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Abstract—Recently, Shang and Xia (IEEE Transactions on 
Information Theory, 54(10), 4528-4547, 2008) introduced 
Overlapped Alamouti codes (OAC) and showed that OAC codes 
achieve full diversity when a linear receiver, zero-forcing (ZF) or 
minimum mean square error (MMSE) receiver, is used. 
Unfortunately, OAC codes suffer from transmitting “zero-
symbol” on all transmit antenna. The “zero-symbol” in the design 
results in high peak-to-average power ratio (PAPR) and also 
imposes a severe constraint on hardware implementation of the 
code when turning off some of the transmitting antennas 
whenever a “zero-symbol” is transmitted. In this paper, we 
propose a new space-time block code (STBC) for linear receivers. 
The proposed STBC achieves all desirable properties of OAC 
codes as full diversity, high rate and group orthogonality. In 
addition, transmitting “zero-symbol” only occurs on half of 
transmit antenna instead of all transmit antenna as for OAC code. 
As a result, the proposed STBCs not only have lower PAPR, but 
also easier implementation than OAC codes. Moreover, 
simulation results also show that our codes outperform OAC 
codes under peak power constraint. 

I.      INTRODUCTION 
In a practical multiple-input multiple-output (MIMO) 

system, decoding complexity is an important concern and a 
decoding scheme with low complexity is always desired. The 
linear receivers, such as zero-forcing (ZF) or minimum mean 
square error (MMSE) receiver, have addressed this concern. 
Space-time codes to achieve full diversity with linear receivers 
have been recently studied [1-5], design criteria have been 
proposed in [2-3]. Five known families for such codes are 
orthogonal OSTBCs [6-10], Toeplitz codes [1], overlapped 
Alamouti codes (OACs) [3], embedded Alamouti codes (EAC) 
[4], and group-orthogonal Toeplitz codes (GOTCs) [5]. For 
OSTBCs, due to the orthogonality, their maximum likelihood 
and linear receivers are the same. However, their symbol rates 
are upper-bounded by 3/4 for more than 2 transmit antennas 
and a tight upper bound was conjectured to be (k+1)/(2k) for 2k 
or 2k−1 transmit antennas in [10]. Although the symbol rates 
of Toeplitz codes can approach 1, their performance is not as 
good as OSTBCs due to Toeplitz codes do not have group 
orthogonality. In [3], OACs have been proposed and it has 
been shown via simulations that OACs outperform Toeplitz 
codes for any number of transmit antennas due to their group 
orthogonality, and furthermore, they outperform OSTBCs for 

over 4 transmit antennas. GOTCs [5] are good tradeoff 
between rate and orthogonality. It has been shown via 
simulations that GOTCs outperform OACs for MISO but 
worse for MIMO. However, a disadvantage of OACs is their 
codeword matrix still contains many zero entries. In theory, 
their symbols rates can approach one as the block sizes go to 
infinity for any number of transmit antennas, i.e., the effect of 
zero entries on BER performance and practical implementation 
may be ignored. Nevertheless, this is impossible in reality 
because as the block sizes tend to infinity, the inverse matrix 
becomes larger, resulting in increased decoding complexity 
and decoding delay. Avoiding the transmitting “zero-symbol” 
in codeword matrix is important for many reasons [11]. The 
first, the regular transmission of “zeros” implies turning off the 
transmit antennas at regular intervals, leading to undesirable 
low-frequency interference. The second, the zero entries result 
in high PAPR and increased difficulty in the front-end power 
amplifier design. 

In this paper, by using no-zero-entry (NZE) Toeplitz matrix 
which presented in [12] we propose a new full diversity STBC 
for linear receiver which named as low PAPR space-time block 
code (LP-STBC). The proposed LP-STBC transmits “zero-
symbol” only on half of transmit antennas instead of all transmit 
antennas as for OAC code. Thus, the advantage of the proposed 
LP-STBC over OAC codes is lower PAPR and easier 
implementation in hardware design. Moreover, simulation 
results also show that our LP-STBC outperforms OAC codes 
under peak power constraint while comparable performing 
under average power constraint. The remainder of this paper is 
organized as follows. In Section II, we describe the channel 
model and a brief review of the NZE Toeplitz matrix. In 
Section III, we present the systematic construction of our 
proposed LP-STBC. Section IV includes simulation results and 
performance comparisons. Finally, our conclusions and 
direction for further research are presented in Section V. 

