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We investigate the problem ð ~PÞ of minimizing ~f ðxÞ :¼ f ðxÞ þ pðxÞ subject to
x2D, where f(x) :¼ xTAxþ bTx, A is a symmetric positive definite n-by-n
matrix, b2R

n, D�R
n is convex and p :Rn

!R satisfies supx2Djp(x)j � s
for some given s5þ1. Function p is called a perturbation, but it may also
describe some correcting term, which arises when investigating a real
inconvenient objective function ~f by means of an idealized convex
quadratic function f. We prove that ~f is strictly outer �-convex for some
specified balanced set ��R

n. As a consequence, a �-local optimal solution
of ð ~PÞ is global optimal and the difference of two arbitrary global optimal
solutions of ð ~PÞ is contained in �. By the property that x� � ~x� 2 1

2 � holds
if x� is the optimal solution of the problem of minimizing f on D and ~x� is
an arbitrary global optimal solution of ð ~PÞ, we show that the set Ss of
global optimal solutions of ð ~PÞ is stable with respect to the Hausdorff
metric dH(., .). Moreover, the roughly generalized subdifferentiability of
~f and a generalization of Kuhn–Tucker theorem for ð ~PÞ are presented.

Keywords: quadratic programming; bounded perturbation; global
minimizer; generalized convexity; stability; subdifferentiability;
Kuhn–Tucker theorem

AMS Subject Classifications: 52A01; 47H14; 49K40; 90C20; 90C26;
90C31; 90C46

1. Introduction

Let A be a symmetric positive definite n-by-n matrix, b2R
n, and

f ðxÞ :¼ xTAxþ bTx, x2R
n:

For a given nonempty convex set D�R
n, which in not necessarily closed, there arises

the convex quadratic program

minimize f ðxÞ subject to x2D:ðPÞ
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Our concern is not the above classical optimization problem, but the following

program:

minimize ~f ðxÞ :¼ f ðxÞ þ pðxÞ subject to x2D,ð ~PÞ

where p :Rn
!R is only assumed to be bounded by some given parameter s :

sup
x2D
j pðxÞj � s5 þ1: ð1:1Þ

Such a problem ð ~PÞ may arise when f is some original objective function and p is

some perturbation, which comprises additional (deterministic or random) influences

to the objective function and errors caused by modelling, measurement, calculation,

etc. The particular point is that we restrict ourself to consider only bounded

perturbation satisfying (1.1). An example for bounded perturbation always appears

when solving any optimization problem (P) with a computer. Since most real

numbers cannot be exactly represented by computers, for most of x2D the value

f(x)¼ xTAxþ bTx cannot be exactly computed but only approximated by some

floating-point number ~f ðxÞ, and the corresponding function ~f is neither convex nor

quadratic, even not continuous. Then the discontinuous function pðxÞ ¼ ~f ðxÞ � f ðxÞ

describes the computing errors, and it is reasonable to assume that these computing

errors are bounded by some upper bound s, which can be estimated. By using longer

floating-point numbers and better algorithms, one can reduce the upper bound s.
Another scenario is that ~f is the proper objective function and f is just an

idealized objective function. It is often the case that functions expressing some

practical goals are assumed to be convex or quadratic, or to have some favourable

properties which were already intensively investigated or which are more easy to

study, although they do not really have these ideal properties. In such a situation,

pðxÞ ¼ ~f ðxÞ � f ðxÞ is the correcting term, which may be assumed to be bounded (at

least on the feasible set D) by some sufficiently small positive number s. An example
for this scenario is given by the problem of economic power dispatch, for which it is

often assumed that the total cost function is quadratic and strictly convex (see, for

instance, [3,5,26,29]). This assumption is a strong idealization, since the real costs

may be neither quadratic nor strictly convex. In particular, if the valve-point effect is

considered, then the quadratic cost function must be rectified with a correcting term,

which is bounded but neither quadratic nor convex, and even not continuously

differentiable (see, for instance, [1,27,28]). In this scenario, we will use the idealized

convex quadratic function f for investigating the real inconvenient objective

function ~f .

For the sake of shortness, in this article we simply name p as the perturbation, ~f

as the perturbed function and ð ~PÞ as the perturbed problem, although ~f may be the

proper objective function, p may be the correcting term and ð ~PÞ may be the proper

problem, as explained above.
Since program (P) is both convex and quadratic and since there are already many

papers dealing with different stability aspects of perturbed convex or/and quadratic

programs, one might ask what is still to do? The first point is that in former

investigations perturbations do not change the form or the main characteristics of

the original programs. This means that perturbed convex programs remain convex as

in [2,8–10,13,22–25,30,31], and perturbed quadratic programs remain quadratic as
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in [4,11,12,20]. In this article the perturbed program ð ~PÞ is neither convex nor

quadratic. Moreover, since the perturbation p is only assumed to be bounded by

some given positive parameter s, the perturbed objective function ~f may be nowhere

continuous, i.e. it may be quite wild from the analytical point of view. The second

point is, beside stability aspects, we also study some other properties of the perturbed

program.
In Section 2, we show that, despite of p satisfying (1.1), the strict convexity of

f does not disappear completely, but the perturbed function ~f is still strictly and

roughly convex in the following sense. For some given balanced subset ��R
n,

~f : R
n
! R is said to be outer �-convex on D�R

n if for all x0, x12D satisfying

x0� x1 =2� there is a closed subset �� [0, 1] containing {0, 1} such that

½x0, x1� � fð1� �Þx0 þ �x1 j �2�g þ
1

2
� ð1:2Þ

and

8�2� n f0, 1g : ~f ðð1� �Þx0 þ �x1Þ � ð1� �Þ ~f ðx0Þ þ � ~f ðx1Þ: ð1:3Þ

(This definition, which was introduced in [18], is a generalization of some kinds of

roughly generalized convexity presented in [6,14,15,19].) If

8�2� n f0, 1g : ~f ðð1� �Þx0 þ �x1Þ5 ð1� �Þ ~f ðx0Þ þ � ~f ðx1Þ ð1:4Þ

holds instead of (1.3), then ~f is called strictly outer �-convex. Theorem 2.2 claims that
~f is strictly outer �-convex for �¼M(2s), where M(.) is defined in (2.4).

Section 3 deals with the consequence of the remaining strict outer �-convexity of
~f . Theorem 3.1 presents a key property of outer �-convex functions, namely each

�-minimizer x� 2D of ~f , which satisfies

~f ðx�Þ ¼ inf
x2ðx�þ�Þ\D

~f ðxÞ,

is a global minimizer, i.e.

