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Asymptotic behavior of the scattering amplitude for two scalar particles by scalar, vector
and tensor exchanges at high energy and fixed momentum transfers is reconsidered in
quantum field theory. In the framework of the quasipotential approach and the modified
perturbation theory a systematic scheme of finding the leading eikonal scattering ampli-
tudes and its corrections are developed and constructed. The connection between the
solutions obtained by quasipotential and functional approaches is also discussed. The
first correction to leading eikonal amplitude is found.
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1. Introduction

The eikonal scattering amplitude for the high energy of the two particles in the limit
of high energies and fixed momentum transfers is found by many authors in quan-
tum field theory,! ! including the quantum gravity.'® 24 Comparison of the results
obtained by means of the different approaches for this problem has shown that they
all coincide in the leading order approximation, while the corrections (nonleading
terms) provided by them are rather different.!?-21:24-27 Determination of these cor-

rections to gravitational scattering is now open problem.'*1® These corrections
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play crucial role in such problems like strong gravitational forces near black hole,
string modification of theory of gravity and other effects of quantum gravity.'? 24

The purpose of the present paper is to develop a systematic scheme based on
modified perturbation theory to find the correction terms to the leading eikonal
amplitude for high-energy scattering by means of solving the Logunov—Tavkhelidze
quasipotential equation.?® 3! In spite of the lack of a clear relativistic covariance,
the quasipotential method keeps all information about properties of scattering
amplitude which could be received starting from general principle of quantum field
theory.2? Therefore, at high energies one can investigate the analytical properties of
the scattering amplitude, its asymptotic behavior and some regularities of a poten-
tial scattering etc. Exactly, as it has been done in the usual S-matrix theory.2?® The
choice of this approach is dictated also by the following reasons: (1) in the framework
of the quasipotential approach the eikonal amplitude has a rigorous justification in
quantum field theory;® (2) in the case of smooth potentials, it was shown that a
relativistic quasipotential and the Schrédinger equations lead to qualitatively iden-
tical results.32:33

The outline of the paper is as follows. In Sec. 2 the Logunov-Tavkhelidze
quasipotential equation is written in an operator form. In the third section the
solution of this equation is presented in an exponent form which is favorable to
modify the perturbation theory. The asymptotic behavior scattering amplitude at
high energies and fixed momentum transfers is considered in the fourth section.
The lowest-order approximation of the modified theory is the leading eikonal scat-
tering amplitude. Corrections to leading eikonal amplitude are also calculated. In
the fifth section the solution of quasipotential equation is presented in the form
of a functional path integral. The connection between the solutions obtained by
quasipotential and functional integration is also discussed. It is shown that the
approximations used are similar and the expressions for corrections to the leading
eikonal amplitude are found identical. Finally, we draw our conclusions.

2. Two-Particle Quasipotential Equation

For simplicity, we shall first consider the elastic scattering of two scalar nucleons
interacting with a scalar meson fields the model is described by the interaction
Lagrangian Lin, = g¢*(z)¢(z). The results will be generalized to the case of
scalar nucleons interacting with a neutral vector and graviton fields later. Follow-
ing Ref. 27 for two scalar particle amplitude the quasipotential equation with local
quasipotential has the form:

T(p,p’ss) =gV(p —p’5s) + g/dq V(p —q;s)K(q® s)T(q,p’;s), (2.1)

where K (q2,s) = \/q21+m2 q2+m21_i—isv s = 4(p% +m?) = 4(p’ + m?) is the energy
and p, p’ and are the relative momenta of particles in the center of mass system

in the initial and final states respectively. Equation (2.1) is one of the possible
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generalizations of the Lippmann—Schwinger equation for the case of relativistic
quantum field theory. The quasipotential V' is a complex function of the energy
and the relative momenta. The quasipotential equation simplifies considerably if V'
is a function of only the difference of the relative momenta and the total energy,
i.e. if the quasipotential is local.* The existence of a local quasipotential has been
proved rigorously in the weak coupling case3! and a method has been specified for
constructing it. The local potential constructed in this manner gives a solution of
Eq. (2.1), being equal to the physical amplitude on the mass shell.2 30 Making the
following Fourier transformations