Notations: A*, AT and AH denote the conjugate, transpose and 
conjugate transpose of A, respectively. 

II. BACKGROUNDS 

A. Chanel model 
A linear STBC achieves full diversity with ZF/MMSE 

receivers for QAM, PAM, and PSK signals for multiple receive 
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antennas if only if it can do the same for the case of one receive 
antenna [3, Corollary 1]. So, without loss of generality, we only 
need to focus on the channel model for a single receive antenna, 
i.e., a multiple-input single-output (MISO) system.  

Consider a MISO system with M transmit antennas and one 
receive antenna transmitting the symbols {sk}, k = 1,..,L which 
are selected from a given constellation A with unity average 
energy such as QAM or PSK. To be transmitted from the M 
antennas, the L symbols s = (s1,s2,..,sL)T are encoded into a 
space-time block codeword matrix X(s) of size T×M, where T is 
the block length (coding delay) of the codeword. The (t,m)-th 
entry of X(s) will be transmitted to the receiver from the mth 
antenna during the tth symbol period through flat fading 
channels. The received signal model can be written as 

( )ρ μ′ ′= +y X s h n     (1) 

where, y’ = (y1,y2,..,yT)T is received signal vector, n’ = 
(n1,n2,..,nT)T is the noise vector whose elements are of 
independently, identically distributed (iid) CN(0,1). h = 
(h1,h2,..,hM)T, in which hi, i = 1,..,M, denote the channel 
coefficients of the link from the i-th transmit antenna to the 
receive antenna, is the channel vector whose entries are also iid 
CN(0,1). ρ denotes the average signal-to-noise ratio (SNR) per 
receive antenna. μ is the normalization factor such that the 
average energy of the coded symbols transmitted from all 
antennas during one symbol period is one. 

To decode the transmitted sequence s with a linear receiver, 
we need to extract s from X(s). Through a number of 
operations, we can get an equivalent signal model from (1) as: 

ρ μ= +y Hs n      (2) 

where, y denotes a signal vector of length T, H is an equivalent 
channel matrix of size T×L, and n is the noise vector of length 
T. If (HHH)-1 exists, the estimate of the transmitted symbol 
sequence s for ZF receiver is,  

( ) 1H
ZF ρ μ

−
=s H H Hy      (3) 

and for MMSE receiver is 
1

H
MMSE L

μρ μ
ρ

−
⎛ ⎞

= +⎜ ⎟
⎝ ⎠

s H H I Hy     (4) 

Design criterion for full-fiversity STBC for a MISO system with 
linear receivers 

Theorem 1 [2]: For a MISO system employing a square 
QAM, a PAM, or a PSK signalling scheme of cardinality s in 
the transmission, a linear receiver achieves full diversity for the 
system if HHH is non-singular for any nonzero h. 

B. NZE-Toeplitz matrices 
Let v = (v1,v2,..,vL)T, then a Toeplitz matrix of size (K+L-

1)×K generated by vector v and positive integer K, denoted by 
T(v,L,K), is defined as [1] 

( ) 1

,

,    if     and  
, ,

0,           otherwise
i j

i j

v i j i j L
L K − + ≥ − <⎧⎪⎡ ⎤ = ⎨⎣ ⎦ ⎪⎩

vT    (5) 

The NZE-Toeplitz matrices of size (L+K-1)×K generated 
by vector v and positive integer K, denoted by B(v,L,K) and 
C(v,L,K), where B(v,L,K) is defined as [12] 

( )
( )

( )
( )

,

, ,

,

, ,         if     and  

, , , ,   if     and  

, ,      if         

i j

i j i L j

i L j

L K i j i j L

L K L K i j i j L

L K i j
−

+

⎧⎡ ⎤ ≥ − <⎣ ⎦⎪
⎪⎡ ⎤ = − ⎡ ⎤ ≥ − ≥⎨⎣ ⎦ ⎣ ⎦
⎪
⎡ ⎤ <⎪⎣ ⎦⎩

v

v v

v

T

B T

T

   (6) 

