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Abstract— A new method of reusing a subset of an M-QAM 
signal constellation is presented for Bit-Interleaved Coded 
Modulation systems with Iterative Decoding (BICM-ID). 
In addition to the remapping of high-energy signals to low-
energy signals in order to save the average signal energy as 
a shaping technique known so far, a new scheme of 
remapping low-energy signals to high-energy signals is 
proposed in order to gain the equivalent distance when 
decoding bits, often called the Squared Euclidean Weights 
(SEW). Numerical analysis and simulation results show 
that the partial reuse of the signals in the BICM-ID system 
with 16QAM can improve the system performance in 
terms of lowering the bit error rate in the error floor 
region. 
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I.  INTRODUCTION  
In digital communication the transmission rate (bit/sec) is 
equal to the product of the symbol rate r  (sym/sec) and the 
number  m  (bit/sym)  of bits carried by a  modulation symbol 
transmitted over the channel. In this relationship the symbol 
rate represents the bandwidth resource of the communication 
channel and the modulation order m  represents its resource in 
the signal-to-noise power ratio (SNR). In the power-limited 
regime one can sacrifice the bandwidth to achieve the channel 
capacity by using powerful binary codes in combination with 
binary modulation like Binary Phase Shift Keying (BPSK). On 
the other hand, in the band-limited regime, when r  cannot be 
increased, the solution then is to combine binary coding with 
M-ary modulation, In digital communication the 
transmission rate  (bit/sec) is equal to the product of the 
symbol rate r  (sym/sec) and the number  m  (bit/sym)  of 
bits carried by a  modulation symbol transmitted over the 
channel. In this relationship the symbol rate represents the 
bandwidth resource of the communication channel and the 
modulation order m  represents its resource in the signal-to-
noise power ratio (SNR). In the power-limited regime one 
can trade off the bandwidth to achieve the channel capacity 
by using powerful binary codes in combination with binary 
modulation like Binary Phase Shift Keying (BPSK). On the 

other hand, in the band-limited regime, when r  cannot be 
increased, the solution then is to combine binary coding 
with M-ary modulation, 2 ,  2mM m= ≥ . Coded modulation 
(CM) schemes with high spectral efficiency include Block 
Coded Modulation (BCM) [1] and Trellis Coded 
Modulation (TCM) [2]. Many coded modulation schemes 
give large coding gains while having good algebraic 
structures which allow relatively simple encoding/decoding 
algorithms [3]. However, there are at least two points that 
limit the application of BCM and TCM. Namely, that both 
the two schemes are good for transmission over Additive 
White Gaussian Noise (AWGN) channels while performing 
badly in fading channels [4], [5].  This leads to the need of 
powerful binary coding in order to compensate the increase 
in average signal energy which, in turn, is necessary for 
obtaining a required total gain. As an improvement in 
digital transmission over fading channels, the Bit-
Interleaved Coded Modulation (BICM) [6] introduces time 
diversity by using bit interleaving between the encoding 
and modulation. In order to save the signal average energy 
while achieving high spectral efficiency, coded modulation 
schemes often use signal constellation shaping techniques, 
like trellis shaping and shell mapping [7]. As an alternative 
shaping technique, the use of partially overlapped signal 
sets has also been proposed in [8]. 

The application of  Iterative Decoding (ID) principles to 
the BICM schemes by exchanging soft information 
between a Soft-Input Soft-Output (SISO) decoder and a 
Symbol-to-Bit Converter (SBC), working as a soft-output 
demodulator, has allowed the system to perform well on 
both Gaussian and Fading channels [9]. In BICM-ID 
systems, the mapping from m -bit blocks to M -point signal 
constellation ( 2 ,  2)mM m= ≥  plays an important role. 
While the Gray mapping is optimum for the systems 
without soft information feedback [6], Set Partitioning (SP) 
mapping, Anti-Gray mapping and other techniques give 
rise to better performance in the presence of feedback in 
BICM-ID systems. Nevertheless, like other systems 
employing ID, the Bit Error Rate (BER) curves of BICM-
ID systems also have a water-fall part and an error floor 
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part. Most research efforts so far have focused on methods 
for mapping onto multi-point signal constellations so that a) 
the water-fall happens earlier (at a smaller SNR) and b) the 
error floor happens at lower values of BER [11-13].  

