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Abstract A novel direction-based multi-objective evolu-
tionary algorithm (DMEA) is proposed, in which a population
evolves over time along some directions of improvement. We
distinguish two types of direction: (1) the convergence direc-
tion between a non-dominated solution (stored in an archive)
and a dominated solution from the current population; and,
(2) the spread direction between two non-dominated solu-
tions in the archive. At each generation, these directions are
used to perturb the current parental population from which
offspring are produced. The combined population of off-
spring and archived solutions forms the basis for the creation
of both the next-generation archive and parental pools. The
rule governing the formation of the next-generation parental
pool is as follows: the first half is populated by non-domi-
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nated solutions whose spread is aided by a niching criterion
applied in the decision space. The second half is filled with
both non-dominated and dominated solutions from the sorted
remainder of the combined population. The selection of non-
dominated solutions for the next-generation archive is also
assisted by a mechanism, in which neighborhoods of rays in
objective space serve as niches. These rays originate from the
current estimate of the Pareto optimal front’s (POF’s) ideal
point and emit randomly into the hyperquadrant that contains
the current POF estimate. Experiments on two well-known
benchmark sets, namely ZDT and DTLZ have been carried
out to investigate the performance and the behavior of the
DMEA. We validated its performance by comparing it with
four well-known existing algorithms. With respect to conver-
gence and spread performance, DMEA turns out to be very
competitive.

Keywords Multi-objective optimization problems ·
Evolutionary algorithms · Direction information

1 Introduction

Evolutionary algorithms (EAs) are well accepted tools for
solving multi-objective optimization problems (MOPs) [4,
8,11,29] and a rich variety of real applications ([10,15,21],
among other). Since the first EA for MOPs was introduced
in 1985 [24], there has been a plethora of proposals for
supplementing multi-objective EAs (MOEAs) with various
advanced techniques such as elitism, use of local informa-
tion, and decomposition. A thorough survey of MOEAs has
been provided in [7].

Among those techniques, the use of elitism is the most
popular one. Usually, a particular archive is (either implic-
itly or explicitly) maintained over time. The non-dominated
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solutions are stored in this archive and later used to mix with
the newly derived offspring to form the next generation of
solutions. In our opinion, this archive is underutilized; it is
an information-rich data set and can contribute to the evo-
lutionary process in more ways than just being the pool of
parents for future offspring.

We propose that given a good archive maintenance
scheme, some directions of improvement can be derived
from archival information and used to guide the evolution-
ary process. Finding effective and efficient ways of steer-
ing the optimization process is most desirable in the design
of an optimization algorithm. The steepest gradient descent
method [27] is the best-known example of a simple search
scheme that derives direction from information present in the
local neighborhood of iterated solutions. In general thought,
defining a good direction is not a trivial task, especially when
the optimization process involves non-linear or black-box
functions. Good direction-guided algorithms need to strike
a delicate balance between exploitation and exploration. On
the one hand, an algorithm is required to move quickly toward
a potential optimum. On the other hand, it should not get
trapped too easily in a basin surrounding a local optimum.
This could prematurely end its search for the domain in which
the global optimum can be found.

In evolutionary computation (EC), direction-guided search
has proved to be quite promising. Differential evolution (DE)
utilizes the direction between two parents to guide the gen-
eration of offspring [22]. It has been very effective in solving
continuous optimization problems, both single- and multi-
objective [1,2]. Lara et al. [19] analyzed the main issues when
introducing gradient information into a MOEA from both, the
local search and the global search point of view. Recently,
we also demonstrated the benefit of direction-guided search
in a framework for distributed MOEAs [5].

In this paper, we describe a new algorithm—the direc-
tion-based multi-objective evolutionary algorithm (DMEA).
In DMEA, an external archive of non-dominated solutions is
maintained over time. DMEA is based on the effective use
and refinement of information contained in the archive. The
archive not only contribute solutions to the next generation,
but also supports the derivation of directions for offspring
production. Offspring are generated in a process in which ran-
domly-selected parents are perturbed along identified direc-
tions of improvement. Two types of direction are used: (1) a
convergence direction between an archived non-dominated
solution and a dominated solution from the parental pool;
and, (2) a spread direction between two non-dominated solu-
tions in the archive. The pool of offspring is combined with
the archive in order to generate the next-generation archival
and parental pools. By being updated with non-dominated
as well as dominated solutions, the next-generation parental
pool allows for both exploitation and exploration to occur
throughout the evolutionary process.

Niching—a mechanism of enticing a population to breed
uniformly and thereby spawning diversity—also plays an
important role in DMEA design [25,26]. Ideally, non-
dominated solutions of the MOP are homogeneously distrib-
uted on the Pareto optimal front (POF) in objective space. In
order to facilitate this even spread, we use a bundle of rays
that emits uniformly from the POF’s estimated ideal point
into the (hyper) quadrant that contains the POF estimate.
During the archival update, solutions’ proximity to the ray
ensemble is used as a selection criterion that supplements
non-dominance. In our algorithm we set the number of rays
equal to archive size. To generate the next-generation parent
population, the non-dominated solutions are kept some dis-
tance apart from each other according to niching information
computed in the decision space.

To validate the newly proposed DMEA, we carried experi-
ments on 12 problems from two well-known benchmark sets.
The results strongly suggest that DMEA performs well in
both convergence and solution spread. The results indicate
that DMEA is very competitive.

The paper is organized in six sections. Section 2 introduces
common notations in MOP. A brief summary of MOEAs is
given in Sect. 3 and followed by the description of DMEA
in Sect. 4. The experimental results on 12 benchmark prob-
lems is presented in Sect. 5 to examine the effectiveness and
efficiency of DMEA. Conclusion and future work are given
in Sect. 6.

