x3 − 1

x2x4
)2

Gabor F8(x) = π
2 e−2(x2

1+x2
2) cos[2π(x1 + x2)]

Multi F9(x) = 0.79 + 1.27x1x2 + 1.56x1x4 + 3.42x2x5 + 2.06x3x4x5

3-D Mexican Hat F10(x) =
sin(

√
x1
1+x2

2)√
x2
1+x2

2



Where Should We Stop? An Investigation on Early Stopping for GP Learning 395

Table 2. The real-world data sets

Data sets Abbreviation Features Size Source

Concrete Slump Test Slum 10 103 UCI
Concrete Compressive Strength Conc 9 1030 UCI
Pollen Poll 5 3848 StatLib
Chscase.census6 Cens 7 400 StatLib
No2 No2 8 500 StatLib

Table 3. Data Sets for Problems. For the synthetic problems, the notation [min, max ] defines the
range from which the data points are sampled.

Problem Function Attribute Sample size Training size Validation size Test size
1 F1 x ∈ [−1, 1] 1500 750 375 375
2 F2 x ∈ [0, 2] 1200 600 300 300
1 F3 x ∈ [0, 4] 1200 600 300 300
4 F4 x1, x2 ∈ [−3, 3] 1000 500 250 250
5 F5 x1, x2 ∈ [−3, 3] 1000 500 250 250
6 F6 x1, x2, x3, x4, x5 ∈ [0, 1] 1000 500 250 250
7 F7 x1 ∈ [0, 100],

x2 ∈ [40π, 560π],
x3 ∈ [0, 1],
x4 ∈ [1, 11] 1000 500 250 250

8 F8 x1, x2 ∈ [0, 1] 1200 600 300 300
9 F9 x1, x2, x3, x4, x5 ∈ [0, 1] 1000 500 250 250
10 F10 x1, x2 ∈ [−4π, 4π] 1000 500 250 250
11 Slum 103 52 25 26
12 Conc 1030 515 257 258
13 Poll 3848 1924 962 962
14 Cens 400 200 100 100
15 No2 500 250 125 125

The five real-world data sets were chosen from the UCI machine learning reposi-
tory [29] and StatLib [30], and are shown in Table 2.

Table 3 shows the ranges from which the inputs for the synthetic problems were
drawn, together with (for all problems) the sizes of the data sets into which the training
instances were divided.

Since these experiments are about generalisation ability, we corrupted the output
of the synthetic test functions by adding Gaussian noise with σ = 0.01. The parameter
settings for the GP systems are given in Table 4. Standard GP is denoted by GPM, while

Table 4. Parameter settings for the GP systems

Population Size 500
Number of generations 150 (for GPM)
Tournament size 3
Crossover probability 0.9
Mutation probability 0.05
Initial Max depth 6
Max depth 15
Non-terminals +, -, *, / (protected)

, sin, cos, exp, log (protected)
Standardized fitness mean absolute error
Number of runs 50



396 T.H. Nguyen et al.

GPV is a variant which checks the stopping criterion at each generation, terminating if
it is satisfied. Otherwise GPM and GPV are identical, up to using the same random seed
in corresponding runs.

All runs were conducted on a Compaq Presario CQ3414L computer with Intel Core
i3-550 Processor (4M Cache, 3.20 GHz) running Ubuntu Linux operating system.

5 Results and Discussions

For each run, we recorded the generalisation error (GE – measured on the test data) of
the best individual of the run, the size of the best individual, the first generation where
the best individual of the run was discovered, and the last generation of the run (for
GPV). Table 5 presents the results, averaged over 100 runs (with standard deviations).
Three different values for α (7, 29, 51) were tested, resulting in three different versions

Table 5. Best Generalisation Errors, Run Times, and p-values and percentage differences, GP
with Stopping Criterion (various α) vs GP

Generalisation Error p-value of GE run time p-value of time

Functions PQ7 PQ29 PQ51 GP PQ7 PQ29 PQ51 PQ7 PQ29 PQ51 GP PQ7 PQ29 PQ51

F1 0.0097± 0.0085± 0.0090± 0.0097± 0.9509 0.2608 0.4975 348.9897± 377.8947± 376.5979± 528.9278± 0.0000 0.0000 0.0000

0.0080 0.0071 0.0077 0.0081 98.8% 88.4% 92.6% 208.3706 203.1782 201.5762 172.4390 66.6% 73.7% 72.5%