In this paper we study the signal constellation shaping in 
the BICM-ID scheme. Unlike techniques that use relatively 
complex shaping codes [14]  or reuse the whole signal 
constellation [15], we develop the technique called partially 
overlapped signal subsets presented in [8] for TCM which 
reuses only a part of the signal constellation. Employing the 
feedback of the soft information from the encoder to the 
demodulator, in addition to the reusing of low-energy 
signal points instead of high-energy signal points in order 
to reduce the average energy of signals transmitted over the 
channel we propose a new method for reusing of high-
energy signal points instead of low-energy signal points in 
order to lower the BER value at the error floor region.  

The paper is organized as follows. Section II describes 
the system model. The new proposal for the BICM-ID with 
16QAM  is discussed in details in Section III, together with 
simulation results.  Finally, there are some conclusions. 

II. SYSTEM MODEL 
 

 
Fig. 1: Block diagram of the BICM-ID system 

 
Figure 1 shows the structure of the BICM-ID system with 
iterative decoding/demodulation at the receiver end. At the 
transmitter end an encoder output bit sequence 

1 2( , , , )Nc c c= …c  is fed to the bit interleaver π  of length 
,N  which performs index interleaving ( )i i jv c cπ= = , 

where ( )i jπ = , 1 ,i j N≤ ≤ . For a given M -ary 
modulation ( 2 ,  2)mM m= ≥ , consider a mapping 
rule 1 2: ( , , , )t t tm tv v v sμ →" , where ts  is  selected from the 
signal constellation S  and the time index t  runs from 1 to 

/N m  The interleaver length N  is chosen such that /N m  
is an integer.   

In this paper we consider Recursive Systematic 
Convolutional (RSC) encoders with a coding rate R . Each 
information sequence u  of length K RN=  is encoded into 
the sequence c  consisting of information bits and parity 
check bits.  After being interleaved by π  the bits  in the 

sequence v  are grouped into m -bit blocks, each is then 
mapped onto the constellation S  to form the signal 
sequence 1 2 /( , , , )N ms s s= "s , which is transmitted over 
the channel. We consider the transmission over an additive 
white Gaussian noise (AWGN) channel, for which the  
received signal vector can be expressed as r = s + n , where 

1 2 /( , , , )N mn n n= "n  is the noise vector and the noise 
samples tn  are independent and identically distributed 
(i.i.d.), with zero mean, complex-valued and with noise 
variance 2σ for both real and imaginary part. The SNR at 
the receiver is  0 0/ / ( )b sE N E N Rm= , where 0/bE N  is the 
average transmitted energy per information bit, sE  is the 
average transmitted energy per signal, and 2

0 2N σ=  is the 
one-side noise power spectral density. 

The Symbol-to-Bit Converter takes in the channel output 
observation r  and the a priori information 1AL  of N  
coded bits and computes  the extrinsic information 1EL , 
which in turn is de-interleaved  and fed to the SISO decoder 
as the a priori information 2AL . The SISO decoder uses the 
Log-MAP algorithm in computation of the extrinsic 
information 2EL  for N  coded bits in the form of N  Log-
Likelihood Ratio (LLR) values, which will be interleaved 
and used as the a priori information 1AL  in the next 
iteration.   

Let v  be the interleaved version of  the encoder’s output 
c  of  N  coded bits, the LLR value for the bit 

,  1 / ,  1tjv t N m j m≤ ≤ ≤ ≤  based on the channel 
observation 1 2 /( , , , )N mr r r= "r  is defined as   

 
)( 1|( ) ln ( 0| )

tj
tj tj

P vL vD P v
== =

r
r  (1) 

Although c  has some structure inserted in by the RSC 
encoder, we can assume that bits in v  are independent due 
to the interleaving. Furthermore, the modulator is assumed 
to be memoryless, hence each bit group 

1 2( , , , )t t t tmv v v= "v  depends only on the received signal 
,  1 / .tr t N m≤ ≤  Then we have 

( ) ( ) ( )
( )

| , ,
| t t tj t tj

tj t
t

Pp r v u v u
P v u r

p r
= =

= =
v v

 (2) 

In equation (2), ( , )t t tjp r v u=| v  is the probability 
density function of the received signal tr  conditioned on 
the modulation bit block tv  having { }0 1tjv u ,= ∈ , and  

( , )
jt t

P v u=v  is the a priori probability of tv  with tjv u= . 

The unconditioned probability density function ( )tp r  is 
cancelled by division under the log-function in (1).  

