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Abstract. The paper deals with an approach to model TSK fuzzy logic
systems (FLS), especially interval type-2 TSK FLS, using interval type-2
fuzzy subtractive clustering (IT2-SC). The IT2-SC algorithm is combined
with least square estimation (LSE) algorithms to pre-identify a type-1
FLS form from input/output data. Then, an interval type-2 TSK FLS can
be obtained by considering the membership functions of its existed type-1
counterpart as primary membership functions and assigning uncertainty
to cluster centroids, standard deviation of Gaussian membership func-
tions and consequence parameters. Results is shown in comparison with
the approach based on type-1 subtractive clustering algorithm.

Keywords: subtractive clustering, type-2 fuzzy sets, fuzzy logic system,
TSK model.

1 Introduction

TSK fuzzy logic systems (TSK FLSs) have widely been deployed in various real
applications especially in model-based control and model-based fault diagnosis.
TSK qualitative modelling, as known as TSK modelling, was proposed in an
effort to develop a systematic approach to generating fuzzy rules from a given
input-output data set [6,7]. When, the identification of a TSK FLS using clus-
tering involves formation of clusters in the data space and translation of these
clusters into TSK rules such that the model obtained is closer to the system to
be identified [4,5]. However, in most real data exists uncertainty and vagueness
which cannot be appropriately managed by type-1 fuzzy sets. Meanwhile, type-2
fuzzy sets allow us to obtain desirable results in designing and managing uncer-
tainty. Mendel et al [1,2,3] extended previous studies and established a complete
type-2 fuzzy logic theory with the handling of uncertainties. On the basis, type-2
TSK FLS was presented [16].

One of the important tasks to design a fuzzy system is how to determine the
number of rules (structure identification). There are two approaches to generate
initial fuzzy rules: manually and automatically. In the automatically approaches,
the basic idea is to estimate fuzzy rules through learning process from input-
output sample data. An automatic data-driven based method for generating
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the initial fuzzy rules is Chius subtractive clustering algorithm (SC) [6]. When,
subtractive clustering algorithm is combined with least squares estimation al-
gorithm to design TSK FLSs [8]. Then, an interval type-2 TSK FLS can be
obtained by considering the membership functions of its existed type-1 coun-
terpart as primary membership functions and assigning uncertainty to cluster
centroids and consequence parameters [9]. In this way, clustering results of SC
decides the structure of fuzzy systems. Interval type-2 fuzzy subtractive cluster-
ing (IT2-FSC) [15] is extension of SC algorithms to handle uncertainty.

In subtractive clustering algorithms, setting subtractive clustering parameters
are very influential to the results of clustering. This paper deals with an approach
to model type-2 TSK FLS from input/output dataset. Interval type-2 fuzzy sub-
tractive clustering is used to determine the number of rules and to learn rule-base
from dataset. IT2-FSC is also combined with LSE algorithm to estimate parame-
ters for designing interval type-2 TSK FLS. Results on function approximation is
shown that the proposed approach to obtain accuracy and simple TSK models.

The remainder of this paper is organized as follows. In Section 2 introduces
briefly type-2 fuzzy sets, interval type-2 fuzzy subtractive clustering. In section
3, we discuss how to using interval type-2 fuzzy subtractive clustering algorithm
to design TSK FLS and extend interval type-2 TSK FLS from type-1 TSK FLS.
In section 4, we provide several experiments to show the validity of our proposed
method. Finally, section 5 gives the summaries and conclusions.

2 Interval Type-2 Fuzzy Logic Systems

2.1 Type-2 Fuzzy Sets

Atype-2 fuzzy set inX is denoted Ã, and itsmembershipgradeofx ∈ X isμÃ(x, u),
u ∈ Jx ⊆ [0, 1], which is a type-1 fuzzy set in [0, 1]. The elements of domain of
μÃ(x, u) are called primary memberships of x in Ã and memberships of primary

memberships in μÃ(x, u) are called secondary memberships of x in Ã.