2 Common concepts

Real-life problems are typically characterized by multiple
competing objectives (or criteria). Their solutions therefore
describe alternatives, each of which represents a different
compromise between the conflicting objectives. A subset of
these alternatives contains all Pareto optimal solutions. In the
case of multi-objective minimization problems, a “solution
to a MOP is Pareto optimal if there exists no other feasi-
ble solution which would decrease some criterion without
causing a simultaneous increase in at least one other crite-
rion” [7]. The set of solutions that satisfies the Pareto opti-
mality definition is called the Pareto optimal set (POS). Its
projection in objective space is known as the Pareto opti-
mal front. The ideal point of the POF is the vector whose
components contain the result of minimizing each objective
individually.

Mathematically, in a k-objective unconstrained (bound
constrained) minimization problem, a vector function f(x)

of k objectives is defined as:

f(x) = [ f1(x), f2(x), . . . , fk(x)] (1)

in which x is a vector of decision variables in n-dimensional
R

n . In EC, x represents an individual in the population to be
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evolved. The value f j (x), then, describes the performance
of individual x as evaluated against the j th objective in the
MOP.

An individual x1 is said to dominate x2 if x1 is not worse
than x2 on all k objectives and is better than x2 on at least
one objective. If x1 does not dominate x2 and x2 also does
not dominate x1, then x1 and x2 are said to be non-dominated
with respect to each other. If we use the symbol “�” to denote
that x1 � x2 means x1 dominates x2, and the symbol “�”
between two scalars a and b to indicate that a � b means a
is not worse than b, then dominance can be formally defined
as [11]:

Definition 1 (Dominance) x1 � x2 if the following condi-
tions are held:

1. f j (x1) � f j (x2)∀ j ∈ {1, 2, . . . , k}; and,
2. ∃ j ∈ {1, 2, . . . , k} : f j (x1) � f j (x2).

In general, if an individual is not dominated by any other
individual in the population, it is called a non-dominated
solution. All non-dominated solutions in a population form
the non-dominated set as formally described in the following
definition:

Definition 2 (Non-dominated set) A set S is said to be the
non-dominated set of a population P if the following condi-
tions are met:

1. S ⊆ P; and,
2. ∀s ∈ S�x ∈ P : x � s.

If P represents the entire search space, then S is referred
to as the global Pareto optimal set. If P represents only a
subspace, then S is called the local Pareto optimal set. While
there can be multiple local POSs, there exists only one global
one.

3 Related work

Elitist is a mechanism to preserve the best individuals, once
found, during the optimization process. The concept of elit-
ist was established at an early stage of EC (see, for example
[14]); and to date, it has been widely used in EAs. Elitist can
be realized either by placing one or more of the best parents
directly into the next generation of individuals, or by replac-
ing only those parents that are dominated by their offspring
[28].

Elitist MOEAs usually (but not necessarily) employ an
external set called the archive to store the non-dominated
solutions after each generation. In general, when using an
archive, there are two important aspects to consider [7]:

– Interaction between archive and main population during
the optimization process the archive can be combined
with the current population to form the population for the
next generation as in [35]. However, the archive is more
than just a gene pool. It also contains information about
the best performance of the algorithm so far. Exploiting
this rich archival information should enhance the optimi-
zation process and is the main motivation for the research
reported in this paper.

– Updating the archive the method by which the archive is
built also plays an important role. In some approaches the
neighborhood relationship between individuals is used;
e.g. in the form of geographical grid [17], crowded dom-
inance [13], and clustering [35]. Others entail control-
ling the size of the archive through truncation when the
number of non-dominated individuals exceeds a prede-
fined threshold. In this paper we will pursue a different
approach to maintaining the archive. Details will be given
in the next section.

How archive and main population interact and how the
archive is being updated differ from one MOEA to another.
The general elitist principle is to preserve each generation’s
best individuals. This helps algorithms to get closer to the
POF. A proof of convergence for MOEAs using elitist can
be found in [23]. Algorithms such as Pareto archived evo-
lution strategy (PAES) [17], strength Pareto EA 2 (SPEA2)
[35], Pareto frontier DE (PDE) [2], NSGA-II [13], and multi-
objective particle swarm optimization (MOPSO) [9] are typ-
ical examples of elitist MOEAs.

Memetic algorithms, which are population based meta-
heuristics which combine local search components within
an evolutionary framework, have also been applied to multi-
objective optimization recently, and several multi-objec-
tive memetic algorithms (MOMAs) have therefore been
designed [6,16,20,30]. In DMEA, since we perturb the solu-
tion according the information from archive before perform-
ing evolutionary operators, DMEA can be viewed as using
a shallow-depth local search strategy. However, unlike most
existing MOMAs, our local search is integrated into the evo-
lutionary process.

4 Direction-based multi-objective evolutionary
algorithm

4.1 Overview

To paraphrase the previous section, elitist is a very useful
mechanism to enhance MOEAs. We will therefore adopt this
mechanism in our methodology. We will especially address
both issues mentioned above: interaction between archive
and main population and archive update.
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The novel algorithm we propose is an elitist MOEA;
i.e. throughout the evolution of MOP solutions, an exter-
nal archive is being maintained. This archive not only stores
elitist solutions but also contributes directional information
to guide the evolutionary process. Knowing how solutions
have improved from one iteration to the next is useful infor-
mation in any iterative optimization approach. We propose
to make use of this information during the MOEA reproduc-
tion phase. At every generation, the archive is exploited to
determine directions of improvement. The main population
is then perturbed along those directions in order to produce
offspring. Subsequently, the offspring are merged with the
current archive to form a temporary population, called com-
bined population, from which the next generation’s archive
and parental pool are derived. Based on this principle, we call
our algorithm direction-based multi-objective evolutionary
algorithm (DMEA).