~f ðx�Þ ¼ inf
x2D

~f ðxÞ:

Because of the unruly perturbation p, the existence of �-minimizers is hardly

warranted. Therefore, we are still interested in �-infimizers, i.e. in such x� 2D

satisfying

lim inf
x2D,x!x�

~f ðxÞ ¼ inf
x2ðx�þ�Þ\D

~f ðxÞ:

Theorem 3.2 says that each �-infimizer of ~f is a global infimizer, i.e.

lim inf
x2D, x!x�

~f ðxÞ ¼ inf
x2D

~f ðxÞ:

(Note that in Theorems 3.1 and 3.2 we have to choose �¼M(2s).) Theorems 3.3 and

3.4 assert that, if ~x�0 and ~x�1 are two arbitrary global minimizers or global infimizers

of problem ð ~PÞ, then ~x�0 � ~x�1 2Mð2sÞ. This property corresponds to the uniqueness of

the minimizer of a strictly convex function.
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The stability of the set of optimal solutions of the perturbed program is
investigated in Section 4. If x� is the minimizer of problem (P) and ~x� is a global
infimizer of problem ð ~PÞ, then Theorem 4.1 claims that x� � ~x� 2 1

2Mð2sÞ.
Consequently, kx� � ~x�k �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2s=�min

p
, where �min is the smallest eigenvalue of

matrix A (Corollary 4.2). This property is used to deduce in Theorem 4.4 that
dHðfx

�g,SsÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2s=�min

p
, where dH(., .) is the Hausdorff distance and Ss is the set of

global infimizers of ð ~PÞ, and to infer the stability of the set of optimal solutions of ð ~PÞ
in Corollary 4.5.

In Section 5, Theorem 5.1 describes the roughly generalized subdifferentiability
of the perturbed function ~f and Theorem 5.2 states a generalization of the
Kuhn–Tucker theorem for the problem of minimizing ~f ðxÞ subject to x2D, where
D¼ {x2C j g1(x)� 0, . . . , gm(x)� 0}.

Throughout this article, k.k denotes the n-dimensional Euclidean norm and the
following notions are used:

x� :¼ ð1� �Þx0 þ �x1,

½x0, x1� :¼ fx� j 0 � � � 1g,

�Bðx, rÞ :¼ fx0 2X j kx0 � xk � rg:

2. Outer !-convexity

The aim of this section is to show that an arbitrary perturbation p satisfying (1.1)
does not completely destroy the strict convexity of the quadratic function
f(x)¼ xTAxþ bTx, but the perturbed function ~f ¼ fþ p is still strictly outer
�-convex for some suitable set ��R

n.
In [17] we used the convexity modulus h1 :Rþ!R of f defined by

h1ð�Þ ¼ inf
x0,x1 2R

n,kx0�x1k¼�

1

2

�
f ðx0Þ þ f ðx1Þ

�
� f
� 1
2
ðx0 þ x1Þ

�� �

for characterizing the outer �-convexity of the perturbed function ~f ¼ fþ p. In order
to improve our results, in this article we do not define the convexity modulus by
taking infimum over the entire space, but dependently on individual directions as
follows:

h1ð�, zÞ :¼ inf
x2Rn

�
1

2

�
f ðxÞ þ f ðxþ �zÞ

�
� f

�
xþ

�

2
z

��
, ð2:1Þ

where �2R and z2R
n, and use it to define

mð�, zÞ :¼ inf
�
�4 0

�� h1ð�, zÞ4 �
	
: ð2:2Þ

Since h1(., z) is nondecreasing, there holds

h1ð�, zÞ4 � if �4mð�, zÞ: ð2:3Þ

Consider the balanced set

Mð�Þ :¼ f�z j z2R
n, j�j � mð�, zÞg, ð2:4Þ

which plays a central role in this article. Next, we state some basic properties of
m(., .) and M(.).
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PROPOSITION 2.1

(a) For any �4 0 and z2R
n, there hold

mð�, zÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðzTAzÞ�1

q
ð2:5Þ

and

1

2

�
f ðxÞ þ f ðxþmð�, zÞ zÞ

�
� f

�
xþ

mð�, zÞ

2
z

�
¼ � for all x2R

n: ð2:6Þ

(b) For any �4 0, there holds

Mð�Þ ¼ fx2R
n
jxTAx � 4�g: ð2:7Þ

(c) Let �min and �max be the smallest eigenvalue and the greatest eigenvalue of

matrix A. Then

�B
�
0, 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�=�max

p �
�Mð�Þ � �B

�
0, 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�=�min

p �
, ð2:8Þ

and Mð�Þ ¼ �B
�
0, 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�=�min

p �
if and only if �max¼ �min.

Proof (a) For any x, z2R
n and �4 0, there holds

1

2

�
f ðxÞ þ f ðxþ �zÞ

�
� f

�
xþ

�

2
z

�

¼
1

2

�
xTAxþ bTxþ ðxþ �zÞTAðxþ �zÞ þ bTðxþ �zÞ

�

�

�
xþ

�

2
z

�T

A

�
xþ

�

2
z

�
� bT

�
xþ

�

2
z

�

¼
�2

4
zTAz:

Therefore, due to (2.1) and (2.2),

h1ð�, zÞ ¼
�2

4
zTAz

and

mð�, zÞ ¼ inf
n
�4 0

��� �2

4
zTAz4 �

o
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� ðzTAzÞ�1

q
:

Moreover, for any x2R
n, we have

1

2

�
f ðxÞ þ f ðxþmð�, zÞ zÞ

�
� f

�
xþ

mð�, zÞ

2
z

�
¼

1

4



2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� ðzTAzÞ�1

q �2
zTAz ¼ �:

(b) For x¼�z, (2.5) yields

mð�, zÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� ðzTAzÞ�1

q
¼ 2 j�j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� ðxTAxÞ�1

q
:
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Hence, by definition,



x2Mð�Þ

�
,



x ¼ �z, j�j � mð�, zÞ ¼ 2 j�j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� ðxTAxÞ�1

q �
,



xTAx � 4�

�
:

(c) By the spectral theorem, there is an orthonormal basis {e1, e2, . . . , en} of R
n

consisting of unit eigenvectors of A, i.e.