Vip-—p';s) = ﬁ /dr ei(p*p,)rV(r; s), (2.2)

T(p,p';s) = /dr dr’ ' PrP T (r v g) . (2.3)

Substituting (2.2) and (2.3) in (2.1), we obtain

T(r,r';s) = (2797)3 V(r;s)6® (r —r')
+ (2i)3 // dq K(qQ;s)V(r;s)e*qr/dr” ST rs)  (2.4)
and introducing the representation
T(r,r';s) = (29)3 V(r;s)F(r,r';s), (2.5)
T

we obtain

Flr,r'ss) = 60 (r —x') + L / dq K (g% s)e "

(2m)

Defining the pseudodifferential operator
L, = K(-V%;s), (2.7)
then
K(r;s) = /dq K(q%s)e " = K(~V,;5) /dqe*iqr =L, (2m)3®)(r). (2.8)
With allowance for (2.7) and (2.8), Eq. (2.6) can be rewritten in the symbolic form:
F(r,r';s) = 6@ (r — v') + gL [V(r,s)F(r,r', s)]. (2.9)

Equation (2.8) is the Logunov—Tavkhelidze quasipotential equation in the operator
form.

2Since the total energy s appears as an external parameter of the equation, the term “local” here
has direct meaning and it can appear in a three-dimensional é-function in the quasipotential in
the coordinate representation.
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3. Modified Perturbation Theory

In the framework of the quasipotential equation the potential is defined as an infi-
nite power series in the coupling constant which corresponds to the perturbation
expansion of the scattering amplitude on the mass shell. The approximate equation
has been obtained only in the lowest order of the quasipotential. Using this approx-
imation the relativistic eikonal expression of elastic scattering amplitude was first
found in quantum field theory for large energies and fixed momentum transfers.26
In this paper we follow a somewhat different approach based on the idea of the
modified perturbation theory proposed by Fradkin.?*:® The solution of Eq. (2.8)
can be found in the form

F(r,r';s) = # /dk eXp[W(r;k;s)]e_ik(r_r/) : (3.1)

Substituting (3.1) in (2.9) we have
exp W (r,k;s) = 1+ g{L,[V(r;s) exp W(r, k; 5)]
+ V(r;s)exp W(r, k; s)K (k% 5)} . (3.2)
Reducing this equation for the function W (r;k;s), we get
expW(r;k;s) =1+ gf/\r{V(r, s) exp[W (r, k; s) — ikr]}e’™" . (3.3)

The function W (r;k;s) in exponent (3.1) can now be written as an expansion in
series in the coupling constant g:

W(rikis) =Y g"Wa(r:k;s). (3.4)

n=1

Substituting (3.4) in (3.3) and using Taylor expansion, the L.h.s. of (3.3) is rewrit-
ten as

2 3
1+Zg”Wn+5 > 9w, + 3 S gWa | 4 (3.5)
n=1 n=1

n=1

PThe interpretation of the perturbation theory from the viewpoint of the diagrammatic technique
is as follows. The typical Feynman denominator of the standard perturbation theory is of the form
(A): (p+Xqi)2+m? —ie =p2+m2 +2p> ¢ + (3 ¢:)?, where p is the external momentum
of the scalar (spinor) particle, and the ¢; are virtual momenta of radiation quanta. The lowest
order approximation (A) of modified theory is equivalent to summing all Feynman diagrams with
the replacement: (3>~ ¢;)? = >2(¢;)? in each denominator (A). The modified perturbation theory
thus corresponds to a small correlation of the radiation quanta: q;q; =0 and is often called the
q;q; -approximation. In the framework of functional integration this approximation is called the
straight-line path approximation i.e. high energy particles move along Feynman paths, which are

practically rectilinear.22,23

1250004-4



Int. J. Mod. Phys. A 2012.27. Downloaded from www.worldscientific.com
by ROYAL INSTITUTE OF TECHNOLOGY on 02/01/15. For personal use only.