The second unique feature of DMEA entails the determin-
istic control of some aspects of the selection of non-domi-
nated solutions for archive and main population. Augmenting
MOEA with deterministic steps is not uncommon; NSGA-II
is a well-known example for this. However, unlike NSGA-II
in which solutions are sorted into different layers, in DMEA
we place solutions into two categories only: non-dominated
and dominated solutions. The archive is updated by using
niching in objective space, while up to half of the next-gen-
eration main population is filled by applying niching criteria
in decision variable space.

The details of our methodology are described in the
following subsections.

4.2 Directional information

We propose two types of directional information to perturb
the parental population prior to offspring production: con-
vergence and spread.

Convergence direction (CD). In general defined as the
direction from a solution to a better one, CD in MOP is a
normalized vector that points from dominated to non-dom-
inated solutions. If non-dominated solutions are maintained
globally, CD corresponds to the global direction of conver-
gence. In unconstrained MOP, a dominated solution guided
by this direction is more likely to find a better area in the deci-
sion space than an unguided solution. An example is given
in Fig. 1 where A is a dominated solution and BCDEFG
are non-dominated solutions. All the directions from A to
BCDEFG are considered convergence directions.

Given a dominated parent Pard with decision space coor-
dinates Pard(i), i ∈ {1, 2, . . . , n}, a perturbation rate 0 <

p < 1, and a normalized CD d1, then, prior to offspring pro-
duction in DMEA, we perturb Pard to form a vector S1 with
coordinates

S1(i) ≡ Pard(i) + RNDi (p)σ1d1(i). (2)

Here σ1 is a scalar model parameter, which, in the case study
of Sect. 5, is uniformly sampled from (0, 2) at random. The
random choice of σ1 ensures that the step length varies to
avoid the bias inherent in a fixed step length. RNDi (p) equals
1 if U (0, 1) < p and 0 if U (0, 1) ≥ p, where U (0, 1) is ran-
dom real number uniformly sampled from (0, 1). Note that
because of this random sampling, not necessarily all compo-
nents of Pard will receive contributions from d1. Actually,
the higher the decision space’s dimension, the less likely it is
that Pard is perturbed along the exact CD. This follows the
practice of how directional information is used in DE.

Spread direction (SD). Generally defined as the direction
between two equivalent solutions, SD in MOP is a normal-
ized vector that points from one non-dominated solution to
another. If solutions are perturbed along the SD, a better
spread within the population should be obtained. In Fig. 1,
we show an example of spread directions between non-dom-
inated solutions BCDEFG.

Fig. 1 Illustration of
convergence (black arrows) and
spread (hollow arrows)
directions in objective space
(left) and decision variable
space (right)
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Given a non-dominated parent Parn and an SD d2, the
components of its spread perturbation S2 are defined as:

S2(i) ≡ Parn(i) + RN Di (p)σ2d2(i). (3)

As with S1, S2 is not perturbed along the exact SD but only
along some of its components.

There are many ways of defining directions for solution
sets. In DMEA, we settle for a simple but computationally
efficient method, when we perturb a parent:

d1 ≡ A1 − Pard

|A1 − Pard | (4)

d2 ≡ A2 − A3

|A2 − A3| (5)

where A1, A2 and A3 are three solutions randomly selected
from the archive. In combination with offspring production,
niching and evolutionary selection, this crude method of cal-
culating directions of improvement proves to be very effec-
tive as the case study in Sect. 5 will illustrate.

4.3 Niching information

A characteristic of solution quality in MOP is the even spread
of non-dominated solutions across the POF [11]. In order to
entice solutions to distribute homogeneously, DMEA makes
use of a bundle of rays that emits randomly from the esti-
mated ideal point into the part of objective space that con-
tains the POF estimate (see Fig. 2). The number of rays
equals the number of non-dominated solutions wanted by
the user, i.e. it is equal to the size of the archive used
to report the POF estimate. Rays emit into a “hyperqua-
drant” of objective space, i.e. the subspace that is bounded

Fig. 2 Illustration of a ray bundle used for ray-assisted niching in a
2-dim MOP. The origin of the bundle is collocated with the estimated
ideal point. The ray bundle is bounded by the two lines f1 = f1,min and
f2 = f2,min and it emits randomly into the top right quadrant which
contains the POF estimate

by the k hyperplanes fi = fi,min, i ∈ {1, 2, . . . , k} and
described by fi ≥ fi,min∀i ∈ {1, 2, . . . , k} where fi,min ≈
minallA1,A2,... fi with A1, A2, . . . being the solutions stored
in the current archive. By construction, this hyperquadrant
contains the estimated POF.

Once the archive fills with non-dominated solutions, the
bundle’s origin is located to the estimated ideal point. Dur-
ing the archival update, the rays are used as reference lines to
select particular non-dominated solutions from the combined
population. One by one, the rays are scanned and the non-
dominated solution closest to a given ray is archived (and,
for the purpose of archival update, removed virtually from
the combined population). Because the number of rays equals
archive size, DMEA automatically guarantees the limit of the
archive to be its minimum size. There is no need for explicit
truncation of solutions as seen in many other approaches such
as NSGA-II and SPEA2.