Definition 1. A type − 2 fuzzy set, denoted Ã, is characterized by a type-2
membership function μÃ(x, u) where x ∈ X and u ∈ Jx ⊆ [0, 1], i.e.,

Ã = {((x, u), μÃ(x, u))|∀x ∈ X, ∀u ∈ Jx ⊆ [0, 1]} (1)

in which 0 ≤ μÃ(x, u) ≤ 1.

At each value of x, say x = x′, the 2-D plane whose axes are u and μÃ(x
′, u) is

called a vertical slice of μÃ(x, u). A secondary membership function is a vertical
slice of μÃ(x, u). It is μÃ(x = x′, u) for x ∈ X and ∀u ∈ Jx′ ⊆ [0, 1], i.e.

μÃ(x = x′, u) =
∫
u∈Jx′

fx′(u)/u, Jx′ ⊆ [0, 1] (2)

in which 0 ≤ fx′(u) ≤ 1.



432 B.H. Pham, H.T. Ha, and L.T. Ngo

Type-2 fuzzy sets are called an interval type-2 fuzzy sets if the secondary
membership function fx′(u) = 1 ∀u ∈ Jx that are defined as follows:

Definition 2. An interval type-2 fuzzy set Ã is characterized by an interval
type-2 membership function μÃ(x, u) = 1 where x ∈ X and u ∈ Jx ⊆ [0, 1], i.e.,

Ã = {((x, u), 1)|∀x ∈ X, ∀u ∈ Jx ⊆ [0, 1]} (3)

Uncertainty of Ã, denoted FOU, is union of primary functions i.e. FOU(Ã) =⋃
x∈X Jx. Upper/lower bounds of membership function (UMF/LMF), denoted

μÃ(x) and μ
Ã
(x), of Ã are two type-1 membership function and bounds of FOU.

2.2 Type-1 TSK Fuzzy Logic Systems

A generalized type-1 TSK model is described by fuzzy IF-THEN rules which
represent input-output relations of a system. For a multi-input-single-output
(MISO) first order type-1 TSK model, its lth rule can be expressed as follows:

Rl : IF x1 is F l
1 AND x2 is F l

2 AND ... AND xn is F l
n THEN

wl = clo + cl1x1 + cl2x2 + ...+ clnxn (4)

in which xi(i = 1, ..., n) are linguistic variables, F l
i (i = 1, ..., n) are type-1 fuzzy

sets, wl is output from the lth IF-THEN rule, cli(i = 0, 1, ..., n) are consequent
parameters.

The output of a TSK FLS is computed as following steps:

- Calculating degree of firing of lth rule as:

f l = μl
1(x1) ∧ μl

2(x2) ∧ . . . ∧ μl
n(xn) (5)

where ∧ is a conjunction operator and a t-norm, can be minimum or product.
- Calculating the output from the lth IF-THEN rule of M rules FLS:

wl = clo + cl1x1 + cl2x2 + ...+ clnxn (6)

- Calculating the output of FLS by weighted averaging:

W =

∑k
i=1 f

iwi

∑k
i=1 f

i
(7)

2.3 Interval Type-2 TSK Fuzzy Logic Systems

An interval type-2 TSK model includesM -rules, n-inputs, its lth fuzzy IF-THEN
rule can be expressed as bellow:

Rl : IF x1 is F̃ l
1 AND IF x2 is F̃ l

2 AND ... AND IF xk is F̃ l
k THEN

w̃l = C̃l
0 + C̃l

1x1 + C̃l
2x2 + ...+ C̃l

nxn (8)
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in which xi(i = 1, ..., n) are linguistic variables, wl is output from the lth IF-
THEN rule; C̃l

i(i = 0, 1, ..., n) type-1 fuzzy sets are consequent parameters and

C̃l
i = [c

l
i−sli, c

l
i+sli] with cli denotes the centroid of C̃l

i and sli denotes the spread

of C̃l
i ; F̃

l
1(i = 0, 1, ..., n) are interval type-2 fuzzy sets and μ̃l

i = [μl
i
,μl

i].
Interval type-2 TSK FLS is computed as the following steps:

- Degree of firing of lth rule f l = [f l, f
l
] with

f l = μl
1
(x1) ∧ μl

2
(x2) ∧ . . . ∧ μl

n
(xn)

f
l
= μl

1(x1) ∧ μl
2(x2) ∧ . . . ∧ μl

n(xn) (9)

- The output from the lth IF-THEN rule of M rules: w̃l = [w
l
L,w

l
R] with

wl
L =

n∑
j=1

cljxj + cl0 −
n∑

j=1

sljxj − sl0 (10)

wl
R =

n∑
j=1

cljxj + cl0 +

n∑
j=1

sljxj + sl0 (11)

- Calculating output of FLS by weighted averaging of individual rules contri-
butions:

wL =

∑k
j=1 f

j ∗ wj
L∑k

j=1 f
j

and wR =

∑k
j=1 f

j ∗ wj
R∑k

j=1 f
j

(12)

3 Rule Extraction for Interval Type-2 TSK FLS

The problem of identification of TSK model is divided into two sub-tasks: Learn-
ing the antecedent part of the model, which consists on the determination of cen-
troids and spreads of membership functions by using IT2-FSC; and Learning the
parameters of the linear subsystems of the consequent by using LSE algorithm.

3.1 Learning Rule Antecedents

Subtractive clustering estimated the potential of a data point as a cluster cen-
troid based on the density of surrounding data points, which is actually based on
the distance between the data point with the remaining data points. In addition,
we must set four parameters: accept ratio ε, reflect ratio ε, cluster radius ra and
squash factor η (or rb) [4,5]. The choice of parameters have greatly influences
to results of clustering. SC includes various types of uncertainty as distance
measure, initialization parameters... So we consider a fuzziness parameters that
control the distribution of data points into clusters by making the parameter m
in the density function to calculate the potential of a data point [15]. Membership
degree of a point in the kth cluster centroid is defined as following formula:

μik = e
− 4

r2a
(xi−xk)

2
m−1

(13)

where xk is the kth cluster centroid.
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According to the formula (13), membership value of a data point in the kth

cluster centroid depends on the position of the kth cluster and the fuzziness pa-
rameter m. Thus, the fuzziness parameter m is the most uncertainty element in
the expanded subtractive clustering algorithm. Therefore, to design and manage
the uncertainty for fuzziness parameter m, pattern set to interval type-2 fuzzy
sets is extended using two fuzzifiers m1 and m2, which creates a footprint of un-
certainty (FOU) for the fuzziness parameter m. Then the degree of membership
of the kth cluster centroid is defined as the following formula:

⎧⎪⎨
⎪⎩

μik = e
− 4

r2a
(xi−xk)

2
m1−1

μ
ik

= e
− 4

r2a
(xi−xk)

2
m2−1

(14)

Two density functions are computed the potential of each data point as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

P i =
n∑

j=1

e
− 4

r2a
(xj−xi)

2
m1−1

P i =
n∑

j=1

e
− 4

r2a
(xj−xi)

2
m

2
−1

(15)

The centroids are identified by the formula (15) and type-reduction for centroids
is done as bellows:

Pi =
P i ∗m1 + P i ∗m2

m1 +m2
(16)

When the kth cluster centroid is identified, the density of all data points is revised
by using the following formula:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P sub
i = P ∗

k

n∑
j=1

e
− 4

r2
b

d

2
m

1
−1

ij

P
sub

i = P ∗
k

n∑
j=1

e
− 4

r2
b

d

2
m2−1

ij

P sub
i =

P sub
i ∗m1+P

sub
i ∗m2

m1+m2

Pi = Pi − P sub
i

(17)

Because, each cluster centroid is representative of a characteristic behaviour
of the system, the resulting cluster centroids are used as parameters of the an-
tecedent parts defining the focal points of the rules of the model. Then clustering
results of IT2-SC decides the structure of fuzzy systems.

3.2 Learning Rule Consequent Using LSE Algorithm

The output of type-1 TSK model is determined by the formula (7).
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Suppose that:

δi =
f i

∑k
i=1 f

i
(18)

When:

W =

k∑
i=1

δiwi (19)

For a given set of m input-output data points. The equations can be obtained
as:

W 1 =
∑k

i=1 δ
ici0 +

∑k
i=1 xiδ

ici1 + .....+
∑k

i=1 xiδ
icin

W 2 =
∑k

i=1 δ
ici0 +

∑k
i=1 xiδ

ici1 + .....+
∑k

i=1 xiδ
icin

...