High Energy Scattering in the Quasipotential Approach

and the r.h.s. of (3.3) has the form

1—|—g{ﬁr

+ V(r;s)

V(rs<1+Zg"W + = <Zg"W> +3i<§: >3+ )

K(k;s)}.

(3.6)

1+Zg"W+ (Zg”W) +3i<Zg )3

From (3.5) and (3.6), to compare with both sides of Eq. (3.3) following g coupling,
we derive the following expressions for the functions W, (r; k; s):

Wi(rik:s) = / dq V(g s)K[(k + q) sle™a" (3.7)

Wi(r;k; s)

WQ(r?k’ 8) = - 2|

1
5 /dq1 dgy V(ay;s)V(qg;s)

x K[(k +q; + d,)% 5]
x [K(k+qy;s) + K(k + qq; s)]e"r—9zr (3.8)

Wi(r;k;s)

Walrikis) = —— 0

+/dq1 dqs dq;V(q;;s)V(qq;8)V (as; s)
x K[(k +q,)% s]K[(k + q; + qy)°; 5]
x K[(k+q; +4q,+ q3)2; s]e_i(q1+q2+q3)r . (3.9)

Oversleeves by W only we obtain from Egs. (3.1), (3.4) and (2.3) the approxi-
mate expression for the scattering amplitude?%

UP=P Iy (g 5)esWi(rps) (3.10)

Ti(p,p’;s) =
1(p7pa8) (2

To establish the meaning of this approximation, we expand 77 in a series
in g:

n+1

7"

p,p’;s) = /dqlmdqn V(ay;s) - Via,;s)

=0

X V(p —p' - Zqi; s) HK[(% +p)%s]. (3.11)
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Let us compare Eq. (3.10) with the (n + 1)th iteration term of exact Eq. (2.1)

T (p,p'ss) = /dqy-'dqn V(gy;s)---V(q,;s)
V(p -p' =D a; S> > Kl(a,+p')% ]
=1 D

x K[(a; +a; +p')? [(Zqﬂrp) ;81, (3.12)

where Zp is the sum over the permutations of the momenta p;, pg,..., P, It
is readily seen from (3.11) and (3.12) that our approximation in the case of the
Lippmann-Schwinger equation is identical with the q;q; approximation.

4. Asymptotic Behavior of the Scattering Amplitude at

High Energies
In this section the solution of the Logunov—Tavkhelidze quasipotential equation
obtained in the previous section for the scattering amplitude can be used to find
the asymptotic behavior as s — oo for fixed ¢t. In the asymptotic expressions we
shall retain both the principal term and the following term, using the formula

W) WA [ 4 210, plis) 4 -] (4.1)

where Wy and W3 are given by (3.7) and (3.8).
We take the z axis along the vector (p + p’) then

Noting
1 1
K(p+p’s) = ; .
(p+p)2+m2 (P+P)?—§+m?—ic]sooo
2 3q2 2 A 1
- e el Ee] P R CE)
8((]3 a 7'5) \/E(Qz — i€) 52

and using Egs. (3.4), (3.7) and (3.8) we obtain

() ()
w- (M) o L), »
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where

Wio —2/qu qQ;8)————— 2z/ dz' V 2+z’2 s) (4.6)

(

) 2 2 A
Wi = -2 [ daV(a; swqr?’qz TS
(g- — i€)

—GV(\/q + 2% s)+2( V2 —iq,V.)
x/_z dz’V(\/qi+z’2;s), (4.7)

Wog = —4/dq1 dq, e_i(q1+q2)rV(q1;s)V(qz;s)

3q12G2- +dy 1 da |
(q12 — 1€)(q2= — i) (q1z + g2z — i€)

_ 42{3/ a2 V2 (a2 + 2125
+ [VL / d%'V%/W; s)r}. (4.8)

In the limit s — oo and (t/s) — 0 Wiy makes the main contribution, and
the remaining terms are corrections. Therefore, the function exp W can be repre-
sented by means of the expansion (4.1) where Wyo, W11 and Wao are determined
by Eqs. (4.6)—(4.8) respectively. The asymptotic behavior scattering amplitude can
be written in the form