Further, the ray system can be easily managed via main-
taining a starting point and a set of points that are evenly
spaced in objective space (a ray is equal to a pair of the start-
ing point and a point in the set). For the sake of simplicity,
this set of points will be located on a hyper-sphere with radius
of 1 unit. The simplest way to generate a set of points that are
evenly located in objective space, is to consider this process
as an optimization problem where we need to find n points
in the space (located on the unit sphere) that are kept distant
from each other. The criteria for this problem is to maximize
the minimal distance between points (d∗). Our finding is that
for 2-objective problems, the obtained distance d∗ is about
1/n, while for 3-objective ones it is ≈10/n.

Niching is also applied to the main population. From the
second generation onward, the population is divided into two
equal parts: one part for convergence, and one part for diver-
sity. The first part is filled by non-dominated solutions up to
a maximum of n/2 solutions from the combined population,
where n is the population size. This filling task is based on
niching information in the decision space.

Assume the number of non-dominated solutions in the
combined population is m ≤ M ≤ 2n where M is the size of
the combined population. Then there are two possibilities:

− m < n/2: all m solutions are copied to the main popu-
lation.

− m ≥ n/2: each non-dominated solution is assigned a
niching value calculated as the average Euclidean dis-
tance from all other non-dominated solutions. The solu-
tions are then sorted according to these values and the
first [n/2] solutions are copied to the main population.

The second part of the main population (size n−min{m, n/2})
is sampled from the remainder of the combined popula-
tion. In the version of DMEA described in this paper, we
sort the remaining solutions xi based on the normalized
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weighted-sum objective value F(xi ). For the sake of sim-
plicity, the same weight is used for all objectives. We pick
the n − min{m, n/2} solutions with the highest scores F
and copy them into the main population. This the weighted-
sum scheme allows dominated and (according to the niching
value) low ranked non-dominated solutions to enter the next
generation. Its purpose is to strike a balance between exploi-
tation and exploration.

4.4 General structure of algorithm

The step-wise structure of the proposed algorithm is as
follows:

– Step 1. Initialize the main population P with size n.
– Step 2. Evaluate the population P .
– Step 3. Copy non-dominated solutions to the archive A.

(A’s size is set equal to that of the main population P . Note
that, initially, the archive might not be filled entirely.)

– Step 4. Generate an interim mixed population M of the
same size n as P

– Loop {
• Select a random parent Par without replacement

from P .
• If Par is dominated, j = 1. Else j = 2.
• Calculate S j as of Eqs. 2 to 5.
• Add S j to M .

– } Until (the mixed population is full).

– Step 5. Perform the polynomial mutation operator [11]
on the mixed population M with a small rate.

– Step 6. Evaluate the mixed population M .
– Step 7. Combine the interim mixed population M with

the current archive A to form a combined population C
(i.e. M + A → C).

– Step 8. Identify the estimated ideal point of the non-dom-
inated solutions in C and determine a list of n rays R
(starting from the ideal point and emitting uniformly into
the hyperquadrant that contains the non-dominated solu-
tions of C see Sect. 4.3).

– Step 9: Create new members of the archive A by copy-
ing non-dominated solutions from the combined popula-
tion C

– Make a copy C ′ of the combined population C .
– Loop{

• Select (without replacement) a ray R(i).
• In C ′, find the non-dominated solution whose dis-

tance to R(i) is minimum.
• Select (without replacement) this solution and

copy it to the archive.
– } Until (all n rays are scanned)

– Step 10: Determine the new population P for the next
generation.

– Empty P .
– Determine the number m of non-dominated solutions

in C .
• If m < n/2, select (without replacement) all non-

dominated solutions from C and copy to P .
• Else,

· Determine niching value (average Euclidean
distance to other non-dominated solutions in
decision space) for all non-dominated solutions
in C .

· Sort non-dominated solutions in C according
to niching values.

· Copy (without replacement) the n/2 solutions
with highest niching value to P .

– Apply weighted-sum scheme to copy max{n−m, n/2}
solutions to P , see end of Sect. 4.3.

– Step 11: Go to Step 4 if stopping criterion is not satisfied.

Except for σ1 in (2), DMEA does not introduce any non-
standard control parameters. As in other MOEA, population
size, mutation rate and perturbation rate (which corresponds
to crossover rate in conventional genetic algorithms) need to
be specified as global parameters.

To further show the effect of the two directions we
designed, we give an example on a benchmark problem,
DTLZ3. In this example, the results of three versions of the
above algorithm are compared. The first version is the same
with the above algorithm, the second version is the same with
the first version except the convergence direction does not
used, and the third version is the same with the first version
except the spread direction does not used. The parameters are
the same with those used in the next section. The obtained
POFs are shown in Fig. 3. As can be seen, the POF obtained
by the first version is much better than those obtained by
the two other versions. Especially, the results of the second
version did not converge at all.

4.5 Computational complexity

The main computational cost comes from the task of filling
the archive and the main population for the next generation.
Filling the archive requires finding the closest solution to
each ray from the combined population C (size C). Since the
number of rays is equal to the population size, the complexity
of this task will be O(Cn). Since C ≤ 2n, the complexity is
O(n2). Filling solutions for the main population for the next
generation requires sorting the non-dominated solutions in
the combined population according to niching information in
the decision space, and the sorting of the remaining solutions
(after taking m solutions for the first part of the population).
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Fig. 3 The obtained POFs for DTLZ3 of the algorithm with a both the spread and convergence direction, b without the convergence direction,
and c without the spread direction

So the complexity of this task should be on the order of
O(nlogn) + O(nlogn) or simply O(nlogn). Therefore, the
overall complexity of the algorithm is O(n2).