And C(v,L,K) is proposed as 

( )
( )
( )

( )

,

, ,

,

, ,          if     and  

, , , ,      if     and  

, ,   if         

i j

i j i L j

i L j

L K i j i j L

L K L K i j i j L

L K i j
−

+

⎧⎡ ⎤ ≥ − <⎣ ⎦⎪
⎪⎡ ⎤ = ⎡ ⎤ ≥ − ≥⎨⎣ ⎦ ⎣ ⎦
⎪

− ⎡ ⎤ <⎪ ⎣ ⎦⎩

v

v v

v

T

C T

T

   (7) 

Lemma 1: There exists a positive constant c such that for any 
nonzero vector v, the following inequalities hold, 

( ) ( )( )2 det , , , ,K Hc L K L K≤v v vB B    (8) 

( ) ( )( )2 det , , , ,K Hc L K L K≤v v vC C     (9) 

Proof: the proof of the inequality (8) given in [12] and the 
proof of the inequality (9) is similar. 

III. OUR PROPOSED LP-STBCS 

A. Construction of the proposed LP-STBC 
A block of 2L data (information) symbols s = (s1,s2,…,s2L) 

are divided into two symbol vectors s1 = (s1,s2,…,sL) and s2 = 
(s1+L,s2+L,…,s2L). Then the proposed LP-STBC for 2M transmit 
antennas is formulated as 

( ) ( ) ( )
( ) ( ) ( ) ( )

1 2
* *

2 1

, , , ,
,2 ,2

, , , ,
L M L M

L M
L M M L M M

⎡ ⎤
= ⎢ ⎥× − ×⎣ ⎦

s s
S s

s P s P
B T

C T
(10) 

where, P(n) is an n×n permutation matrix given as 

( ) [ ]1 1n nn −= …P e e e      (11)  

with ei is the i-th column of the n×n identity matrix. 

The LP-STBC code for 2M-1 transmit antennas 
S(s,2L,2M -1) is taken from the LP-STBC code for 2M -1 
transmit antennas (4.21) by deleting the last column in its 
codeword matrix. It is not hard to check that the symbol rate of 
LP-STBC code is 

2
2 2 2

LR
L M

=
+ −

; for 2M or 2M -1 transmit antennas   (12) 
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If we partition all the columns of the code matrix (10) into 2 
groups as  

( ) [ ]T 1 2,2 ,2   L N =S s S S      (13) 

where ( ) ( ) ( )*
1 1 2, , , ,

T
L M L M M⎡ ⎤= − ×⎣ ⎦S s s PB C  and 

( ) ( ) ( )*
1 2 1, , , ,

T
L M L M M⎡ ⎤= ×⎣ ⎦S s s PT T , then it is not hard to 

verify that we have 1 2
H

M M×=S S 0 , i.e., the codeword matrix has 
the group orthogonality property. The following few examples 
to illustrate the construction of the proposed LP-STBC code 
and the OAC code. 

Example 1: Constructing of the LP-STBC code for 8 transmit 
antennas with rate of 3/4 (2M = 8, L=9).  

Consider total 2L = 18 independent information symbols s = 
(s1 s2… s18) and these 12 symbols are split into 2 information 
symbol vectors s1 = (s1 s2 … s9) and s2 = (s10 s11 … s18). 
Permutation matrix P(4) is given as 

( ) [ ]4 3 2 1

0 0 0 1
0 0 1 0

4
0 1 0 0
1 0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥= =
⎢ ⎥
⎢ ⎥
⎣ ⎦

P e e e e    (14) 

Substituting s1 , s2 and P(4) into (10) we obtain the LP-STBC 
code S(s,18,8) for 8 transmit with rate of 3/4 as 

 

( )