T(p,p’;s) = #/dzlu dzeiAirLV(\/m; s)

W, W, 1%
xexp(g%>(1+gs\/g+ 2825)_+ > (4.9)

Substituting (4.6)—(4.8) in (4.9) and making calculations, at high energy s — oo
and fixed momentum transfers (¢/s) — 0, we finally obtain?®

T(s,t) = L)g/dzlﬂ_ RN {6[229 Iz dzv (Vi ats)| 1}

2i(2m
2ig [
2 A T / 2 2.
S\/_/dr e xexp{ /Oodz V(\/r +z,s)}
></ sz(\/rﬁ_—FzQ /er AL

— 00
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X /jo dz{exp {2%9 /oo dz'V(\/I‘i + Z’Z;S)}

o0 z

—epr—ig /_oo dz’V(\/ri +z’2;s)}}

oo

X {/Oodz’ViV(\/ri—i-z’?;s) —%[/wdz’VLV(\/riﬁ—zQ;s)r}

z

— %Ai/dzm_ V(\/m;s)}eiAi“
X /_OO zsz(\/ri —|—z2;s) exp[? /00 dz’V(\/m; s)} ) (4.10)

[ee]

In this expression (4.10) the first term describes the leading eikonal behavior of
the scattering amplitude, while the remaining terms determine the corrections of
relative magnitude 1/1/s. The similar result Eq. (4.10) is also found by means of the
functional integration.?*

As is well known from the investigation of the scattering amplitude in the Feyn-
man diagrammatic technique, the high energy asymptotic behavior can contain
only logarithms and integral powers of s. A similar effect is observed here, since
integration of the expression (4.10) leads to the vanishing of the coefficients for
half-integral powers of s. Nevertheless, allowance for the terms that contain the
half-integral powers of s is needed for the calculations of the next corrections in
the scattering amplitude, and leads to the appearance of the so-called retardation
effects, which are absent in the principal asymptotic term.

In the limit of high energies s — oo and for fixed momentum transfers ¢ the
expression for the scattering amplitude within the framework of the functional-
integration method takes the Glauber form with eikonal function corresponding
to a Yukawa interaction potential between “nucleons.” Therefore, the local quasi-
potential for the interaction between the ‘“nucleons” from perturbation theory in
that region can be chosen by following forms. For the scalar meson exchange the
quasipotential decreases with energy

Vr;s) = —=—

4.11
8rs r ( )

The first term in the expression (4.10) describes the leading eikonal behavior of
the scattering amplitude. Using integrals calculated in the Appendix, we find

0 g 3 r
Tio (s, ) = *m/cﬂn elBers
2ig [T P
X {exp{?/_oo sz(\/rl+z ,s) -1
4 3 6
g 1 g g

= — Fi(t ———Fh(t)] . 4.12
4(2m)ts? Lﬂ —t  8(2m)2s? 10+ 48(27)5s4 2( )} (4.12)
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The next term in (4.10) describes first correction to the leading eikonal
amplitude

2
(1) — 69 2 AT
Tgentar(sit) = —m/d ettt

X exp {?/+O®sz(q/ri+z2;s)} x/+oosz(\/r2l—|—22;s)

o .
394 2 gS g(j

N - Fi(t) + o s Fe(t 413
4(27r)632\/§ |:M2 ¢ 2(27‘(’)282 1( ) + 8(27‘{')584 2( ) , ( )

where

1 1—4/1—4
Fi(t) = — ‘1+ g‘ (4.14)
fﬁ w2/
and

1 1 "

&@y_A(w@y+MXyUh+Mw+uzﬂ'

A similar calculations can be applied for other exchanges with different spins. In

the case of the vector model Liy, = —gp*i0,0A% + g2 A, A% pp* the quasipotential
is independent of energy

i ‘ (4.15)