F2 0.0126± 0.0126± 0.0125± 0.0222± 0.0005 0.0004 0.0004 348.9897± 377.8947± 376.5979± 528.9278± 0.0000 0.0000 0.0000

0.0138 0.0137 0.0138 0.0223 59.0% 58.4% 58.3% 208.3706 203.1782 201.5762 172.4390 62.7% 66.3% 67.2%

F3 0.0050± 0.0050± 0.0050± 0.0056± 0.4741 0.3156 0.3113 236.0652± 259.8370± 262.2935± 461.9588± 0.0000 0.0000 0.0000

0.0044 0.0044 0.0044 0.0046 90.5% 87.1% 90.9% 156.7395 166.9716 166.6070 132.1351 52.1% 56.9% 59.2%

F4 0.5084± 0.5036± 0.5036± 0.4958± 0.0368 0.1222 0.1313 110.4432± 128.4778± 128.5000± 223.3333 0.0000 0.0020 0.0020

0.0430 0.0485 0.0485 0.0559 100.6% 103.0% 101.9% 162.9480 189.7861 189.5296 221.7522 52.5% 61.7% 60.7%

F5 1.2100± 1.1854± 1.1688± 1.2342± 0.7429 0.5000 0.3628 400.0000± 421.8750± 429.8105± 563.0632± 0.0000 0.0000 0.0000

0.5089 0.4907 0.4804 0.5073 99.8% 97.4% 97.1% 202.5774 202.9539 205.2737 166.2303 72.2% 75.6% 76.9%

F6 1.5875± 1.5708± 1.5381± 1.4677± 0.0000 0.0094 0.0541 836.1277± 896.7660± 947.1522± 1225.4896± 0.0000 0.0000 0.0000

0.2981 0.3036 0.2641 0.2317 107.7% 106.6% 103.8% 389.1948 417.8879 417.6109 242.9004 68.6% 73.0% 76.9%

F7 3.9381± 3.9689± 3.9311± 4.0648± 0.9580 0.7531 0.6594 549.4792± 601.7500± 625.3750± 797.1954± 0.0000 0.0000 0.0000

2.1808 2.1971 2.1762 1.9215 100% 96.8% 98.0% 322.8258 314.5690 325.4105 237.6541 68.9% 77.4% 81.1%

F8 0.1456± 0.1414± 0.1412± 0.1312± 0.0656 0.1841 0.1953 529.9000± 564.9300± 568.4600± 747.0100 ± 0.0000 0.0000 0.0000

0.0603 0.0589 0.0590 0.0483 110.9% 107.7% 107.6% 281.5569 271.7877 270.1209 169.6208 70.9% 75.6% 76.1%

F9 0.1595± 0.1581± 0.1581± 0.1619± 0.7081 0.5547 0.5547 519.7340± 541.4894± 539.2660± 712.4457± 0.0000 0.0000 0.0000

0.0470 0.0471 0.0471 0.0399 98.9% 98.4% 99.3% 283.8214 285.9565 285.0949 175.5821 74.7% 76.4% 77.1%

F10 0.0824± 0.0813± 0.0815± 0.0802± 0.0076 0.1773 0.1119 188.6186± 261.1667± 271.9896± 565.7113± 0.0000 0.0000 0.0000

0.0050 0.0057 0.0055 0.0054 102.7% 101.4% 102.4% 208.0677 238.6885 244.9955 212.6491 33.8% 46.6% 49.2%

Slum 5.9632± 5.7866± 5.7869± 5.5959± 0.1521 0.4462 0.4489 62.4396± 90.9111± 97.2584± 422.4045± 0.0000 0.0000 0.0000

1.8028 1.7203 1.7347 1.6211 105.6% 103.1% 102.8% 53.4050 79.0853 80.7470 187.8031 14.7% 21.8% 23.9%

Conc 7.8401± 6.9023± 6.9508± 6.8906± 0.0000 0.9353 0.6893 1036.8400± 1518.4045± 1541.4286± 1708.7677± 0.0000 0.0443 0.0735