Wm =
∑k

i=1 δ
ici0 +

∑k
i=1 xiδ

ici1 + .....+
∑k

i=1 xiδ
icin

(20)

The formula (20) can be taken a standard form: AP = W , where A is a constant
matrix (known), W is a matrix of the output and P is a matrix of parameters
to be estimated. We use least square estimation problem to determine P as:

P = (ATA)−1ATW (21)

3.3 Building for Interval Type-2 TSK FLS

An interval type-2 TSK FLS can be obtained by considering the membership
functions (MFs) of its existed type-1 counterpart as primary MFs and assign-
ing uncertainty to cluster centroids, standard deviation of Gaussian MF and
consequence parameters with membership functions of type-1 FLS is defined by

F l
j = N(xj , x

∗
l , σ) = exp [− 1

2
(
xj − x∗

l

σ
)2] (22)

in which σ = ra
2
√
2
.

By doing that, cluster centroids are expanded from a certain point to a fuzzy
number as follows:

x̃
∗
l = [x

∗
l (1 − a

l
), x∗l (1 + a

l
)] = [x∗l , x̄

∗
l ] (23)

where al is the spread percentage of cluster centre x∗
l in Fig.1. Then, the upper

membership function, μl
j(xj), is defined by

μl
j(xj) =

⎧⎨
⎩

N(xj , x
∗
l , σ), xj > x∗

l

1, x∗
l <= xj <= x∗

l

N(xj , x
∗
l , σ), xj < x∗

l

(24)

And the upper membership function, μl
j
(xj), is defined by

μl
j
(xj) =

{
N(xj , x

∗
l , σ), xj >=

x∗
l +x∗

l

2

N(xj , x
∗
l , σ), xj <

x∗
l +x∗

l

2

(25)
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Fig. 1. Spread and centroid of Gaussian Type-2 FSs

Whereas, consequent parameters are obtained by expanding consequent param-
eters from its type-1 TSK model to fuzzy numbers by formula(26) where blj is

the spread percentage of fuzzy numbers c̃lj

c̃lj = clj(1± bkj ) (26)

The TSK FLS modelling algorithm be proposed as below:

Step 1: Use our proposed IT2-SC algorithm combined with least squares
estimation algorithms to pre-identify a type-1 FLS form from in-
put/output data.

Step 2: Calculate root-mean-square-error (RMSE), if RMSE is bigger
than expected error limitation, go to Step 3. If not, go to Step 5,
which means the model is acceptable, no need to use type-2 TSK
model.

Step 3: Expand type-1 TSK model to type-2 TSK model:

- Spread cluster centroid to expanding premise membership func-
tions from type-1 fuzzy sets to type-2 fuzzy sets using formulas
(24) and (25)

- Spread the parameters of consequence to expanding parameters
of consequences from certain value to fuzzy numbers below for-
mula (26).

Step 4: Identify a type-2 TSK FLS

Step 5: Output the results of TSK FLS modelling.

The results of TSK FLS modeling algorithm are a type-1 or type-2 TSK FLS
model.
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4 Experimental Results

We consider the problem of type-1 TSK fuzzy model for approximating the
following non-linear function:

y = (x− 2.5)3 + x+ 1 (27)

where x ∈ [0, 4], we used equally spaced values to generate 1001 data points.
Here, we randomly selected 751 as training data and 250 as testing data. Table
1 describes four rules type-1 TSK model by using IT2-SC algorithm with initial-
ization parameters, respectively,ε = 0.5, ε = 0.15, ra = 0.5, η = 1.25 and two
fuzzifiers: m1 = 1.85 and m2 = 2.15.