2 —pur
g (&
Virs) = —pm =
we find
4 1 g3 g6
70 =3 . ) +—) B 4.16
veetor(5:1) 20m)is | —t qusﬂ)+m@m%2ﬂ)’ (4.16)
1) 3g* 2 g° 9°
T t) = - i)+ —2FB(t)]. (4.1
Vector(s’ ) (27‘(‘) S\/_ |:M2 —¢ (27‘1’)28 1( ) + 2(27‘(’)582 2( ) ( 7)

In the case of tensor model,® the quasipotential increases with energy V(r;s) =
(k2s/2m)(e™#" /1), we have
K [ 1 K> K5

Thor(0:0) =~ (ot * |73 + e 0 *

Tensor

WFQ(@} . (4.18)

°The model of interaction of a scalar “nucleons” field ¢(z) with a gravitational field g, («) in the
linear approximation to h#*¥(x);?? L(z) = Lo, (%) + Lo,grav (%) + Lint (), where

Lo(@) = 5 [0 p(@)up(z) — m?¢? ()],
Lint(2) = — 5 W (@) T ().

T (2) = Dup(@)Ouol®) — 5107 ()00 () =m0 (@)

Ty (z) is the energy-momentum tensor of the scalar field. The coupling constant x is related to
Newton’s constant of gravitation G by 2 = 167G.
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3k* 2 253 2x8
Fi(t —
2 (1) + (27)5

To conclude this section it is important to note that in the framework of standard
field theory for the high-energy scattering, different methods have been developed
to investigate the asymptotic behavior of individual Feynman diagrams and their
subsequent summation. In different theories including quantum gravity the calcula-
tions of Feynman diagrams in the eikonal approximation is proceed in a similar way
as analogous the calculations in QED. Reliability of the eikonal approximation de-
pends on spin of the exchanges field.”® The eikonal captures the leading behavior of
each order in perturbation theory, but the sum of leading terms is subdominant to
the terms neglected by this approximation. The reliability of the eikonal amplitude
for gravity is uncertain.'® Instead of the diagram technique perturbation theory, our
approach is based on the exact expression of the scattering amplitude and modified
perturbation theory which in lowest order contains the leading eikonal amplitude

1) _
TTensor(S?t) - —(271')6\/5 X /J/g —¢ + (271')

RB#)|. (419

and the next orders are its corrections.

5. Relationship Between the Operator and
Feynman Path Methods

What actual physical picture may correspond to our result given by Eq. (4.10)7
To answer this question we establish the relationship between the operator and
Feynman path methods in Refs. 35 and 36, which treats the quasipotential equation
in the language of functional integrals. The solution of this equation can be written
in the symbolic form:

1
*eW) = TR~ v

= —q /Ooo dr explit(1 4 ie)] x exp{—iTgK|[(—iV —k)}]V(r)} x 1. (5.1)

35,36

In accordance with the Feynman parametrization, we introduce an ordering

index 1 and write Eq. (5.1) in the form

exp(W) = —i/ dr e'7(1Fie)
0

X exp {ig /OOO dn K[(—=iV e — k)Q]U(rn)} x 1. (5.2)

Using Feynman transformation

Dx
FlPm) = /Dp /z(U)O (2m)?

< exp { / " (n)[p(n) - P<n>1}F[p<n>1 | (5.3)
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we write the solution of Eq. (2.8) in the form of the functional integral

o . ) Dx
exp(W) = —i/ dTe”(H”)/Dp/
") 0 z(0)=0 (2m)3

. exp{z‘ / " dnx(n)lp(n) P(n)]}G(x,p;T) <1 (5.4)

In Eq. (5.4) we enter the function G:

G(x,p;7T) = exp {—Z/ dnk(n)Vn+s}
0

X exp {ig | it - k)?]vm)} , (5.5)
which satisfies the equation
% = {—igK[(p(T) = k)}|V(r — x(7 —€))V}G, G(r=0)=1. (5.06)

Finding from Eq. (5.6) the operator function G and substituting it in Eq. (5.6)
for W we obtained the following final expression:

oo
. , 1
W) = —i T(1+
eXp( )— _ZA d7—€z ( 16)/DPW

<[ e i [ axomon e (11). 67

where

I[=-i / " dr K{(p(n) — k)

x V{r - /0 ' dfx(’f)ﬁ(&—nm}, (5.8)