1.9861± 0.9700± 1.0593± 1.0114 112.9% 100.4% 101.2% 777.4485 712.0448 708.1432 556.4130 60.8% 85.6% 87.4%

Poll 1.7451± 1.7426± 1.7403± 1.7206± 0.5995 0.6366 0.6747 1768.7000± 1995.0500± 2064.0700± 3113.6200± 0.0000 0.0000 0.0000

0.3320 0.3301 0.3338 0.3275 101.4% 101.3% 101.1% 1105.8256 1199.1555 1190.9865 1090.1410 56.8% 64.1% 66.3%

Cens 1.2417± 1.2469± 1.2501± 1.3475± 0.0000 0.0000 0.0000 87.0488± 138.2530± 156.6867± 427.2708± 0.0000 0.0000 0.0000

0.0509 0.0489 0.0490 0.2042 93.4% 96.0% 97.3% 87.8209 145.4627 167.0125 185.6668 20.8% 33.8% 38.2%

No2 0.4846± 0.4822± 0.4813± 0.4740± 0.0663 0.1457 0.1888 164.6364± 235.6566± 254.1100± 567.1600 ± 0.0000 0.0000 0.0000

0.0421 0.0406 0.0402 0.0387 102.2% 101.7% 101.6% 146.8023 194.6069 201.4310 225.5351 29.0% 41.6% 44.8%



Where Should We Stop? An Investigation on Early Stopping for GP Learning 397

of GPV (PQ7, PQ29, PQ51 in the table).2. We tested the significance of the differences
in generalisation error between GPM and GPV, using a two-tailed pairwise t-test with
confidence level 0.95 (α = 0.05). The p-values are shown.3 Our null and alternative
hypotheses were:

– H0 = ”the average GE of GPM and GPV are the same”.
– H1 = ”GPM and GPV have different average GE”.

In Table 5, if H0 is rejected the printed p-value is bolded (if GPV is better than GP) or
italicised and bolded (if GPV is worse than GPM). When α is small, early stopping can
degrade the generalisation capacity of GP. For α = 7 (column PQ7), four functions (F4,
F6, F10, Conc) show worse generalisation from GPV solutions than from GPM (H0 is
rejected). This reduces to one function for α = 29 (column PQ29) and none for α = 51
(i.e. H0 is accepted in most cases); on the contrary, in two cases for the latter, GPB has
strictly better generalisation. Table 5 also shows the percentage ratio between GE of
solutions found by each GPV system with that found by GP (averaged over all runs).
The average run time (with standard deviations) of each system is given in the right haft
of Table 5, with p-values for a two-tailed t-test with null and alternative hypotheses as
follows:

– H0 = ”the average run times of GPM and GPV are the same”.
– H1 = ”GPM and GPV have different average runtime”.

For all settings of alpha, GPV has significantly better run time than GPM, on all prob-
lems. As α increases, so does the relative runtime of GPV – but generally rather slowly.
Overall, the better overall performance of larger α values is probably worth the in-
creased runtime.

6 Conclusions

We have presented a study of the impact of early stopping on GP learning, focusing on
its learning efficiency (generalisation error and runtime complexity). The results from
10 synthetic regression and 5 real-world problems show that early stopping improves
GP learning efficiency by significantly reducing training time while retaining, or even
slightly improving, the quality of the solutions it learns. It also confirms the value of
Prechelt’s second stopping criterion [12] with different settings of parameter alpha than
were used by Prechelt. The results somewhat contradict those reported in [19], where
this stopping criterion is found to be less effective for GE. We conjecture that this results
from the the different settings of α, and that Tuite et al. might see better results from
the second criterion with increased values of α.

In future, we plan to test early stopping criteria on more problems, and to compare
with regularisation via Tarpeian Control [24] and similar methods. Since early stopping

2 [12] and [19] tested α values of 2.5, 5, and 7.5. For our problem domains, these values were
too small, and we recalibrated α for the best performance of GPV.