5 Experiments

5.1 Testing problems

This paper considers a set of 12 continuous benchmark
problems that come from two well-known benchmark sets,
namely ZDT [33] and DTLZ [12]. For these problems, the
number of variables are between 7 and 30 while the num-
ber of objectives are 2 or 3. The reason for us to select
these benchmarks is that each benchmark illustrates a dif-
ferent class of problems such as convexity/non-convexity,
uniformity/non-uniformity, single-modality/multi-modality,
linearity/non-linearity, interdependency, and continuity/dis-
continuity. The parameters for these problems are reported
in Table 1.

Table 1 List of test problems and parameters used for experiments

Problems Number of Number of Decision space
variables objectives

ZDT1 30 2 [0, 1]30

ZDT2 30 2 [0, 1]30

ZDT3 30 2 [0, 1]30

ZDT4 10 2 [0, 1] × [−5, 5]9

ZDT6 10 2 [0, 1]10

DTLZ1 7 3 [0, 1]7

DTLZ2 12 3 [0, 1]12

DTLZ3 12 3 [0, 1]12

DTLZ4 12 3 [0, 1]12

DTLZ5 12 3 [0, 1]12

DTLZ6 12 3 [0, 1]12

DTLZ7 22 3 [0, 1]22

5.2 Performance measurement methods

Performance metrics are usually used to compare algorithms
in order to form an understanding of which algorithm is bet-
ter and in what aspects. However, it is hard to define a con-
cise definition of algorithmic performance. In general, when
doing comparisons, a number of criteria are employed [34].
We will look at four popular criteria. The first measure is the
generation distance, GD, which is the average distance from
a set of solutions, denoted P, found by evolution to the global
POS [31]. The first-norm equation is defined as

GD =
∑n

i=1 di

n
(6)

where di is the Euclidean distance (in objective space) from
solution i to the nearest solution in the POS, and n is the size
of P . This measure is considered for convergence aspect of
performance. Therefore, it could happen that the set of solu-
tions is very close to the POS, but it does not cover the entire
the POS.

The second measure will be the inverse generational dis-
tance (IGD). This measure takes into account both conver-
gence and spread to all parts of the POS. The first-norm
equation for IGD is as follows

IGD =
∑N

i=1 di

N
(7)

where di is the Euclidean distance (in objective space) from
solution i in the POS to the nearest solution in P , and N is
the size of the POS. In order to get a good value for IGD (ide-
ally zero), P needs to cover all parts of the POS. However,
this method only focuses on the solution that is closest to the
solution in the POS indicating that a solution in P might not
take part in this calculation. As the example see Fig. 4 where
two algorithms found two sets of non-dominated solutions
(black). Both sets of solutions will give the same IGD values.
However, the first set, A, should not be considered as good
as the second one, B. Therefore, we should use both GD and
IGD to assess the performance of MOEAs.

123



278 Memetic Comp. (2011) 3:271–285

Fig. 4 A demonstration of the
case where IGD cannot
differentiate

The third measure is hypervolume indicator (HYP) [32],
which is also named as S Metric. Being different from GD
and IGD, HYP is a unary measure. Both GD and IGD use
the POS as a reference, which is not practical for real-
world applications. Thus, HYP attracts increasing attentions
recently. HYP is a measure of the hypervolume in objective
space that is dominated by a set of non-dominated points. In
the following experiments, before computing HYP, the val-
ues of all objectives are normalized to the range of [1, 2], and
2.0 is taken as the reference point, which is the same with
the method in PISA [3].

Since we design a spread direction in DMEA, we use M∗
2

[34] as the fourth measure to evaluate the distribution of the
obtained solutions, which is defined as follows,

M∗
2 = 1

n − 1

∑

p∈P

|{q ∈ P|‖p − q‖∗ > δ∗}| (8)

This measure gives a value within the interval [0, n] that
reflects the number of δ∗-niches in P . Obviously, the higher
the value is, the better the distribution for an appropriate
neighbourhood parameter. For examples, when it equals to
n, it means that for each objective vector there is no other
objective vector within δ∗-distance to it. The value of δ∗ is
set to 0.05 in the following experiments.

5.3 Experimental setup

The experiments for DMEA were carried out with the fol-
lowing parameters: the population size was set to 100, the
number of generations was fixed at 1,000, the mutation rate
was kept at the same small rate of 0.01, and the perturbation
rate was a relatively small 0.4.

We also selected four well-known existing algorithms for
comparison purposes. For these algorithms, the population
size was also set to 100 and the number of function evalua-
tions is set to 100,000, which is the same as that of DMEA.

We used the best settings we found for each algorithm as
follows:

– Non-dominated sorting Genetic Algorithm version 2
(NSGA-II)
[13]: the crossover rate, mutation rate and controlling
parameters (ηm and ηc) were set to 0.9, 0.01, 20, and
15, respectively.

– Non-dominated sorting DE (NSGA2DE)
[18]: the crossover rate was set to 0.7 while the step length
uses random values uniformly sampled from (0, 1).

– Strength Pareto Evolutionary Algorithm version 2
(SPEA2) [35]: the crossover rate, mutation rate and con-
trolling parameters (ηm and ηc) were set to 0.9, 0.01, 20,
and 15, respectively.

– Multiobjective particle swarm optimization (MOPSO)
[9]: the mutation rate is 0.5 and the number of divisions
for the adaptive grid is set to 30.

For both DMEA and the four existing algorithms, we
repeated the experiments 30 times with different random
seeds for testing each problem.

5.4 Experimental results and comparison with existing
algorithms

The full experimental results of DMEA are given in Table 2.
The average and standard deviation (StdDev) out of 30 runs
on each problem were reported. As can be seen, DMEA per-
formed consistently over 30 different runs and obtained small
standard deviations for all test problems.