2 T1 T2
[I=- [ [ i Kl(plo) ~ 17} 0) — (19
y v{rl -/ " e x(ye —n + s)}

<V {rg - /O dg x(€)0(¢ =+ 5)} . (5.9)

Writing out the expansion?®

exp(W) = exp (QH) = exp (gﬁ) i}i—? (H_ﬁ)n ’
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in which the sign of averaging denoted integration with respect to 7, x(n) and p(n)

with the corresponding measure (see, e.g. Eq. (5.7)), and performing the calcula-
tions, we find

2t (5.10)
= [P -1 3T (I - 1T°)] . ete

i.e. the expressions (5.10) and (4.1) are identical:

wi =] =i [ ar Kl - 107
><eXp|: / de x(&)9(€ - 77+5)V}V(F)
— [dac K@+ 10V (5s). (5.11)

= K[(Vy, + Vi, + k) K[(Vy, + k)]

—

x K[(Vy, + k)?V(r1;5)V(ra;s)
- /dql /dq2 e~ DT K (g + gy + k)]

< {K[(ay +%)*] + K[(ay + k)[}V(r1:9)V(rass),  (5.12)

Wy = —& + = /dq1 dq,V ((ll)V((lZ)
x {K[(a; + k)% s] + K[(az + k) 5]}, (5.13)
3
W3 = —% + /dq1 day das V(ay;s)V(as; s)V(as; s)

x K[(k +ap)% s]K[(k + q; +q2)*; 5]

x K[(k + @y + qy + qg)?; sle (a2t aa)r s epe, (5.14)

Restricting ourselves in the expansion (5.10) to the first term (n = 0), we obtain
the approximate expression (4.12) for the scattering amplitude, which corresponds
to the allowance for the particle Feynman paths. These paths can be considered as
a classical paths and coincide in the case of the scattering of high energy particles
through small angles to straight-line paths trajectories.

6. Conclusions

Asymptotic behavior of scattering amplitude for two scalar particles at high energy
and fixed momentum transfers was studied. In the framework of quasipotential
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approach and the modified perturbation theory the systematic scheme of find-
ing the corrections to the principal asymptotic leading scattering amplitudes was
constructed and developed. Results obtained by two different approaches (quasi-
potential and functional) for this problem, as it has shown that they are identical.
Results obtained by us are extended to the case of scalar particles of the field ¢(x)
interacting with a vector and gravitational fields. The first correction to the leading
eikonal scattering amplitude in quantum field theory was obtained.
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Appendix A. The Kernel of the Quasipotential Equation?®

We denote by G(p, p’,€p,eq, E) the total Green function for two particles, where
p and p’ are the momenta of the initial and final states in c.m.s. and 2F = /s is
the total energy.

In these notations the Bethe—Salpeter equation is of the form

G(p, P ep,ep, E)
=iF(p,ep, E)o(p — P)(ep — &pr)
+ F(p,sp,E)/K(p, @2y e, E)G(a, P2 ey B)dqde, (A1)
where

. 2
iF(p,ep, E) = - D(E +¢€p,p)D(E —¢p,p),

X (A.2)

(E+¢ep)?—p2—m2+ie’

D(E +¢p,p) =

Now we introduce formally the scattering amplitude 7' which on the mass-shell
ep =&y =0, p? =p'? = E? — m? gives the physical scattering amplitude:

G(p7 p/7 Ep7 Ep’7 E) - ZF(I), 5])7 E)(S(p - p/)(s(Ep - Ep/)

= ZF(p7 Ep, E)T(p7 p/7 EpyEp/s E)F(p/7 Ep’s E) : (A3)
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Then inserting (A.3) into (A.1), we get for T the equation
T(pv plv Ep,Ep’,y E)
= K(p7 p/75p75p’7 E) + /dq de K(p7 q, 511)757 E)F(q757 E)T(q7 p/7575])'7 E) .
(A.4)