3 Values shown as 0.0000 were truncated from the actual value so as to fit the table on the page.



398 T.H. Nguyen et al.

uses only the validation and training errors of individuals, and does not interfere with
the fitness function or individual complexity metrics as does regularisation, the two
(regularisation and early stopping) could potentially be used in combination. Studying
such a combination is in our intermediate future plans.

Acknowledgments. The ICT at Seoul National University provided research facilities
for this study. This work was funded by The Vietnam National Foundation for Science
and Technology Development (NAFOSTED) under grant number 102.01-2011.08. The
first author would like to thank the R@FIT funding of school of Information Tech-
nology, Le Quy Don University for providing financial support for her to present this
paper.

References

[1] Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural
Selection. The MIT Press, Cambridge (1992)

[2] Poli, R., McPhee, W.L.N.: A Field Guide to Genetic Programming (2008),
http://lulu.com

[3] Mitchell, T.M.: Machine Learning. McGraw Hill (1997)
[4] Costelloe, D., Ryan, C.: On Improving Generalisation in Genetic Programming. In: Van-

neschi, L., Gustafson, S., Moraglio, A., De Falco, I., Ebner, M. (eds.) EuroGP 2009. LNCS,
vol. 5481, pp. 61–72. Springer, Heidelberg (2009)

[5] Foreman, N., Evett, M.: Preventing overfitting in GP with canary functions. In: Proceedings
of the 2005 Conference on Genetic and Evolutionary Computation (GECCO 2005), pp.
1779–1780. ACM (2005)

[6] Gagné, C., Schoenauer, M., Parizeau, M., Tomassini, M.: Genetic Programming, Validation
Sets, and Parsimony Pressure. In: Collet, P., Tomassini, M., Ebner, M., Gustafson, S., Ekárt,
A. (eds.) EuroGP 2006. LNCS, vol. 3905, pp. 109–120. Springer, Heidelberg (2006)

[7] Kushchu, I.: Genetic programming and evolutionary generalization. IEEE Transactions on
Evolutionary Computation 6, 431–442 (2002)

[8] Uy, N.Q., Hien, N.T., Hoai, N.X., O’Neill, M.: Improving the Generalisation Ability of
Genetic Programming with Semantic Similarity based Crossover. In: Esparcia-Alcázar, A.I.,
Ekárt, A., Silva, S., Dignum, S., Uyar, A.Ş. (eds.) EuroGP 2010. LNCS, vol. 6021, pp. 184–
195. Springer, Heidelberg (2010)

[9] Panait, L., Luke, S.: Methods for Evolving Robust Programs. In: Cantú-Paz, E., Foster, J.A.,
Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Har-
man, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N.,
Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2724, pp. 1740–1751. Springer,
Heidelberg (2003)

[10] Paris, G., Robilliard, D., Fonlupt, C.: Exploring Overfitting in Genetic Programming. In:
Liardet, P., Collet, P., Fonlupt, C., Lutton, E., Schoenauer, M. (eds.) EA 2003. LNCS,
vol. 2936, pp. 267–277. Springer, Heidelberg (2004)

[11] Vanneschi, L., Gustafson, S.: Using crossover based similarity measure to improve genetic
programming generalization ability. In: Proceedings of the 11th Annual Conference on Ge-
netic and Evolutionary Computation (GECCO 2009), pp. 1139–1146. ACM (2009)

[12] Prechelt, L.: Early Stopping - But When? In: Orr, G.B., Müller, K.-R. (eds.) NIPS-WS 1996.
LNCS, vol. 1524, pp. 55–69. Springer, Heidelberg (1998)

http://lulu.com


Where Should We Stop? An Investigation on Early Stopping for GP Learning 399

[13] Finno, W., Hergert, F., Zimmermann, H.: Improving model selection by nonconvergent
methods. Neural Networks 6, 771–783 (1993)

[14] Zhang, B.T., Muhlenbein, H.: Balancing accuracy and parsimony in genetic programming.
Evolutionary Computation 3, 17–38 (1995)

[15] Hooper, D., Flann, N.: Improving the accuracy and robustness of genetic programming
through expression simplification. In: Proceedings of the First Annual Conference on Ge-
netic Programming 1996, vol. 428. MIT Press (1996)