The comparison on the average GD, IGD, HYP, and M∗
2

out of 30 runs between DMEA and four existing algorithms
were given in Tables 3, 4, 5, and 6, respectively. For each
problem, we ranked the algorithms based on their perfor-
mance, where a rank of 1 represents the best algorithm out
of the five tested and a rank of 5 represents the algorithm
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Table 2 The experimental results of DMEA

Problems GD IGD HYP M∗
2

Ave SD Ave SD Ave SD Ave SD

ZDT1 0.0003 0.0000 0.0051 0.0003 0.7747 0.0003 99.9643 0.0086

ZDT2 0.0003 0.0000 0.0042 0.0001 0.6471 0.0000 99.9616 0.0061

ZDT3 0.0004 0.0000 0.0108 0.0010 0.6725 0.0004 99.0498 0.0915

ZDT4 0.0005 0.0003 0.0049 0.0002 0.9896 0.0000 99.9805 0.0099

ZDT6 0.0003 0.0000 0.0035 0.0000 0.4042 0.0001 99.9596 0.0000

DTLZ1 0.0025 0.0012 0.0218 0.0008 0.9994 0.0000 99.9811 0.0236

DTLZ2 0.0052 0.0003 0.0527 0.0008 0.4724 0.0025 99.9582 0.0248

DTLZ3 0.2248 0.5730 0.0872 0.1731 0.9999 0.0000 99.9623 0.0374

DTLZ4 0.0056 0.0009 0.0525 0.0010 0.6340 0.0016 99.9859 0.0131

DTLZ5 0.0005 0.0003 0.0096 0.0008 0.0926 0.0005 99.1805 0.1006

DTLZ6 0.0000 0.0000 0.0095 0.0007 0.7598 0.0001 99.2269 0.1379

DTLZ7 0.0118 0.0030 0.1506 0.0184 0.5041 0.0118 99.5145 0.1223

Table 3 The rank, mean, and
Wilcoxon test on GD

Format of the data for DMEA:
rank (mean); format of the data
for the four other algorithms:
rank (mean) (Wilcoxon-test
result, where 1 indicates the
difference is significant
important while 0 not).
Bold value is statistically
significant

Problems NSGA-II NSGA2DE SPEA2 MOPSO DMEA

ZDT1 2 (0.0006)(1) 4 (0.0037)(1) 2 (0.0006)(1) 5 (0.0493)(1) 1 (0.0003)

ZDT2 2 (0.0004)(1) 5 (0.1239)(1) 2 (0.0004)(1) 4 (0.0477)(1) 1 (0.0003)

ZDT3 2 (0.0005)(1) 4 (0.0045)(1) 2 (0.0005)(1) 5 (0.0523)(1) 1 (0.0004)

ZDT4 2 (0.0009)(1) 4 (1.0993)(1) 3 (0.0020)(1) 5 (9.9910)(1) 1 (0.0005)

ZDT6 4 (0.0009)(1) 1 (0.0003)(0) 5 (0.0033)(1) 1 (0.0003)(0) 1 (0.0003)

DTLZ1 2 (0.0912)(1) 5 (0.8997)(1) 3 (0.1726)(1) 4 (0.7585)(1) 1 (0.0025)

DTLZ2 4 (0.0057)(1) 1 (0.0052)(0) 3 (0.0056)(1) 5 (0.0074)(1) 1 (0.0052)

DTLZ3 2 (0.2881)(0) 5 (13.5661)(1) 3 (2.0648)(1) 4 (7.0195)(1) 1 (0.2248)

DTLZ4 3 (0.0055)(0) 2 (0.0051)(1) 1 (0.0045)(1) 5 (0.0059)(0) 4 (0.0056)

DTLZ5 3 (0.0001)(1) 1 (0.0000)(1) 3 (0.0001)(1) 1 (0.0000)(1) 5 (0.0005)

DTLZ6 3 (0.0941)(1) 1 (0.0000)(1) 5 (0.2813)(1) 4 (0.1038)(1) 1 (0.0000)

DTLZ7 1 (0.0111)(0) 4 (0.0154)(1) 2 (0.0118)(1) 5 (0.0555)(1) 2 (0.0118)

Average rank 2.5 3.08 2.83 4.00 1.67

with the worst performance. We then calculated the average
rank obtained by each algorithm in each metric. To further
check whether the difference between the results of DMEA
and those of other algorithms is statistically important, we
also use the Wilcoxon-test to compare the difference between
DMEA and each of the four other algorithms, where 1 indi-
cates the difference is significant important while 0 not.

As can be seen, in terms of GD and HYP, DMEA has
the best performance with the lowest average rank, while in
terms of IGD and M∗

2 , the performance of DMEA is slightly
worse than SPEA2 and better than the three other algorithms.
Moreover, the Wilcoxon-test results show that most results
are significant different.

5.5 Behaviour of the algorithm over time

There is no doubt that when solving the problems, it is impor-
tant to obtain the best solutions. However, in the design stage,
it is also essential to understand the behavior of the algorithms
with respect to important criteria. One of these criteria is the
performance of DMEA during the evolutionary process. To
study this process, we recorded the values of GD and IGD
over all generations of one independent run. They were all
visualized in Figs. 5, 6, and 7.