Aei ¼ �iei, keik ¼ 1 for i ¼ 1, 2, . . . , n,

eTi ej ¼ 0 for i 6¼ j,

where �1, �2, . . . , �n are the corresponding real eigenvalues. Then any x2R
n can be

represented by x ¼
Pn

i¼1 �i ei and there hold

kxk2 ¼ xTx ¼
Xn
i, j¼1

�i �j e
T
i ej ¼

Xn
i¼1

�2
i

and

xTAx ¼
Xn
i, j¼1

�i �j e
T
i Aej ¼

Xn
i, j¼1

�j �i �j e
T
i ej ¼

Xn
i¼1

ð�i �
2
i Þ:

Thus we have the following:

�min kxk
2 ¼ �min

Xn
i¼1

�2
i � xTAx ¼

Xn
i¼1

ð�i �
2
i Þ � �max

Xn
i¼1

�2
i ¼ �max kxk

2:

Therefore, (2.7) yields

Mð�Þ ¼ fx2R
n
j xTAx � 4�g

� fx2R
n
j �min kxk

2 � 4�g

¼
�
x2R

n
j kxk � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�=�min

p 	
¼ �B

�
0, 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�=�min

p �
and

Mð�Þ � fx2R
n
j �max kxk

2 � 4�g

¼
�
x2R

n
j kxk � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�=�max

p 	
¼ �B

�
0, 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�=�max

p �
:

In particular, Mð�Þ ¼ �B
�
0, 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�=�min

p �
if and only if

�min

Xn
i¼1

�2
i ¼

Xn
i¼1

ð�i �
2
i Þ when

Xn
i¼1

�2
i � 4�=�min,

which holds if and only if �max¼ �min. g

Since M(�)¼ {x2R
n
j xTAx� 4�} and A is positive definite, M(�) is convex,

closed and balanced. Moreover, if �4 0 then 02R
n is an interior point of M(�).
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We now use M(.) for characterizing the strict outer �-convexity of the perturbed

function ~f .

THEOREM 2.2 Suppose 05 supx2Djp(x)j � s5þ1. Then ~f ¼ fþ p is strictly outer

�-convex on D for �¼M(2s).

Proof Consider arbitrary x0, x12D with x0�x1 =2�¼M(2s). Let ��4 0 be

defined by

1

��
ðx0 � x1Þ 2 @Mð2sÞ, ð2:9Þ

where @M(2s) denotes the boundary of the set M(2s), and

� ¼ f0, 1g [
1

2 ��
, 1�

1

2 ��

� 
: ð2:10Þ

Obviously, x0� x1 =2�¼M(2s) yields ��4 1. For x�¼ (1� �)x0þ �x1, � ¼ 1
2 ��

and � ¼ 1� 1
2 ��, we have

x 1
2 ��
� x0 ¼ 1�

1

2 ��

� �
x0 þ

1

2 ��
x1 � x0 ¼

1

2 ��
ðx1 � x0Þ,

x1� 1
2 ��
� x1 ¼

1

2 ��
x0 þ 1�

1

2 ��

� �
x1 � x1 ¼

1

2 ��
ðx0 � x1Þ,

ð2:11Þ

i.e. x 1
2 ��
� x0 2

1
2 Mð2sÞ and x1� 1

2 ��
� x1 2

1
2Mð2sÞ, which imply

�
x0, x 1

2 ��

�
�
�
x0, x 1

2 ��

	
þ
1

2
Mð2sÞ �

�
x0, x 1

2 ��

	
þ
1

2
�,

�
x1� 1

2 ��
, x1

�
�
�
x1� 1

2 ��
, x1

	
þ
1

2
Mð2sÞ �

�
x1� 1

2 ��
, x1

	
þ
1

2
�:

Therefore, by (2.10),

½x0, x1� ¼
�
x0, x 1

2 ��

�
[
�
x 1

2 ��
, x1� 1

2 ��

�
[
�
x1� 1

2 ��
, x1

�
� fx�j�2�g þ

1

2
�,

i.e. (1.2) is fulfilled.
Now consider an arbitrary fixed �2

�
1
2 �� , 1�

1
2 ��

�
and denote

�0 ¼ ��
1

2 ��
, �00 ¼ �þ

1

2 ��
:

Since 1
2 �� 5 1

2 5 1� 1
2 ��, there holds �04 0 or �005 1. Therefore, it follows from the

strict convexity of f that

f ðx�0 Þ � ð1� �
0Þ f ðx0Þ þ �

0f ðx1Þ,

f ðx�00 Þ � ð1� �
00Þ f ðx0Þ þ �

00f ðx1Þ,

where ‘5’ holds at least in one inequality. Hence,

f ðx�0 Þ þ f ðx�00 Þ5 ð2� �0 � �00Þ f ðx0Þ þ ð�0 þ �00Þ f ðx1Þ

¼ 2ð1� �Þ f ðx0Þ þ 2�f ðx1Þ: ð2:12Þ
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On the other hand,

x�00 � x�0 ¼ ð1� �
00Þx0 þ �

00x1 � ð1� �
0Þx0 � �

0x1

¼ �
1

��
x0 þ

1

��
x1

¼
1

��
ðx1 � x0Þ,

i.e. by (2.9), x�00 �x�0 2 @M(2s). Thus, (2.4) and (2.6) imply mð2s,x1 � x0Þ ¼ 1= ��,
x�0 þm(2s, x1� x0)(x1� x0)¼ x�00 and

1

2

�
f ðx�0 Þ þ f ðx�00 Þ

�
� f

1

2
ðx�0 þ x�00 Þ

� �
¼ 2s:

Since

1

2
ðx�00 þ x�0 Þ ¼

1

2

�
ð1� �00Þx0 þ �

00x1 þ ð1� �
0Þx0 þ �

0x1
�

¼
1

2

�
ð2� �0 � �00Þx0 þ ð�

0 þ �00Þx1
�

¼ ð1� �Þx0 þ �x1

¼ x�,

we have

1

2

�
f ðx�0 Þ þ f ðx�00 Þ

�
� f ðx�Þ ¼ 2s:

Combining this with (2.12) yields

ð1� �Þ f ðx0Þ þ �f ðx1Þ � f ðx�Þ4 2s,

and following, by (1.1),

ð1� �Þ ~f ðx0Þ þ � ~f ðx1Þ � ~f ðx�Þ � ð1� �Þð f ðx0Þ � sÞ þ �ð f ðx1Þ � sÞ � ð f ðx�Þ þ sÞ

¼ ð1� �Þ f ðx0Þ þ �f ðx1Þ � f ðx�Þ � 2s

4 0,

i.e. (1.4) holds true. Hence, ~f is strictly outer �-convex on D for �¼M(2s). g

Due to (2.8), we have

Mð2sÞ � �B
�
0, 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2s=�min

p �
: ð2:13Þ

Therefore, it follows from Theorem 2.2 that ~f is strictly outer �-convex on D for

� ¼ �B
�
0, 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2s=�min

p �
(see Proposition 2.1 in [18]). That means, for � ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2s=�min

p
,

~f is outer �-convex in the sense of [19] and strictly and roughly �-convex in the

sense of [16].
Since � ¼ �B

�
0, 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2s=�min

p �
is a ball in the Euclidean space R

n, it is, in general,

simpler to determine and to describe than �¼M(2s). Let emin be a unit eigenvector of