Referring to the presentation in [16] we can rewrite  
equation (1) as  
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Here ,[ ]t jv  is formed from tv  by deleting the j -th 
component, and ,[ ]A jL  is obtained from the a priori 
probability vector of tv  by deleting the thj  component. 
Then DL  is the sum of the a priori information AL  and the 
extrinsic information EL . The decoder and the demodulator 
exchange the extrinsic information EL : 
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For the AWGN channel we have, with ( )t ts μ= v ,  
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The serial concatenation structure of the encoder/modulator 
pair at the transmitter and of the demodulator/decoder pair 
at the receiver in the BICM-ID scheme seems to be simpler 
than the parallel concatenation structure of turbo encoders. 
The bit interleaving in the BICM scheme gives rise to the 
large temporal diversity to help the system robustness in the 
fading channel. Due to the iterative decoding where the a 
priori information of 1m −  bits  per received symbol is used 
to improve the detection of the remained bit, the M -ary 
modulation can be considered as a set of  12m−  independent 
BPSK modulators which might allow mappings that, in 
turn, give rise to good performance of the BICM-ID system 
in the AWGN channel. 
 

III. PARTIAL REUSE OF 16QAM SIGNAL POINTS  

Consider an M-QAM constellation with 2mM =  signal 
points each of which is given by a complex number 

,  1k k ks a ib k M= + ≤ ≤ , where 1i = −  and 
,  1, 3, , 2 1m

k ka b = ± ± ± −… . When the signal points are used 
equally-likely we have    

 2 2

1

1 ( )
M

S k k
k

E a b
M =

= +∑  (6) 

 The left hand side of  Fig. 2 shows the configuration of the 
16QAM constellation.  In this paper we consider the 
optimum mapping of the 16QAM constellation [11]. This 
mapping has been stated to be optimum in the sense that it 
has an optimum distance spectrum which allows to reach 
low error rates. 

 
Fig. 2. The optimum mapping of the 16QAM points  

 
For convenience, let us enumerate from 1 to 16 for signal 
points ,  1 16ks k≤ ≤  from left to right and  from upper rows 
to lower rows. The optimum mapping is now represented as  

[13,6,7,16,3,8,14,5, 4,15,9,2,10,1,4,11]optμ = .  
Each of the numbers 1 16k≤ ≤  in the previous vector 
denotes the signal point ks  whose binary label has a 
decimal value of ( 1)k − . The binary labeling of the 
16QAM points in the optimum mapping is presented in Fig. 
2.  The average energy of the 16QAM constellation is equal 
to 10. 

We use Fig. 3 to describe different ways of reusing a 
part of signal points in the 16QAM constellation. Each of 
signal constellations in Fig. 3 has only 12 signal points, 
meaning that four signal points are used twice frequently 
for transmission of 2 bit/sym in combination with rate-1/2 
RSC codes. Each of reused signal points has then two 
binary labels, one of the signal point itself and the other is 
the label of the point that is not used for transmission.  In 
Fig. 3(a),  four lowest-energy signals (points 6, 7, 9, and 10 
of energy equal to 2) are reused for transmission instead of 
four highest-energy signals (points 1, 4, 13, and 16 of 
energy equal to 18). The average energy of actually 
transmitted 16QAM signals now is equal to 6. Fig. 3(b) 
presents the way of reusing secondary low-energy signals 
(points 2, 3, 14, and 15 of energy equal to 10) for 
transmission instead of highest-energy signals (points 1, 4, 
13, and 16 of energy equal to 18). The average energy of 
actually transmitted 16QAM signals in this case is equal to 
8. While saving the average signal energy, we can see later 
in performance analysis that these ways of reusing low-
energy signal points cannot gain much in the average SED.  

Contrarily, the reusing of high-energy points instead of 
low-energy points allows an increase of the average SED 
while sacrificing the average signal energy. In Fig. 3(c) 
four secondary low-energy signals (points 2, 3, 14, and 15 
of energy  equal to 10)  are reused for transmission instead 
of  four lowest-energy signals (points 6, 7, 9, and 10 of 
energy equal to 2). The average energy of actually 
transmitted 16QAM signals now is equal to 12.  Finally, 
Fig. 3(d) presents the way of reusing highest-energy signals 
(points 1, 4, 13, and 16 of energy equal to 18) for 
transmission instead of lowest-energy signals. 
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The average energy of actually transmitted 16QAM signals 
in this case is equal to 14. 