We wish to obtain an equation of the Lippmann—Schwinger type for a certain
function T'(p, p’, F) which on the mass-shell p?> = p’? = E? — m? would give the
physical scattering amplitude:

ﬂmﬂﬂ%ﬂﬁmﬂﬂ+/®V@AEW@EW@@M% (A5)
where

ﬂ%@:/%F@&ﬂ

2 2 1 y 1
oo (E4+e)2—p>—m2 " (E—¢)2—p>—m?
1
/q2+m2(q2+m27E2)
Vs

On the mass-shell, the total energy E' = 5=, we receive the kenel that is brought
out in Eq. (2.1)

K(qz;S)—F(q,E—ﬁ !

D) G
This can be achieved by a conventional choice of the potential V(p,p’, E), which
can obviously be made by different methods. There are two methods that have
been suggested for constructing a complex potential dependent on energy with the
help of which one can obtain from an equation of the Schrédinger type the exact
scattering amplitude on the mass-shell.

The first method is based on the two-time Green function®” which in the momen-
tum space is defined

(A7)

G(p,p',E) = /dgp dgp/ G(pap/agpagp/vE)' (AS)

Then using (A.3) and (A.8) we can determine the corresponding off-shell scat-
tering amplitude

1

Tp ') = 5B F e B)

X /F(p75p7E)T(p7p/75p75p’7E)F(p/75p'7E)d5]) dE;D’ : (Ag)
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From expression (A.9) it is directly seen that 7" on mass-shell p? p
E? — m? coincides with the scattering amplitude T'(p,p’,0,0,E) = T(p,p’, E).
The potential V; for Eq. (A.5) is constructed by iteration of Eqgs. (A.4), (A.5) and
(A.9). In particular, in the lowest order, we have

1

Vl(pv p/7 E) = F‘(p7 E)F(P/7 E)

></F(p,ep,E)K(p,p’,sp,sp/,E)F(p’,ap/,E)depdsp/. (A.10)

The second method consists in constructing the potential V5 for Eq. (A.4) by
means of the scattering amplitude 7" on the mass-shell obtained by perturbation
theory, e.g. from Eq. (A.4) and the iterations of Eq. (A.5) accompanied by the
transition to the mass-shell.

We write down Eq. (A.5) in the symbolic form To = V5 + Vo x T and obtain in
the lowest orders of V5 the expressions

= (], v = (] - [ <],
VO - [T«a)} _ [V;Q) « T2<4)} [V; ) 2(2)} .

where the square brackets mean here the transition to the mass-shell. Hence, it
follows that in the second method we get a local potential dependent only on
(p — p’)? and E and in r-space on r and FE.

We shall consider, as an example, the application of the above methods to a
model of quantum field theory, in which scalar particles of mass m interact by
exchanging scalar “photons” of small mass pu. We shall put p = 0 where it is
possible. In the ladder approximation (without considering the crossing symmetry)
the kernel of Eq. (A.5) is of the form

(A.11)

ig? 1

(27T)4 (Ep — Ep/)2 — (p _ p/)2 — MQ Tie’ (A12)

K(pvplvgpvgp’vE) = -

Appendix B. Some Integrals Used in this Paper

We consider the integral

S

11:/ sz(\/rLJrz? )f - W (B.1)

we have
2 +oo zpr
g 3
L =—>—[d
! 4(277)45/ p/oo 2 + p?
2 e etpLritpy/2)
B 277)45/ p/oo p? + p?

1250004-15



Int. J. Mod. Phys. A 2012.27. Downloaded from www.worldscientific.com
by ROYAL INSTITUTE OF TECHNOLOGY on 02/01/15. For personal use only.