A corresponding to the minimal eigenvalue �min. IfD is large enough to contain a pair

of points x0 and x1 satisfying x0 � x1 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2s=�min

p
emin, then � ¼ �B

�
0, 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2s=�min

p �
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is the smallest ball for which ~f ¼ fþ p is strictly outer �-convex for any perturbation p

satisfying 05 supx2Djp(x)j � s5þ1. Indeed, if �5 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2s=�min

p
and� ¼ �Bð0, �Þ, then

x0� x1 =2� and, by choosing a perturbation p satisfying

pðð1� �Þx0 þ �x1Þ ¼
�s for �2 f0, 1g,
s for �2 �0, 1½,

�

it is easy to verify for all �2 ]0, 1[ that

~f ðð1� �Þx0 þ �x1Þ ¼ f ðð1� �Þx0 þ �x1Þ þ s

4 ð1� �Þ f ðx0Þ þ �f ðx1Þ � 2sþ s

¼ ð1� �Þ ~f ðx0Þ þ � ~f ðx1Þ,

i.e. ~f cannot be outer �-convex for � ¼ �Bð0, �Þ.
By Proposition 2.1, if �min5 �max then M(2s) is properly contained in the ball

�B
�
0, 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2s=�min

p �
. Hence, in general, the strict outer �-convexity with respect to

�¼M(2s) is stronger than the one with respect to � ¼ �B
�
0, 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2s=�min

p �
.

A basic property of convex functions is that all lower level sets are convex. Outer

�-convex functions also possess a similar property, namely all lower level sets are
outer �-convex. As in [18], a set S is said to be outer �-convex if for all x0, x12S there

exists a closed subset �� [0, 1] containing {0, 1} such that {x� j �2�}�S and
½x0, x1� � fx�j�2�g þ 1

2 �. For the perturbed function ~f ¼ fþ p, we have the
following property.

PROPOSITION 2.3 Suppose 05 supx2Djp(x)j � s5þ1. Then each lower level set

fx2Dj ~f ðxÞ � �g of ~f is outer �-convex for �¼M(2s).

Proof Due to Proposition 3.3 in [18], if ~f is outer �-convex then each lower level set

of ~f is outer �-convex. Combining this fact with Theorem 2.2, we get the desired
conclusion. g

3. Global minimal solutions

In this section, we investigate some typical properties of global optimal solutions of
the perturbed function ~f ¼ fþ p, which is related to the strict outer �-convexity of ~f .

Recall that A is a symmetric positive definite n-by-n matrix, b2R
n,

f(x)¼ xTAxþ bTx, and D�R
n is convex. Instead of the optimization problem

minimize f ðxÞ subject to x2D,ðPÞ

we deal with the perturbed problem

minimize ~f ðxÞ ¼ f ðxÞ þ pðxÞ subject to x2D,ð ~PÞ

where p :Rn
!R is only assumed to satisfy

05 sup
x2D
j pðxÞj � s5þ1: ð3:1Þ

A typical property of the convex program (P) is that a local minimum is
global minimum. Because of the unruly perturbation p, problem ð ~PÞ cannot have the
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above-mentioned property. However, since ~f is outer �-convex as proved in the

preceding section, ð ~PÞ still possesses the following similar property.

THEOREM 3.1 Suppose �¼M(2s) and x� 2D is a �-minimizer of ~f , i.e.

~f ðx�Þ ¼ inf
x2ðx�þ�Þ\D

~f ðxÞ: ð3:2Þ

Then x� is a global minimizer of ~f , i.e.

~f ðx�Þ ¼ inf
x2D

~f ðxÞ: ð3:3Þ

Proof For �¼M(2s) and s4 0, Proposition 2.1 yields that the origin 02R
n is an

interior point of �. By Theorem 2.2, ~f is outer �-convex. Therefore, Theorem 3.6

in [18] implies that (3.3) follows from (3.2). g

Since the considered perturbation p is not assumed to be lower semicontinuous,

the perturbed problem ð ~PÞ may not have minimizers. Therefore, it is more realistic to

consider infimizers instead of minimizers, as done in the following theorem.

THEOREM 3.2 Suppose �¼M(2s) and x� 2D is a �-infimizer of ~f , i.e.

lim inf
x2D, x!x�

~f ðxÞ ¼ inf
x2ðx�þ�Þ\D

~f ðxÞ: ð3:4Þ

Then x� is a global infimizer of ~f , i.e.

lim inf
x2D, x!x�

~f ðxÞ ¼ inf
x2D

~f ðxÞ: ð3:5Þ

Proof Assume the contrary that (3.5) is not true, i.e. there exists an

x02Dn(x�þ�) with

� :¼ lim inf
x2D,x!x�

~f ðxÞ � ~f ðx0Þ4 0: ð3:6Þ

Denote

� :¼ kx0 � x�k �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2s=�max

p
,

	 :¼ ��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2s=�max

p
,

" :¼
1

4
ð��þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 4	

p
Þ,

ð3:7Þ

where �max is the greatest eigenvalue of matrix A. Due to Proposition 2.1,
�Bð0, 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2s=�max

p
Þ is contained in M(2s). Therefore, x0�x

� =2�¼M(2s) implies that

kx0 � x�k4 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2s=�max

p
and thus �4 0. Since "4 0 and x0� x� =2M(2s), we can

choose x1 2D \ ðx
� þ 1

2 Mð2sÞÞ such that

kx1 � x�k5 ", ~f ðx1Þ5 lim inf
x2D, x!x�

~f ðxÞ þ " ð3:8Þ

and

x0 � x1 =2�, x1 þ
1

2
Mð2sÞ � x� þMð2sÞ ¼ x� þ �: ð3:9Þ
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Our aim is to show that there exists a �2 [0, 1] satisfying

x� ¼ ð1� �Þx0 þ �x1 2 ðx
� þ �Þ \D, ~f ðx�Þ5 lim inf

x2D, x!x�
~f ðxÞ, ð3:10Þ

in contradiction to (3.4). To this goal, first observe that

1

2
ð���

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 4	

p
Þ5 05 "5

1

2
ð��þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 4	

p
Þ,

i.e. the " defined in (3.7) lies between the two real roots of the quadratic equation

"2þ �"þ 	¼ 0. Therefore,

"2 þ �"þ 	 ¼ "2 þ
�
kx0 � x�k �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2s=�max

p �
"� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2s=�max

p
5 0,

which implies

�4
kx0 � x�k þ "ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2s=�max

p � 1

� �
": ð3:11Þ

Take again ��4 1 defined by (2.9), i.e. 1
�� ðx0 � x1Þ 2 @Mð2sÞ. The inclusion

�B
�
0, 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2s=�max

p �
�Mð2sÞ

yields

1

��
kx0 � x1k � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2s=�max

p
:

Combining with

kx0 � x1k � kx0 � x�k þ kx� � x1k5 kx0 � x�k þ ",

we get

2 �� �
kx0 � x1kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2s=�max

p 5
kx0 � x�k þ "ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2s=�max

p :

This along with (3.11) yield �4 ð2 ��� 1Þ", and the following:

1

2 ��
ð��Þ þ 1�

1

2 ��

� �
"5 0: ð3:12Þ

In the proof of Theorem 2.2, we have already proved for x0�x1 =2�, which is

warranted by (3.9), and � ¼ 1� 1
2 �� that

~f ðx1� 1
2 ��
Þ5

1

2 ��
~f ðx0Þ þ 1�

1

2 ��

� �
~f ðx1Þ:

Hence, by (3.6), (3.8) and (3.12), there holds

~f
�
x1� 1

2 ��

�
5

1

2 ��
~f ðx0Þ þ 1�

1

2 ��

� �

lim inf

x2D, x!x�
~f ðxÞ þ "

�

¼
1

2 ��



~f ðx0Þ � lim inf

x2D,x!x�
~f ðxÞ

�
þ 1�

1

2 ��

� �
"þ lim inf

x2D, x!x�
~f ðxÞ

¼
1

2 ��
ð��Þ þ 1�

1

2 ��

� �
"þ lim inf

x2D, x!x�
~f ðxÞ

5 lim inf
x2D,x!x�

~f ðxÞ: ð3:13Þ
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On the other hand, (2.9) and (2.11) imply that

x1� 1
2 ��
� x1 ¼

1

2 ��
ðx0 � x1Þ 2

1

2
Mð2sÞ,

i.e. by (3.9),

x1� 1
2 ��
2 x1 þ

1

2
Mð2sÞ � x� þ �: ð3:14Þ

Properties (3.13) and (3.14) mean that we get the desired contradiction stated in

(3.10) for � ¼ 1� 1
2 ��. Thus, (3.5) must be true. g

Note that the proof of Theorem 3.2 may be shorter by applying Theorem 3.1,

whose proof in turn uses Theorem 2.2. It is our intention to present a longer proof

but without using Theorem 2.2.
It follows from Theorems 3.1 and 3.2 and (2.13) that if x� 2D is a �-minimizer (or

�-infimizer) of ~f for � ¼ �Bð0, 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2s=�min

p
Þ, then x� is a global minimizer (or global

infimizer, respectively).
A typical property of strictly convex functions is that their minimizer is unique.

In [16] we have already dealt with a similar property of strictly and roughly convex-

like functions. Next, we present a similar typical property of strictly �-convex

functions.

THEOREM 3.3 Let ~x�0 and ~x�1 be two arbitrary global minimizers of problem ð ~PÞ. Then
~x�0 � ~x�1 2Mð2sÞ.

Proof Assume the contrary that ~x�0 � ~x�1 =2Mð2sÞ. By Theorem 2.2, ~f is strictly outer

�-convex for �¼M(2s). By definition, there exists a closed subset �� [0, 1]

containing {0, 1} and satisfying (1.2) and (1.4), i.e.

½ ~x�0, ~x�1� � fð1� �Þ ~x
�
0 þ � ~x�1 j �2�g þ

1

2
� ð3:15Þ

and

8�2� n f0, 1g : ~f ðð1� �Þ ~x�0 þ � ~x�1Þ5 ð1� �Þ ~f ð ~x�0Þ þ �
~f ð ~x�1Þ ¼ inf

x2D

~f ðxÞ: ð3:16Þ

The property ~x�0 � ~x�1 =2Mð2sÞ ¼ � and (3.15) imply that �n{0, 1} 6¼ ;. Therefore,

by (3.16), there exists a �2 ]0, 1[ such that ~f ðð1� �Þ ~x�0 þ � ~x�1Þ5 infx2D ~f ðxÞ,

a contradiction. Hence, ~x�0 � ~x�1 2Mð2sÞ. g

Since A is positive definite, (2.7) yields that while s tends to 02R the set M(2s)

shrinks to {0}�R
n, therefore Theorem 3.3 implies that the diameter of the set of

global minimizers of ~f ¼ f þ p converges to zero, too.
What happens if global minimizers are replaced by global infimizers to be more

realistic, as explained before Theorem 3.2? In general, the distance between the

global infimizers of a strictly outer �-convex function may be unbounded. For

instance, the function g :R!R defined by

gðxÞ ¼ ½x� � x, x2R,
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where [x] denotes the integer part of x2R, is strictly outer �-convex on D¼R for

�¼ [�1, 1], and each integer number is a global infimizer of g. Hence, ~x�0 � ~x�1 2�

does not hold true for any pair of global infimizers ~x�0 and ~x�1 of g.
But for the particular function ~f ðxÞ ¼ xTAxþ bTxþ pðxÞ, where A is positive

definite and p satisfies (3.1), we get the following result for global infimizers, which is

similar to Theorem 3.3.

THEOREM 3.4 Let ~x�0 and ~x�1 be two arbitrary global infimizers of problem ð ~PÞ. Then
~x�0 � ~x�1 2Mð2sÞ.

Proof (a) Assume that x� is the minimizer of problem (P). By Theorem 4.1 (which

will be proved in the next section), ~x�0 � x� 2 1
2 Mð2sÞ and x� � ~x�1 2

1
2 Mð2sÞ. Since

M(2s) is convex, it follows that

~x�0 � ~x�1 ¼ ð ~x
�
0 � x�Þ þ ðx� � ~x�1Þ 2Mð2sÞ:

(b) Assume that problem (P) has no minimizer. Since f(x)¼ xTAxþ bTx and A is

positive definite, it is only possible if D is not closed. In this case, we replace the set D

by its closure cl D and the substitute problem of minimizing f on cl D has now exactly

one optimal solution, say x�. In addition, we change the function p outside of D by

pðxÞ ¼ s for x =2D,

which does not violate the only characteristic property of p, namely

05 sup
x2D
j pðxÞj � sup

x2clD

j pðxÞj ¼ sup
x2Rn
j pðxÞj � s5þ1:

Obviously,

inf
x2clDnD

~f ðxÞ ¼ inf
x2clDnD

�
f ðxÞ þ pðxÞ

�
¼ sþ inf

x2clDnD
f ðxÞ

� sþ inf
x2clD

f ðxÞ

and

sþ inf
x2D

f ðxÞ ¼ inf
x2D

�
f ðxÞ þ s

�
� inf

x2D

�
f ðxÞ þ pðxÞ

�
¼ inf

x2D

~f ðxÞ:

Since infx2clD f(x)¼ infx2D f(x) holds because of the continuity of f, it follows that

inf
x2clDnD

~f ðxÞ � inf
x2D

~f ðxÞ: ð3:17Þ

This along with

lim inf
x2D, x! ~x�

0

~f ðxÞ ¼ lim inf
x2D, x! ~x�

1

~f ðxÞ ¼ inf
x2D

~f ðxÞ,
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yield

lim inf
x2clD, x! ~x�

0

~f ðxÞ ¼ lim inf
x2clD, x! ~x�

1

~f ðxÞ ¼ inf
x2clD

~f ðxÞ,

i.e. ~x�0 and ~x�1 are also global infimizers of the problem of minimizing ~f on clD.