To describe different ways  of reusing 16QAM signal 
points, we use the representation of a mapping rule as it has 
been presented  in Sec. III.  We combine the notation of the 
optimum mapping 

  [13,6,7,16,3,8,14,5, 4,15,9,2,10,1,4,11]optμ =   
and the rule of reusing to represent the way of reusing as a 
new mapping rule. For example, the way of reusing 
presented in Fig. 3(a) can be now represented as a mapping 
rule [10,6,7,11,3,8,14,5,4,15,9,2,10,6,7,11]aμ = , since the 
point numbered ‘10’ is reused for the point numbered ‘13’, 
the point numbered ‘11’ is reused for the point numbered 
‘16’, the point numbered ‘6’ is reused for the point 
numbered ‘1’, and the point numbered ‘7’ is reused for the 
point numbered ‘4’. Similarly we have different mapping 
rules representing different ways of reusing 16QAM signal 
points as they are given in Table 1.  

IV.  PERFORMANCE ANALYSIS 
In general, let us consider the j -th bit in m -bit binary label 
of a signal point. Under the condition that the number of 
signal points M  satisfies 2mM = , for each signal point ks  
there is a signal point *ks  whose m -bit label differs from 
the label of ks  only in the j -th bit. Denote by 

22
*( )j k k kd s s s= −  the squared Euclidean distance (SED) 

between ks  and *ks . Given a mapping μ  onto the M-QAM 

constellation, the SED 22
*( )j k k kd s s s= −  depends on the 

signal point ks  and the bit position j .If this SED is 
constant for all signal points ks  for each j , then the 
mapping is defined as to have a uniform error probability, 
that is the bit error probability in each position does not 
depend on the transmitted signal. In this case we have 

2 2 ( )j j kd d s=  independently of ks . For other kinds of 
mappings, in this paper we propose to set  

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 3. Different ways of  reusing the 16QAM points 

p  Mapping rules SE
 

2
TBd
 

pG  Description 

 
1 

 
[10,6,7,11,3,8,14,5,4,15,9,2,10,6,7,11]  

 
6 

 
13 

 
1.083 Reuse 6, 7, 10, 11 instead  of 1, 4, 13, 16 

 
2 

 
[14,6,7,15,3,8,14,5,4,15,9,2,10,2,3,11]  

 
8 

 
19 

 
1.187 Reuse 2, 3, 14, 15 instead of 1, 4, 13, 16 

 
3 

 
[13,6,7,16,3,8,14,5, 4,15,9,2,10,1,4,11]  

 
10 

 
23 

 
1.150 The original optimum  mapping 

 
4 

 
[13,2,3,16,3,8,14,5,4,15,9,2,14,1,4,15]  

 
12 

 
31 

 
1.291 Reuse 2, 3, 14, 15 instead  of  6, 7, 10, 11 

 
5 

 
[13,1,2,16,3,8,14,5,4,15,9,2,13,1,4,16]  

 
14 

 
41 

 
1.463 Reuse 1, 4, 13, 16 instead of  6, 7, 10, 11 

TABLE I.  PARAMETER OF NEW 16QAM MAPPINGS 
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 2 2

1
min ( )j j kk M

d d s
≤ ≤

=  (7) 

meaning that for the bound in (12)  to take place we 
consider for each bit position the worst equivalent binary 
channel before averaging by (9) over m  bit in the binary 
label of the M-QAM point.  

For 16M =  and a mapping μ  onto the 16QAM signal 
constellation, let us define the SED Profile of μ , denoted 
by ( )DP μ , as an ordered set 2 2 2 2

1 2 3 4( ) ( , , , )DP d d d dμ =  of 
SEDs under the mapping μ . For example, Fig. 2 shows the 
binary labeling of the 16QAM points in the optimum 
mapping, together with the average signal energy (6),  the 
average SED  (8), and the SEDs of each bit position (7). 
We have ( ) (20,20,32,20)optimumDP μ =  and  2 23TBd = , while  

10SE = . In Fig. 2 and Fig. 3,  each pair of points linked by 

a line is used to define  the SED 22
*( )j k k kd s s s= − , for 

1 4j≤ ≤  and  1 16k≤ ≤ .   
Researchs on BICM-ID [9, 11, 13] have shown that, 

when the SNR is large enough (when the feedback is 
perfect), we can assume that each encoder output bit selects 
for transmission a binary channel of the SED 2 ,  1jd j m≤ ≤  
with probability 1/ .m  Consequently coded bits are 
assumed to be transmitted over an equivalent  BPSK 
modulation channel with an average signal energy (and also 
bit energy) equal to  

 
2

* 2

1

1
4 4

m
TB

b j
j

dE d
m =

= =∑  (8) 

where the average SED is computed as   

 2 2

1

1 m

TB j
j

d d
m =

= ∑  (9) 

For a given 0/bSNR E N=  ,  the one-side power  spectral 
density of the AWGN is  

 0
0( / )

s

b

E
N

E N Rm
=  (10) 

where R  is the coding rate of the convolutional encoder. 
Then the SNR of the equivalent BPSK channel is   