[16] Becker, L., Seshadri, M.: Comprehensibility and overfitting avoidance in genetic program-
ming for technical trading rules. Technical report, Worcester Polytechnic Institute (2003)

[17] Liu, Y., Khoshgoftaar, T.: Reducing overfitting in genetic programming models for software
quality classification. In: Proceedings of the Eighth IEEE Symposium on International High
Assurance Systems Engineering, pp. 56–65 (2004)

[18] Silva, S., Vanneschi, L.: Operator equalisation, bloat and overfitting: a study on human oral
bioavailability prediction. In: Proceedings of the 11th Annual Conference on Genetic and
Evolutionary Computation (GECCO 2009), pp. 1115–1122 (2009)

[19] Tuite, C., Agapitos, A., O’Neill, M., Brabazon, A.: Early stopping criteria to counteract
overfitting in genetic programming. In: Proceedings of the 13th Annual Conference Com-
panion on Genetic and Evolutionary Computation, GECCO 2011, pp. 203–204. ACM, New
York (2011)

[20] Hien, N.T., Hoai, N.X., Uy, N.Q., McKay, R.: Where should we stop? - an investigation on
early stopping for gp learning. Technical Report TRSNUSC:2011:001, Strutural Complex-
ity Laboratory, Seoul National University, Seoul, Korea (February 2011)

[21] Francone, F., Nordin, P., Banzhaf, W.: Benchmarking the generalization capabilities of a
compiling genetic programming system using sparse data sets. In: Proceedings of the First
Annual Conference on Genetic Programming 1996, pp. 72–80. MIT Press (1996)

[22] Iba, H.: Bagging, boosting, and bloating in genetic programming. In: Proceedings of the
Genetic and Evolutionary Computation Conference, pp. 1053–1060. Morgan Kaufmann
(1999)

[23] Paris, G., Robilliard, D., Fonlupt, C.: Exploring Overfitting in Genetic Programming. In:
Liardet, P., Collet, P., Fonlupt, C., Lutton, E., Schoenauer, M. (eds.) EA 2003. LNCS,
vol. 2936, pp. 267–277. Springer, Heidelberg (2004)

[24] Mahler, S., Robilliard, D., Fonlupt, C.: Tarpeian Bloat Control and Generalization Accuracy.
In: Keijzer, M., Tettamanzi, A.G.B., Collet, P., van Hemert, J., Tomassini, M. (eds.) EuroGP
2005. LNCS, vol. 3447, pp. 203–214. Springer, Heidelberg (2005)

[25] Keijzer, M.: Improving Symbolic Regression with Interval Arithmetic and Linear Scaling.
In: Ryan, C., Soule, T., Keijzer, M., Tsang, E.P.K., Poli, R., Costa, E. (eds.) EuroGP 2003.
LNCS, vol. 2610, pp. 70–82. Springer, Heidelberg (2003)

[26] Gustafson, S., Burke, E.K., Krasnogor, N.: On improving genetic programming for sym-
bolic regression. In: Proceedings of the 2005 IEEE Congress on Evolutionary Computation,
vol. 1, pp. 912–919. IEEE Press, Edinburgh (2005)

[27] Vanneschi, L., Castelli, M., Silva, S.: Measuring bloat, overfitting and functional complexity
in genetic programming. In: Proceedings of the 12th Annual Conference on Genetic and
Evolutionary Computation (GECCO 2010), pp. 877–884. ACM (2010)

[28] Shafi, K., Abbass, H.A., Zhu, W.: The Role of Early Stopping and Population Size in XCS
for Intrusion Detection. In: Wang, T.-D., Li, X., Chen, S.-H., Wang, X., Abbass, H.A.,
Iba, H., Chen, G.-L., Yao, X. (eds.) SEAL 2006. LNCS, vol. 4247, pp. 50–57. Springer,
Heidelberg (2006)

[29] Blake, C., Keogh, E., Merz, C.J.: UCI machine learning repository (1998)
[30] Vlachos, P.: Statlib project repository (2000)


	Where Should We Stop? An Investigation on Early Stopping for GP Learning
	Introduction
	Background
	Over-fitting and Generalisation in GP
	Early Stopping for Learning Machines

	Methods
	Experiments
	Results and Discussions
	Conclusions
	References