Hence, due to part (a), ~x�0 � ~x�1 2Mð2sÞ. g

Note that the assertion of Theorems 3.3 and 3.4 cannot be further improved.

To illustrate this fact, just consider the example with

f ðxÞ ¼ xTAx for x2D ¼ R
n, ð3:18Þ

i.e. b¼ 02R
n, and

pðxÞ ¼
s� f ðxÞ for x2 1

2Mð2sÞ,

0 otherwise.

�
ð3:19Þ

Then (2.7) yields

f ðxÞ
2 ½0, 2s� for x2 1

2Mð2sÞ

42s otherwise.

�

Therefore, jp(x)j � s for all x2R
n and

~f ðxÞ ¼
s for x2 1

2Mð2sÞ

f ðxÞ4 2s otherwise.

�
ð3:20Þ

Hence, each global infimizer of ð ~PÞ is a global minimizer and

1

2
Mð2sÞ ¼ f ~x� j ~x� is a global infimizer of ð ~PÞg ð3:21Þ

and

Mð2sÞ ¼ f ~x�0 � ~x�1 j ~x�0, ~x�1 are global infimizers of ð ~PÞg,

i.e. there exists no other set which is smaller than M(2s) and contains the difference
~x�0 � ~x�1 of any pair of global infimizers of ð ~PÞ.

Inclusion (2.13) and Theorem 3.4 immediately imply the following corollary.

COROLLARY 3.5 Let ~x�0 and ~x�1 be two arbitrary global infimizers of problem ð ~PÞ.

Then k ~x�0 � ~x�1k � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2s=�min

p
.

4. Stability

In this section we investigate the relation between the global optimal solutions of the

original problem (P) and of the perturbed problem ð ~PÞ; in particular, the stability of

the set of global optimal solutions of ð ~PÞ with respect to the Hausdorff metric.

Although the following results are only formulated for global infimizers of ð ~PÞ, they

are also valid for its global minimizers because each global minimizer is a global

infimizer.

80 H.X. Phu and V.M. Pho

D
ow

nl
oa

de
d 

by
 [

Se
lc

uk
 U

ni
ve

rs
ite

si
] 

at
 1

3:
04

 2
6 

Ja
nu

ar
y 

20
15

 



Next, we estimate the distance between the minimizer of problem (P) and any

global infimizer of problem ð ~PÞ. Since a local minimizer of the strictly convex

function f on the convex set D is global and it is unique, we simply call the minimizer

of (P) if it exists.

THEOREM 4.1 Let x� be the minimizer of problem (P) and ~x� be any global infimizer

of problem ð ~PÞ. Then ~x� � x� 2 1
2Mð2sÞ.

Proof Assume the contrary that ~x� � x� =2 1
2 Mð2sÞ. Then there exist an s04 s and a

neighbourhood Uð ~x�Þ of ~x� such that�
x� þ

1

2
Mð2s0Þ

�
\Uð ~x�Þ ¼ ;: ð4:1Þ

Consider an arbitrary ~x2Uð ~x�Þ \D and denote ~z ¼ ~x� x�. Since f(x�)� f(x) for all

x2D while both x� and ~x are contained in the convex set D, there holds

0 �
d

dt
f ðx� þ t ~z Þ

���
t¼0

¼
d

dt

�
~zTA ~zt2 þ ð2Ax� þ bÞT ~ztþ x�TAx� þ bTx�

����
t¼0

¼ ð2Ax� þ bÞT ~z:

In consequence, we have

f ðx� þ ~z Þ þ f ðx� � ~z Þ ¼
�
~zTA ~zþ ð2Ax� þ bÞT ~zþ x�TAx� þ bTx�

�
þ
�
~zTA ~z� ð2Ax� þ bÞT ~zþ x�TAx� þ bTx�

�
¼ 2

�
~zTA ~zþ x�TAx� þ bTx�

�
¼ 2

�
f ðx� þ ~z Þ � ð2Ax� þ bÞT ~z

�
� 2 f ð ~xÞ,

which implies that

f ð ~xÞ � f ðx�Þ �
1

2

�
f ðx� þ ~z Þ þ f ðx� � ~z Þ

�
� f ðx�Þ:

On the other hand, ~z ¼ ~x� x� =2 1
2 Mð2s

0Þ because ~x =2
�
x� þ 1

2 Mð2s
0Þ
�
follows from

(4.1) and ~x2Uð ~x�Þ \D. Therefore, it follows from (2.1) and (2.3) and (2.4) that

1

2

�
f ðx� þ ~z Þ þ f ðx� � ~z Þ

�
� f ðx�Þ4 2s0:

As a result, we obtain f ð ~xÞ � f ðx�Þ4 2s0, which yields immediately

~f ð ~xÞ � ~f ðx�Þ ¼ f ð ~xÞ � f ðx�Þ þ pð ~xÞ � pðx�Þ4 2s0 � 2s ¼ 2ðs0 � sÞ4 0: ð4:2Þ

This relation is valid, as chosen above, for any ~x2Uð ~x�Þ \D. Thus,

lim inf
x2D, x! ~x�

~f ðxÞ � ~f ðx�Þ � 2ðs0 � sÞ4 0,

i.e. ~x� cannot be a global infimizer of problem ð ~PÞ, a contradiction of the

assumption. Hence, ~x� � x� 2 1
2 Mð2sÞ must be true. g
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The assertion of Theorem 4.1 cannot be further improved. This fact can be

demonstrated by example (3.18)–(3.20) again, for which x�¼ 02R
n is the unique

minimizer of (P) and (3.21) yields

1

2
Mð2sÞ ¼ f ~x� j ~x� is a global infimizer of ð ~PÞg

¼ f ~x� � x� j ~x� is a global infimizer of ð ~PÞg,

i.e. there exists no other set which is smaller than 1
2Mð2sÞ and contains all such

differences ~x� � x�.
Inclusion (2.13) and Theorem 4.1 immediately imply the following corollary.

COROLLARY 4.2 Let x� be the minimizer of problem (P) and ~x� be any global

infimizer of problem ð ~PÞ. Then kx� � ~x�k �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2s=�min

p
.