It is clear that at the early stage, DMEA’s convergence is
not fast. However, at the later stage, DMEA managed to get
over multiple local POF and finally once it found a way to
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Table 4 The rank, mean, and
Wilcoxon test on IGD

Format of the data for DMEA:
rank (mean); format of the data
for the four other algorithms:
rank (mean) (Wilcoxon-test
result, where 1 indicates the
difference is significant
important while 0 not).
Bold value is statistically
significant

Problems NSGA-II NSGA2DE SPEA2 MOPSO DMEA

ZDT1 2 (0.0047)(1) 4 (0.0101)(1) 1 (0.0038)(1) 5 (0.0612)(0) 3 (0.0051)

ZDT2 3 (0.0048)(1) 5 (0.1340)(1) 1 (0.0038)(1) 4 (0.0783)(1) 2 (0.0042)

ZDT3 2 (0.0074)(1) 4 (0.0124)(1) 1 (0.0066)(1) 5 (0.0966)(1) 3 (0.0108)

ZDT4 2 (0.0048)(1) 4 (1.0112)(1) 1 (0.0046)(1) 5 (9.5138)(1) 3 (0.0049)

ZDT6 3 (0.0043)(1) 5 (0.0055)(1) 4 (0.0047)(1) 1 (0.0032)(1) 2 (0.0035)

DTLZ1 2 (0.0981)(1) 5 (0.7455)(1) 3 (0.1586)(0) 4 (0.6369)(1) 1 (0.0218)

DTLZ2 4 (0.0680)(1) 3 (0.0667)(1) 1 (0.0525)(0) 5 (0.0718)(1) 2 (0.0527)

DTLZ3 2 (0.3237)(1) 5 (13.5691)(1) 3 (2.0065)(1) 4 (6.9878)(1) 1 (0.0872)

DTLZ4 3 (0.0984)(1) 2 (0.0693)(1) 5 (0.2881)(1) 4 (0.1661)(1) 1 (0.0525)

DTLZ5 2 (0.0052)(1) 4 (0.0074)(1) 1 (0.0041)(1) 3 (0.0063)(1) 5 (0.0096)

DTLZ6 3 (0.0884)(1) 1 (0.0076)(1) 5 (0.2444)(1) 4 (0.1059)(1) 2 (0.0095)

DTLZ7 2 (0.0730)(1) 3 (0.0973)(1) 1 (0.0592)(1) 5 (0.2357)(0) 4 (0.1506)

Average rank 2.50 3.75 2.25 4.08 2.42

Table 5 The rank, mean, and
Wilcoxon test on HYP

Format of the data for DMEA:
rank (mean); format of the data for
the four other algorithms: rank
(mean) (Wilcoxon-test result,
where 1 indicates the difference is
significant important while 0 not).
Bold value is statistically
significant

Problems NSGA-II NSGA2DE SPEA2 MOPSO DMEA

ZDT1 2 (0.7752)(1) 4 (0.7699)(1) 1 (0.7759)(1) 5 (0.7244)(1) 3 (0.7747)

ZDT2 3 (0.6468)(1) 5 (0.5576)(1) 1 (0.6473)(1) 4 (0.6055)(0) 2 (0.6471)

ZDT3 2 (0.6747)(1) 4 (0.6693)(1) 1 (0.6748)(1) 5 (0.6184)(1) 3 (0.6725)

ZDT4 1 (0.9896)(0) 4 (0.9490)(1) 3 (0.9895)(0) 5 (0.6749)(1) 1 (0.9896)

ZDT6 3 (0.4015)(1) 4 (0.4008)(1) 5 (0.3990)(1) 1 (0.4047)(1) 2 (0.4042)

DTLZ1 2 (0.9965)(1) 5 (0.9487)(1) 3 (0.9958)(1) 4 (0.9589)(1) 1 (0.9994)

DTLZ2 5 (0.4491)(1) 4 (0.4527)(1) 1 (0.4784)(1) 2 (0.4755)(1) 3 (0.4724)

DTLZ3 1 (0.9999)(1) 5 (0.9847)(1) 3 (0.9997)(1) 4 (0.9864)(1) 1 (0.9999)

DTLZ4 4 (0.5925)(1) 3 (0.5938)(1) 5 (0.5717)(0) 2 (0.6090)(0) 1 (0.6340)

DTLZ5 2 (0.0957)(1) 4 (0.0942)(1) 1 (0.0961)(1) 3 (0.0955)(1) 5 (0.0926)

DTLZ6 3 (0.7306)(1) 1 (0.7599)(1) 5 (0.6777)(1) 4 (0.7165)(1) 2 (0.7598)

DTLZ7 2 (0.5392)(1) 3 (0.5332)(1) 1 (0.5495)(1) 5 (0.4964)(0) 4 (0.5041)

Average rank 2.50 3.83 2.50 3.67 2.33

Table 6 The rank, mean, and
Wilcoxon test on M∗

2

Format of the data for DMEA:
rank (mean); format of the data for
the four other algorithms: rank
(mean) (Wilcoxon-test result,
where 1 indicates the difference is
significant important while 0 not).
Bold value is statistically
significant

Problems NSGA-II NSGA2DE SPEA2 MOPSO DMEA

ZDT1 3 (99.8000)(1) 4 (99.0539)(1) 1 (100.0000)(1) 5 (98.1952)(1) 2 (99.9643)

ZDT2 3 (99.7987)(1) 4 (99.0539)(1) 1 (100.0000)(1) 5 (99.0312)(1) 2 (99.9616)

ZDT3 2 (99.8438)(1) 3 (99.2741)(1) 1 (100.0000)(1) 5 (97.0369)(1) 4 (99.0498)

ZDT4 3 (99.7731)(1) 4 (99.2741)(1) 1 (100.0000)(1) 5 (98.3986)(1) 2 (99.9805)

ZDT6 3 (99.6046)(1) 4 (99.1118)(1) 1 (100.0000)(1) 5 (97.7633)(1) 2 (99.9596)