 
2

* 2
0 0 0

1

1/ ( / ) ( / )
4 4

m
TB

b j b b
jS S

dmRE N d E N R E N
E E=

⎛ ⎞
= =⎜ ⎟
⎝ ⎠

∑  (11) 

It is well known that the bit error probability of a rate- /b c  
convolutional encoder over an AWGN channel with  BPSK 
modulation and with the signal-to-noise ratio *

0/bE N  is 
upper bounded as [17] 

 
*

01, 1, exp( / )

1 ( , , )

b

b
I L D E N

T D I LP
b I = = = −

∂<
∂

 (12) 

where ( , , )T D I L  is the extended transfer function of the 
error state diagram of the encoder. Thus we can use the 

bound (12) in conjunction with the equivalent SNR (11) to 
compare different ways of reusing 16QAM signal points, 
provided that the same convolutional code is used  in the 
BICM-ID system. Additionally, the form of equation (11)  
suggests that by taking the bit error probability of the same 
convolutional encoder at 0/bE N  as a baseline for 
comparisons, the performance of the BICM-ID system with 
different ways of partial reuses depends on the reusing gain 

 

 
2

4
TB

S

dmRG
E

=  (13) 

 
Namely, the system with a larger G  will have a smaller 
value of BER at the error floor region. In particular, the 
BICM-ID system using a rate-1/2 convolutional code in 
combination with 16QAM has 2( / ) / 2TB SG d E= , computed 
from (13) for 1/ 2, 4R m= = . If the whole M-QAM signal 
constellation with 2mM = is reused in transmission of 
( 1)m +  bit/sym as it has been proposed in [15] the decrease 
of 2

TBd  due to the assignment of the smaller SED in the 
distance profile to the ( 1)m + -th bit cannot be compensated 
with the increase of the number of  bit/sym from m  to 
( 1)m + , especially when m  is large. It is this fact itself has 
suggested a partial reuse of signal points in order to 
increase G . 

Let pG  denote  the gain of the p -th mapping as shown 
in Table 1, computed by using equation (13). Arranging in 
descending order of mapping gains, we have 

5 4 2 3 1G G G G G> > > > . This order means that, in the error 
floor region, the system without reusing signal points (the 
original 16QAM constellation wit 10sE = ) outperforms the 
system that reuses lowest-energy points instead of highest-
energy points ( 6SE = ), however it is outperformed by 
three other ways of partial reusing 16QAM signal points. 
This fact is confirmed by simulation results presented as 
BER curves versus 0/bE N  (dB) shown in Fig. 4.  In this 
simulation the RSC encoder has the generators[1,5 / 7] , and 
the length of the random bit interleaver is equal to 4800.  
Furthermore, Fig. 4 also presents the upper bounds (12) for 
different ways of partial reusing 16QAM signal points, 
differentiated by average signal energy SE . We note that the 
upper bounds are close to the simulation results in  the error 
floor region and they reflect the similar relations as in the 
comparison by using reusing gain G .  This supports the 
conclusion that the mappings bμ , cμ , and dμ  representing 
the ways of partial reusing 16QAM signal points under the 
optimum mapping in Fig. 3(b),  Fig. 3(c) and Fig. 3(d), 
respectively, allow to lower the BER in the error floor 
region compared with the case when there is not any reuse. 
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Fig. 4. Simulation results (solid lines) of  BICM-ID with 

partial reuse of  16QAM signal points and upper  
bounds (dash lines) 

V. CONCLUSIONS 
Thus, given a mapping rule, like the optimum mapping, of 
the 16QAM constellation, it is simple to define the way of 
partial reusing signal points by redefining the given 
mapping rule. The simple analytical upper bound on the 
BER based on the encoder transfer function is possible due 
to  the consideration that, for each given bits position in the 
signal point’s binary label,  the minimum SED dominates 
the BER property of the equivalent binary channel defined 
by this bit position.  Two simple ways of comparison, the 
one by using analytical upper bound on BER and the other 
by defining the so called reusing gain, have shown that the 
technique of partial reuse of the 16QAM signal points 
allows to improve  the BER performance of the BICM-ID 
system in the error floor region, compared with the case of 
no reuse. This fact is confirmed by simulation results for 
the BICM-ID system using the optimum mapping of 
16QAM constellation and transmitting 2 bit/sym. Finally 
we note that the existence of different ways of partial 
reusing signal points for the same signal constellation with 
different BER performance can be useful for systems where 
adaptive schemes are considered. 
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