Applying the above result, we can estimate the Hausdorff distance

dHðS0,SsÞ ¼ maxfsup
x2S0

inf
y2Ss

kx� yk, sup
y2Ss

inf
x2S0

kx� ykg ð4:3Þ

between the set S0 of minimizers of the original problem (P) and the set Ss of global

infimizers of the perturbed problem ð ~PÞ.
Of course, we are only interested in the case where both S0 and Ss are nonempty.

Since D is not assumed to be closed, it is not a priori sure whether S0 and Ss are

nonempty. Therefore, the existence of global optimal solutions must be explicitly

assumed or ensured, as done in the following.

LEMMA 4.3 Assume that problem (P) has a minimizer called x� and

�
x� þ

1

2
Mð2sÞ

�
\D is closed: ð4:4Þ

Then there exist global infimizers of problem ð ~PÞ.

Proof If ~f ðx�Þ ¼ infx2D ~f ðxÞ then x� is a global infimizer of ð ~PÞ we look for.

Otherwise, we can choose a sequence (xi) in D such that

~f ðx�Þ4 ~f ðxiÞ � inf
x2D

~f ðxÞ for all i2N and lim
i!þ1

~f ðxiÞ ¼ inf
x2D

~f ðxÞ:

Since the relation (4.2) is valid for any ~x2D n ðx� þ 1
2 Mð2sÞÞ, i.e.

~f ð ~xÞ4 ~f ðx�Þ for all ~x2D n

�
x� þ

1

2
Mð2sÞ

�
, ð4:5Þ

the entire sequence (xi) must be contained in the set ðx� þ 1
2 Mð2sÞÞ \D, which is

compact. Hence, we can assume without loss of generality that (xi) converges to a

point ~x� 2D, which implies that

lim inf
x2D, x! ~x�

~f ðxÞ ¼ inf
x2D

~f ðxÞ,

i.e. ~x� is a global infimizer of ð ~PÞ. g

The preceding lemma is a preparation for the next theorem.
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THEOREM 4.4 Assume that problem (P) has a minimizer called x� and

ðx� þ �Bð0, rÞÞ \D is closed for some given r4 0: ð4:6Þ

If

sup
x2D
j pðxÞj � s �

1

2
r2�min, ð4:7Þ

then the set Ss of global infimizers of ð ~PÞ is nonempty and

dHðfx
�g,SsÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2s=�min

p
: ð4:8Þ

Proof Inequality (4.7) implies that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2s=�min

p
� r. Therefore, it follows from (2.13)

that

1

2
Mð2sÞ � �B

�
0,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2s=�min

p �
� �B

�
0, rÞ:

Since �
x� þ

1

2
Mð2sÞ

�
\D ¼

�
x� þ

1

2
Mð2sÞ

�
\ ððx� þ �Bð0, rÞÞ \DÞ,

(4.6) yields (4.4). Hence, by Lemma 4.3, Ss is nonempty. By applying Corollary 4.2
for (4.3) and S0¼ {x�}, we finally get (4.8). g

COROLLARY 4.5 Assume that problem (P) has a minimizer called x� and (4.6) holds
true. For all "4 0, if

sup
x2D
j pðxÞj � s5 � :¼

1

2
ðminf", rgÞ2 �min, ð4:9Þ

then dH({x
�},Ss)5 ".

Proof On the one hand, (4.9) implies s5 1
2 r

2 �min, i.e. (4.7) holds true. Therefore,
by Theorem 4.4, we get (4.8). On the other hand, (4.9) yields s5 1

2 "
2 �min. Hence, it

follows from (4.8) that dHðfx
�g,SsÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2s=�min

p
5 ". g

The above result describes the stability of the set Ss of global optimal solutions
(in a generalized sense as global infimizers) of the perturbed problem ð ~PÞ. It says that
dH({x

�}, Ss) tends to zero when s! 0.

5. Generalized subdifferentiability and optimality condition

As usual, a convex function g :D�R
n
!R is said to be subdifferentiable at x� 2D if

there exists a so-called subgradient 
2R
n satisfying (see, e.g. [21])

gðxÞ � gðx�Þ þ 
Tðx� x�Þ for all x2D: ð5:1Þ

For the convex function g(x)¼ f(x)¼ xTAxþ bTx, x2D, 
¼rf(x�)¼ 2Ax�þ b is a
subgradient at x� and it is the only subgradient if x� is in the interior of D. Since p is
only assumed to be bounded by some given parameter s, the perturbed function
~f ¼ fþ p is no more subdifferentiable in the above classical sense. Our aim is to
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show, similarly to [18], that ~f is subdifferentiable in a generalized sense. In pursuit of

this aim, we transform (5.1) equivalently to

gðx�Þ � 
Tx� � gðxÞ � 
Tx for all x2D

and replace the term on the left with infx0 2 ðx�þ�Þ\Dð
~f ðx0Þ � 
Tx0Þ for some suitable

balanced set � and the term on the right with ~f ðxÞ � 
Tx to get

inf
x0 2 ðx�þ�Þ\D

ð ~f ðx0Þ � 
Tx0Þ � ~f ðxÞ � 
Tx for all x2D,

which states the definition of the roughly generalized subgradient 
 of ~f . In such a

way, the roughly generalized subdifferentiability of the function ~f may be described as

in Theorem 5.1. Note that we only use the information supx2Djp(x)j � s of p, i.e.

p may be unspecified outside of D. Therefore, ~f is only given on D although f is well

known on the entire space R
n. That is why we consider the subdifferentiability of

~f only on D.

THEOREM 5.1 Suppose 05 supx2Djp(x)j � s5þ1 and ~f ðxÞ ¼ xTAx� bTxþ pðxÞ.

Then, for any x� 2D, there holds

inf
x02ðx�þ1

2Mð2sÞÞ\D

~f ðx0Þ � ð2Ax� þ bÞTx0

 �

� ~f ðxÞ � ð2Ax� þ bÞTx for all x2D: ð5:2Þ

In particular, if D is closed and p is lower semicontinuous, then for any x� 2D

there exists

~x� 2 x� þ
1

2
Mð2sÞ

� �
\D ð5:3Þ

such that

~f ð ~x�Þ � ð2Ax� þ bÞT ~x� ¼ min
x0 2 ðx�þ1

2Mð2sÞÞ\D

~f ðx0Þ � ð2Ax� þ bÞTx0

 �

ð5:4Þ

and

~f ð ~x�Þ � ð2Ax� þ bÞT ~x� � ~f ðxÞ � ð2Ax� þ bÞTx for all x2D, ð5:5Þ

or, equivalently,

~f ðxÞ � ~f ð ~x�Þ þ ð2Ax� þ bÞTðx� ~x�Þ for all x2D:

Proof Consider any fixed x� 2D and the function �f : R
n
! R defined by

�f ðxÞ :¼ f ðxÞ � ð2Ax� þ bÞTx ¼ xTAx� 2 x�TAx: ð5:6Þ

Since �f is strictly convex and r �f ðx�Þ ¼ 02R
n, x� is the only minimizer of �f on R

n.