1 9 8 7 10

2 1 9 8 11 10

3 2 1 9 12 11 10

4 3 2 1 13 12 11 10

5 4 3 2 14 13 12 11

6 5 4 3 15 14 13 12

7 6 5 4 16 15 14 13

8 7 6 5 17 16 15 14

9 8 7 6 18 17 16 15

1 9 8 7 18 17 16

2

0 0 0
0 0

0

0

,18,8

s s s s s
s s s s s s
s s s s s s s
s s s s s s s s
s s s s s s s s
s s s s s s s s
s s s s s s s s
s s s s s s s s
s s s s s s s s
s s s s s s s
s s

−
− −

=S s

1 9 8 18 17

3 2 1 9 18
* * * * *
16 17 18 10 1
* * * * * *
17 18 10 11 1 2
* * * * * * *
18 10 11 12 1 2 3

* * * * * * * *
10 11 12 13 1 2 3 4
* * * * * * * *
11 12 13 14 2 3 4 5
* * * * *
12 13 14 15 3

0 0
0 0 0
0 0 0
0 0
0

s s s s
s s s s s
s s s s s
s s s s s s
s s s s s s s

s s s s s s s s
s s s s s s s s
s s s s s s

− − −
− − − −
− − − −
− − − −

− − − −
− − − −
− − * * *

4 5 6
* * * * * * * *
13 14 15 16 4 5 6 7
* * * * * * * *
14 15 16 17 5 6 7 8
* * * * * * * *
15 16 17 18 6 7 8 9
* * * * * * *
16 17 18 10 7 8 9
* * * * * *
17 18 10 11 8 9
* * * * *
18 10 11 11 9

0
0 0

0 0 0

s s
s s s s s s s s
s s s s s s s s
s s s s s s s s
s s s s s s s
s s s s s s
s s s s s

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

− −
− − − −
− − − −
− − − −
− − −
− −
−⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

⎦

      (15) 

By deleting the last column in codeword matrix of S(s,18,8) we 
obtain the proposed LP-STBC code for 7 transmit antennas 
with the same rate of 3/4.  

Example 2: The OAC code for 8 transmit antennas with rate 
of 3/4 given in [3] 

1 2
* *
1 3

3 1 2 4
* * * *
3 1 2 4

5 3 2 1 4 6
* * * * * *
5 2 3 4 1 6

7 2 5 4 3 6 1 8
* * * * * * * *
2 7 4 5 6 3 8 1

9 4 7 6 5 8 3 10
* * * * * * * *
4 9 6 7 8 5 10 3

11 6 9 8 7 10

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0
0 0 0 0

0 0
0 0

OAC

s s
s s

s s s s
s s s s

s s s s s s
s s s s s s

s s s s s s s s
s s s s s s s s

s s s s s s s s
s s s s s s s s

s s s s s s s

−

− −

− − −

− − − −

− − − −

=S

5 12
* * * * * * * *
6 11 8 9 10 7 12 5

13 8 11 10 9 12 7 14
* * * * * * * *
8 13 8 11 10 9 14 7

15 10 13 12 11 14 9 16
* * * * * * * *
10 15 12 13 14 11 16 9

17 12 15 14 13 16 11 18
* * * * * *
12 17 14 15 16 13 1

s
s s s s s s s s

s s s s s s s s
s s s s s s s s

s s s s s s s s
s s s s s s s s

s s s s s s s s
s s s s s s s

− − − −

− − − −

− − − −

− − − − * *
8 11

14 17 16 15 18 13
* * * * * *
14 16 17 18 15 13

16 18 17 15
* * * *
16 18 17 15

18 17
* *
18 17

0 0
0 0

0 0 0 0
0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

s
s s s s s s

s s s s s s
s s s s

s s s s
s s

s s

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− − −
⎢ ⎥
⎢ ⎥
⎢ ⎥− −
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

         (16) 

From (15) and (16) we can see that the main advantage of 
the proposed LP-STBC code over the OAC code is avoiding 
transmitting “zero-symbol” at first M antennas in 2M or 2M-1 
antenna MIMO system.  

B. Full diversity property of the proposed LP-STBC 
From (1), the received signals can be written as: 

( ),2 ,2 'L Mρ μ= +y' S s h n      (17) 

where h = [h1 h2 ··· h2M]T with hm (m = 1, 2, ··· , 2M) denoting 
the channel coefficient of the link from the m-th transmit 
antenna to the single antenna receiver. 