S. H. Nguyen, T. H. Y. Le & N. X. Nguyen

2 i(piry) +o0 )
S /d3P€ — / dzeP//*
4(2m)4s w4+ p? J_o

92 2. d etpLry) 5
- ———— % (2
4(27r)4s/ pLdpy, R, (2m)d(p,/)

2 . d(pysy)
_ g 2 ilpir )/ p//
= — d e!\PLTL d
4(2”)35/ " PIET
2

g [ o = R (B2)
4(2m)3s b p?+pt 4(2m)%s OVHITLL '

with Ko(plro|) = 5= [d®po 7(&;;) is the MacDonald function of zeroth order.
L

The integral

I2 = /dQTJ_ 61ALTLK0(ILL|T'J_|)

2w
= 2n) [ dralirs ol DRalulri) = . (B3
The integral
I3 = /dQTJ_ eiALTLKg(Mh'J_D
. 1 eiqu
= /dQTL eiALTL (%/dgq 7q2+u2>Ko(M|71|)
= i d2q 1 /dZTJ_ ei(q+AL)TLKU(M|TJ_|)
27T q2 _|_M2
1 1
=—(2 d? , B.4
2 77)/ T (g AT+ (B4

here, the result of the integral that obtained from calculating I have been used.

Using method of Feynman parameter mtegral fo m7 we have

L 1
I3 = dz | d?
= e [ o (@ + i)+ @+ B2 + 2l — )}

) 1

N /0 dx/d P T20A (02 1 AT(0 ) + u2
/1 " i(=mr (L)

[A2 (1 —x)+p?— A2 (1—2)?|0(2)

. ! 1
= (*”)/U T AT )
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. ! dx
:<‘”)/o 7 = ta(1 =)
= (i) x t\/ll_iln:\/%z = (—im) x Fy(t). (B.5)

Finally, we calculate the integral

L= / @Pry e K3l |)

. 1 et
:/dzu giALTL <%/d2q1—2+ 2)
q T
1 ela2m L
X (%/CFQZW)KO(/J'TLD
2

_ 1 / d?q1d?qo
2m)2 ) (qf + 1) (g3 + p?)

X /del expli(qr + g2 + AL )z | Ko(plry])

_ 1 / d2q d2q % 1
O N N [ R | (PR N LT
Apply the result that we obtained when calculating I3 to this integral, we derive
1 ! 1
d? = (—im / dx ,
| P rara A = ), T
SO

(B.6)

T, 2 !
Iy = W(_m)/o dx/d q2 X (@ + )2+ (e + AL )2x(1 —2)]

From method of Feynman parameter integral, again, we obtain
. 1 1
i dx
I =— 2
=Gy i ), v P
» 1
{l(g2 + A1)* + Bly + (a3 + 1) (1 — y)}2
i (Y de ! 1
_ d d2
(4r) / (1 —7) / y/ (B + 200y + O]
i U de /1 1
=———(—im —_— dy—————
i, wi—a ), Yo—an

1 /Y de ! 1
:_Z/o x(lfm/o Yoy
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where
2
B=—t
z(1—x)
p (B.8)
= A2 B 21— = — 21_
C =T+ By (1 -0) = | s~ |y 1),
then
1 1
Y L L
4Jo x(1—2) Jo [ﬁ—t]y—&—uz(l—y)—&-tﬁ
1t ! 1
= —- d / dx
4/0 VI gty — a1 — ) +
1
__Z/ dy/ dm Dx+u
T
4 .1'2 .1'-'—“
48]
N x—xl)(x—xg)
Yay 1 (1 —21)xs
4 )y Dx1— 29 . (1 —x2)my |’ (B.9)

here, D = —(1 —y)(ty — u?) = ty*> + (u*> — t)y + p? and 21; 22 are roots of equation
22—z + ”—; =0.
Noting that x1 + 2o =1=1—121 = x9; 1 — x5 = 21, and

T —rp=\[l-—r 1=, (B.10)
hence
2
1_ 2 1—4/1— 2 2
In 751 xl;“ —In|2|=2ln|—Y—2 |~ 2 D” 5| (B1D)
— X9)x 4p? -
2)21 1 144/1— 22 .
so that
1! 1 s
I, = —= d 1
4 2/0 yD*Q,LLQ anlLLQ

—1/1dy ! ln‘ v ‘—1F(t) (B.12)
2 )y Py -1 |yly+u—n| T 27 '
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