This fact does not change if x is only restricted to D. Applying (4.5) for �f instead

f and �fþ p instead ~f ¼ fþ p, we get

�f ð ~xÞ þ pð ~xÞ4 �f ðx�Þ þ pðx�Þ for all ~x2D n

�
x� þ

1

2
Mð2sÞ

�
:
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By (5.6), we have

~f ðx�Þ � ð2Ax� þ bÞTx�5 ~f ð ~xÞ � ð2Ax� þ bÞT ~x for all ~x2D n

�
x� þ

1

2
Mð2sÞ

�
,

which yields immediately

inf
x0 2 ðx�þ1

2Mð2sÞÞ\D

~f ðx0Þ � ð2Ax� þ bÞTx0

 �

5 ~f ð ~xÞ � ð2Ax� þ bÞT ~x

for all ~x2D n

�
x� þ

1

2
Mð2sÞ

�

and, therefore, (5.2).
In particular, if D is closed and p is lower semicontinuous, then the set

ðx� þ 1
2 Mð2sÞÞ \D is compact and the function x� ~f ðxÞ � ð2Ax� þ bÞTx is lower

semicontinuous. Therefore, there exists ~x� satisfying (5.3) and (5.4). Then (5.5)
follows from (5.2) and (5.4). g

Finally, we state a generalization of the Kuhn–Tucker theorem for the problem
of minimizing ~f ðxÞ ¼ f ðxÞ þ pðxÞ subject to x2D, where

D ¼ fx2C j g1ðxÞ � 0, . . . , gmðxÞ � 0g, ð5:7Þ

C�R
n is closed and convex, and all functions g1, . . . , gm are convex and continuous

on C. As usual, @gi(x) denotes the subdifferential of gi and N(x j C ) denotes the
normal cone to the set C at the point x.

THEOREM 5.2 Suppose that D is defined by (5.7).

(a) If ~x� 2D is a global infimizer of problem ð ~PÞ, then there exist an
x� 2 ð ~x� þ 1

2 Mð2sÞÞ \D and Lagrange multipliers �0� 0, �1� 0, . . . , �m� 0,
not all zero, such that

02 �0ð2Ax
� þ bÞ þ �1@g1ðx

�Þ þ 	 	 	 þ �m@gmðx
�Þ þNðx� jC Þ,

�i giðx
�Þ ¼ 0, i ¼ 1, . . . ,m:

ð5:8Þ

If the Slater condition is fulfilled, i.e.

9x2C : g1ðxÞ5 0, . . . , gmðxÞ5 0, ð5:9Þ

then �0 6¼ 0 and it can be assumed that �0¼ 1.
(b) If x� 2D satisfies (5.8) for �0¼ 1, then there exits an ~x� 2 ðx� þ 1

2 Mð2sÞÞ \D
which is a global infimizer of problem ð ~PÞ.

Proof (a) Assume that ~x� 2D is a global infimizer of problem ð ~PÞ. Since D is closed,
f(x)¼ xTAxþ bTx and A is positive definite, problem (P) has exactly one global
minimizer x� 2D. Due to Theorem 4.1, x� 2 ð ~x� þ 1

2 Mð2sÞÞ \D. Moreover, by
Theorem 20 in [7, p. 69], there exist Lagrange multipliers �0� 0, �1� 0, . . . , �m� 0,
not all zero, such that

02 �0@f ðx
�Þ þ �1@g1ðx

�Þ þ 	 	 	 þ �m@gmðx
�Þ þNðx� jC Þ,

�i giðx
�Þ ¼ 0, i ¼ 1, . . . ,m,

where �0 6¼ 0 if (5.9) is fulfilled. This yields (5.8) since @f(x�)¼ {2Ax�þ b}.
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(b) Assume that x� 2D satisfies (5.8) for �0¼ 1. By Theorem 20 in [7, p. 69], x� is
optimal to (P). Since both M(2s) and D are closed, (4.4) is satisfied. Hence, by
Lemma 4.3, problem ð ~PÞ has at least a global infimizer ~x� 2D. By Theorem 4.1,
~x� 2 ðx� þ 1

2 Mð2sÞÞ \D. g

Due to Theorem 5.1, the expression 2Ax�þ b in (5.8) represents a roughly
generalized gradient of ~f at x� with respect to � ¼ 1

2 Mð2sÞ. If we denote the roughly
generalized subdifferential of ~f by @�

~f , then the first row of (5.8) reads as follows:

02 �0@�
~f ðx�Þ þ �1@g1ðx

�Þ þ 	 	 	 þ �m@gmðx
�Þ þNðx� jC Þ,

which is just a form of necessary optimality conditions we used to know.
Now assume that C¼R

n and all g1, . . . , gm are continuously differentiable convex
functions on R

n. Then (5.8) becomes

�0ð2Ax
� þ bÞ þ �1rg1ðx

�Þ þ 	 	 	 þ �mrgmðx
�Þ ¼ 0,

�i giðx
�Þ ¼ 0, i ¼ 1, . . . ,m:

ð5:10Þ

Because of (2.13), ~x� 2 ðx� þ 1
2 Mð2sÞÞ \D means

~x� � x� 2
1

2
Mð2sÞ � �B

�
0,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2s=�min

p �
,

i.e. k ~x� � x�k �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2s=�min

p
. Therefore, the first part of Theorem 5.2 says that, for

sufficiently small s4 0, if ~x� 2D is a global infimizer of the perturbed problem ð ~PÞ
then it almost satisfies the familiar necessary optimality condition for the original
problem (P) as follows:

�0ð2A ~x� þ bÞ þ �1rg1ð ~x
�Þ þ 	 	 	 þ �mrgmð ~x

�Þ 
 0,

�i gið ~x
�Þ 
 0, i ¼ 1, . . . ,m:

ð5:11Þ

Replacing ‘¼’ in (5.10) with ‘
’ in (5.11) means no essential weakness for appli-
cation, since in practical computation with computers the condition ‘¼0’ must be
replaced with ‘
0’ anyway.

The second part of Theorem 5.2 says that, for sufficiently small s4 0, if x� 2D
satisfies the necessary optimality condition (5.10) for the original problem (P), then it
approximates a global infimizer ~x� 2D of the perturbed problem ð ~PÞ.

Theorem 5.2 explains why and how the Kuhn–Tucker optimality condition can
still work for strictly convex quadratic programs in spite of computing errors
occurring in objective functions, which may be somewhat wild but sufficiently small.
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