Table 1. Results of type-1 TSK model based on SC of Chiu and our proposed IT2-SC

Rules
If x then y = p1 ∗ x+ p0

TSK model based on SC of Chiu TSK model based on our proposed IT2-SC

1
If x = exp(− 1

2

(
x−2.464
0.70711

)2
)

then y = 4.57271x − 6.91789
If x = exp(− 1

2

(
x−2.42
0.70711

)2
)

then y = 6.4900x − 12.2933

2
If x = exp(− 1

2

(
x−0.9
0.70711

)2
)

then y = 12.3745x − 24.1487
If x = exp(− 1

2

(
x−0.824
0.70711

)2
)

then y = 25.3741x − 49.8226

3
If x = exp(− 1

2

(
x−3.724
0.70711

)2
)

then y = 7.48193x − 21.9791
If x = exp(− 1

2

(
x−3.728
0.70711

)2
)

then y = 8.04252x − 24.3523

4
If x = exp(− 1

2

(
x−0.188
0.70711

)2
)

then y = 28.9666x − 10.2412
If x = exp(− 1

2

(
x−0.148
0.70711

)2
)

then y = 42.1097x + 3.72731

In this case, the RMSE-training is 0.01534 and the RMSE-testing is 0.01511.
Type-1 SC algorithm is also used for identification a type-1 TSK model with
initialization parameters, respectively,ε = 0.5, ε = 0.15, ra = 0.5, η = 1.25.
Then, the RMSE-training is 0.02196 and the RMSE-testing is 0.02184. We can
see that TSK model generated by our proposed method has result accuracy
with smaller RMSE. In Fig. 2, both training data and testing data, TSK model
generated by our proposed method has result as quite same as real system.

We can change value of two fuzzifiers to obtain better type-1 TSK model.
In table 2, we see that type-1 TSK model based on our proposed IT2-SC with
values of two fuzzifiers, m1 = 1.85 and m2 = 2.15, has the best result. RMSE
on training data and RMSE on testing data is quite small. The figure 2 shows
plots of obtained TSK model on training and testing data.

We consider two rules type-1 TSK model by using IT2-SC algorithm with
two fuzzifiers: m1 = 1.3 and m2 = 2.7. The type-1 TSK model is described in
table 3. In this model, the RMSE on training data is 0.46258 and RMSE on test
data is 0.50296. Two rules of type-2 TSK model obtain from type-1 TSK model
by using above described spread of fuzzy numbers. The system gains RMSE of
training and testing data, respectively, are 0.84944 and 0.35684.
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Table 2. Result of type-1 TSK model by different values of two fuzzifiers

m1 and m2 Number of rules RMSE training RMSE testing

1.95 and 2.05 4 0.02262 0.02113

1.9 and 2.1 4 0.01977 0.01811

1.85 and 2.15 4 0.01534 0.01511

1.8 and 2.2 3 0.3071 0.3031

1.7 and 2.3 3 0.3241 0.3204

1.6 and 2.4 2 0.4534 0.4531

1.5 and 2.5 2 0.42705 0.43769

1.4 and 2.6 2 0.42245 0.43887

1.3 and 2.7 2 0.4704 0.48038

1.2 and 2.8 1 2.1763 2.1285

Fig. 2. Result of TSK model; (a): On training data; (b): On testing data

Table 3. Type-1 TSK model and type-2 TSK model

Rules
If x then y = p1 ∗ x+ p0

type-1 TSK model type-2 TSK model

1
If x = exp(− 1

2

(
x−2.004
0.7064

)2
)

then y = 1.72375x − 1.48008
If x = exp(− 1

2

(
x−2.004∗(1−10%)

0.7064

)2

)

then y = 1.72375 ∗ (1− 20%)x − 1.48008 ∗ (1− 20%)

2
If x = exp(− 1

2

(
x

0.7064

)2
)

then y = 12.3839x − 13.9905
If x = exp(− 1

2

(
x

0.7064

)2
)

then y = 12.3839 ∗ (1− 20%)x − 13.9905 ∗ (1− 20%)

5 Conclusion

The paper presents a new approach to design TSK model. Here, we used an our
proposed IT2-SC combined with least squares estimation algorithm. The result
of experiments is shown the validity of our proposed method.
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For the future works, we will improve the computational performance by
speeding up the algorithm using GPU.
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