For all elements in L+M-1 last rows of y’ in (17), we take 
the conjugate. Then, we can obtain 

ρ μ= +y s nH      (18) 

where H is equivalent channel matrix of the proposed LP-
STBC code S(s,2L,2M) and has form 

271



( ) ( )
( ) ( )

1 2

* *
2 1

, , , ,

, , , ,

M L M L

M L M L

⎡ ⎤
⎢ ⎥=
−⎢ ⎥⎣ ⎦

� �
h h

h h

B T
H

T C
   (19) 

where [ ]1 1 2
T

Mh h h= …h , [ ]2 1 2 2
T

M M Mh h h+ += …h  and 

1
�h , 2

�h  are is the index reversed version of h1 and h2, 

respectively (e.g., [ ]1 1 1
T

M Mh h h−=� …h  ). For the proposed 
LP-STBC code for 2M-1 antennas, S(s,2L, 2M -1), its 
equivalent channel matrix is similar as that of the proposed LP-
STBC code for 2M antennas, S(s,2L, 2M), with 2 0Mh = . 

Similar to the code matrix in (10), the equivalent channel 
matrix in (19) also has the group orthogonality property. 
Partitioning the columns of H into two groups as  

[ ]1 2 = H HH       (20) 

where ( ) ( )*
1 1 2, , , ,

T
M L M L⎡ ⎤= −⎣ ⎦

�H h hB T  and 

( ) ( )*
2 2 1, , , ,

T
M L M L⎡ ⎤= ⎣ ⎦

�H h hT C , then it is not hard to verify 

that they are orthogonal with each other, i.e., 1 2
H

L L×=H H 0 . 
Meanwhile, due to the Toeplitz structure, we have: 

( ) ( ) ( ) ( )
( ) ( )

*

*

, , , , , , , ,

                                            , , , ,

H T

T

M L M L M L M L

M L M L

× = ×

= ×

h h h h

h h

T T T T

T T
     (21) 

( ) ( ) ( ) ( )
( ) ( )

*

*

, , , , , , , ,

                                           , , , ,

H T

T

M L M L M L M L

M L M L

× = ×

= ×

h h h h

h h

B B B B

B B
     (22) 

Based on these observations, we have: 

( ) ( ) ( )1 1
1 2

2 2

det det det det
H

H
H

⎛ ⎞
= = ×⎜ ⎟

⎝ ⎠

H H 0
G G

0 H H
H H        (23) 

where 

( ) ( ) ( ) ( )1 1 1 2 2, , , , , , , ,H HM L M L M L M L= × + ×� �G h h h hB B T T   (24) 

( ) ( ) ( ) ( )2 1 1 2 2, , , , , , , ,H HM L M L M L M L= × + ×� �G h h h hC C T T   (25) 

For any nonzero h any, we assume that h1 ≠ 0. Then, 

( ) ( ) ( )( )
( ) ( )( )

1 1 1

2 2

det det , , , ,

                 det , , , ,

H

H

M L M L

M L M L

≥ ×

+ ×� �

G h h

h h

B B

T T
   (26a) 

( ) ( )( )1 1det , , , , 0H M L M L≥ >h hB B        (26b) 

( ) ( ) ( )( )
( ) ( )( )

2 1 1

2 2

det det , , , ,

                det , , , ,

H

H

M L M L

M L M L

≥ ×

+ ×

� �G h h

h h

C C

T T
  (27a) 

( ) ( )( )1 1det , , , , 0H M L M L≥ × >� �h hC C     (27b) 

where inequalities (26a) and (27a) hold because 
( ) ( )1 1, , , ,H M L M L×h hB B , ( ) ( )2 2, , , ,H M L M L×� �h hT T , 

( ) ( )1 1, , , ,H M L M L×� �h hC C and ( ) ( )2 2, , , ,H M L M L×h hT T are 
positive semi-definite matrices, and inequalities (26b) and 
(27b) comes from the result in Lemma 1. For any nonzero h, if 
h1 = 0, then h2 ≠ 0. Using Lemma 1 and following the similar 
proof in (26) and (27), we can get ( )det 0H >H H . Therefore, 
for any nonzero h in MISO systems, our proposed LP-STBC in 
(10) achieves full diversity with linear receivers following 
Theorem 1. This means that our codes also achieve full 
diversity for MIMO systems. 

IV. COMPARISON RESULTS 
Our proposed LP-STBC codes have some good properties 

that will be investigated and described in this subsection, and 
their performance comparison with other STBC is also carried 
out. We now make the following remarks for LP-STBC codes 
and the main counterpart in the comparison is OAC codes [3]. 
Why do we choose OAC codes? The first, OAC codes have 
higher rate than OSTBC, Toeplitz codes and GOTC codes. The 
second, OAC codes have group othogonality while Toeplitz 
codes do not, so OAC codes have lower decoding complexity. 
Finally, OAC codes outperform OSTBC, Toeplitz codes and 
GOTC codes in MIMO systems when number of transmit 
antennas is greater than four [3], [5]. 

A. Symbol rate  
 The proposed LP-STBC code and the OAC code have 

symbol rate 2
2 2 2

LR
L M

=
+ −

 for 2M or 2M-1 transmit 

antennas.  

B. Othogonality  
 Structure (10) ensures that the proposed LP-STBC codes 
have group othogonality. Codeword matrix can divide to two 
groups. The first group includes the first M columns. The 
second group includes remaining columns. Each column of the 
first group is orthogonal to all columns of the second group 
and opposite. This group orthogonality property results in low 
decoding complexity  

C. Number of zero-symbols and PAPR 
A main advantage of proposed LP-STBC codes over OAC 

codes is eliminating completely transmitting “zero-symbols” in 
first M antennas. This makes hardware implementation 
becomes easier, we reduce number of turn-off switcher for 
antennas, reduce low-frequency interference due to switching 
turn-off when transmitting zeros. Moreover, eliminating zeros 
leads to decreasing PAPR at first M antennas. For example, for 
8 transmit antennas, the proposed LP-STBC code rate of 3/4 
given in (15) have lower PAPR of 1.25 dB than the same rate 
OAC code given in (16) at 4 first antennas. 

D. Decoding performance 
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 We perform some Monte-Carlo simulations to compare the 
performance of the proposed LP-STBC codes with known OAC 
codes.  In all the simulations, the channel model follows that 
described in Section II.A. The proposed LP-STBC code and 
OAC code are chosen with the same parameter as: code rate of 
3/4, 8 transmit antennas, 1 receive antenna, 4QAM modulation 
and ZF receiver.  
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Figure 1: Comparisons of performance between the proposed LP-

STBC code and the OAC code under average power constraint. 
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Figure 2: Comparisons of performance between the proposed LP-

STBC code and the OAC code under peak power constraint. 
  
 Figure 1 presents simulation results under average power 
constraint. Figure 2 presents simulation results under peak 
power constraint. From the figures, it is observed that the bit 
error rate (BER) curves of the proposed LP-STBC code and 
OAC code with the same antenna configuration have the same 
slope, suggesting that they have the same diversity order. This 
confirms that the proposed LP-STBC code is full diversity code 
for linear receiver. The simulation results in Fig.1 and Fig.2 
also show that the BER performance of the proposed LP-STBC 
is better than that of OAC code under peak power constraint 
and is similar under average power constraint. 

V. CONCLUSIONS 
In this chapter, we focused on designing low PAPR full 

diversity STBCs for linear receivers. Based on the elementary 
NZE matrices, we proposed LP-STBC codes which can achieve 
full diversity with linear receivers. Our proposed codes not only 
maintain the code properties of the OAC codes (as full 
diversity, high symbol rate, group orthogonality, and low 
decoding complexity), but also avoid transmitting “zero-
symbol” on a half of transmit antennas. This not only helps the 
proposed codes to achieve better PAPR efficiency, but also to 
simplify hardware implementation. Therefore, our LP-STBC 
codes can become a good candidate for designing practical 
MIMO systems with linear receivers. 
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