DTLZ1 3 (99.8835)(1) 4 (99.7859)(1) 1 (100.0000)(1) 5 (99.5000)(0) 2 (99.9811)

DTLZ2 3 (99.9576)(0) 4 (99.6855)(1) 1 (100.0000)(1) 5 (98.4333)(0) 2 (99.9582)

DTLZ3 3 (99.9522)(1) 5 (99.6754)(1) 1 (100.0000)(1) 4 (99.8929)(0) 2 (99.9623)

DTLZ4 4 (96.6384)(1) 2 (99.6504)(1) 5 (93.3332)(1) 3 (97.0000)(1) 1 (99.9859)

DTLZ5 2 (99.7508)(1) 4 (99.1300)(1) 1 (100.0000)(1) 5 (98.4825)(0) 3 (99.1805)

DTLZ6 2 (99.8020)(1) 4 (99.1030)(1) 1 (100.0000)(1) 5 (98.4631)(0) 3 (99.2269)

DTLZ7 2 (99.9805)(1) 4 (99.3246)(1) 1 (100.0000)(1) 5 (97.8589)(0) 3 (99.5145)

Average rank 2.75 3.83 1.33 4.75 2.33
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Fig. 5 Visualization of GD (left) and IGD (right) over time for all studied approaches (ZDT1–ZDT5)
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Fig. 6 Visualization of GD (left) and IGD (right) over time for all studied approaches (ZDT6 and DTLZ1–DTLZ3)
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Fig. 7 Visualization of GD (left) and IGD (right) over time for all studied approaches (DTLZ4–DTLZ7)
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Table 7 The average values
(plus the standard error) of GD
obtained by DMEA using R1
and R2

Bold values are statistically
significant

Problems GD IGD

R1 R2 R1 R2

ZDT1 0.0003 ± 0.0000 0.0005 ± 0.0000 0.0051 ± 0.0003 0.0040 ± 0.0000

ZDT2 0.0003 ± 0.0000 0.0004 ± 0.0000 0.0042 ± 0.0001 0.0041 ± 0.0000

ZDT3 0.0004 ± 0.0000 0.0005 ± 0.0000 0.0108 ± 0.0010 0.0567 ± 0.0002

ZDT4 0.0005 ± 0.0003 0.0008 ± 0.0009 0.0049 ± 0.0002 0.0041 ± 0.0006

ZDT6 0.0003 ± 0.0000 0.0002 ± 0.0000 0.0035 ± 0.0000 0.0039 ± 0.0000

DTLZ1 0.0025 ± 0.0012 0.0015 ± 0.0008 0.0218 ± 0.0008 0.0320 ± 0.0013

DTLZ2 0.0052 ± 0.0003 0.0054 ± 0.0003 0.0527 ± 0.0008 0.0725 ± 0.0017

DTLZ3 0.2248 ± 0.5730 0.0357 ± 0.1393 0.0872 ± 0.9971 0.1002 ± 0.1367

DTLZ4 0.0056 ± 0.0009 0.0054 ± 0.0003 0.0525 ± 0.0010 0.0721 ± 0.0020

DTLZ5 0.0005 ± 0.0003 0.0174 ± 0.0043 0.0096 ± 0.0008 0.0236 ± 0.0030

DTLZ6 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0095 ± 0.0007 0.0139 ± 0.0017

DTLZ7 0.0118 ± 0.0030 0.0106 ± 0.0020 0.1506 ± 0.0184 0.4562 ± 0.0953

the global POF, it quickly passed all other approaches (here,
in the case of ZDT4, DTLZ1, and DTLZ3).

5.6 Division of the objective space

In the section on methodology, in order to obtain well-spaced
set of non-dominated solutions, we proposed a method to
explicitly divide the (bounded) objective space evenly by
using a list of non-parallel rays starting from a single position
(the ideal point). Each ray was used to track a solution. How-
ever, it is possible to use a system of parallel rays. To dem-
onstrate this, we generate a number of rays placed evenly
within the objective space and in parallel to the straight line
between the origin and its opposite corner point of the unit
hyper-cube. For the sake of simplicity, we call the former
method R1, while the second (parallel rays) R2. We report the
values of GD and IGD for both R1 and R2 in Table 7. These
results show that both R1 and R2 were quite competitive.

6 Conclusions

In this paper, we introduced a novel algorithm for employing
directions of improvement during the optimization process
using a MOEA which we call direction-based multi-objective
evolutionary algorithm (DMEA). The unique properties of
DMEA lie with the ways to use the directional, as well as
niching information. With DMEA, a population of solutions
is evolved over time under the guidance of directions of
improvement. At each generation, two types of directions are
generated: (1) the convergence direction between a non-dom-
inated solution (stored in an archive) and a dominated solu-
tion from the current population, and (2) the spread direction

between two non-dominated solutions in the archive. These
directions are then used to perturb the current population
to get a temporary population of offspring. The combina-
tion of this offspring population and the current archive (the
combined population) is used to generate the next archive.
In addition, the rule for forming the population for the next
generation is as follows: the first 50% of the population is
filled by the non-dominated solutions and the last 50% is
filled by the remaining solutions of the combined population
(both dominated and non-dominated solutions). Finally, the
selection of non-dominated solutions to fill the archive and
the next population is assisted by a new technique of explicit
niching in the objective space by using a system of straight
lines or rays starting from the current estimation of the ideal
point and dividing the space evenly. Each ray is in charge of
locating a non-dominated solution.

Experiments on 12 well-known benchmark problems have
been carried out to investigate the performance and behav-
ior of the newly proposed algorithm. We also compared
its performance with four other well-known algorithms.
DMEA showed to be competitive in comparison with these
algorithms with respect to both solution convergence and
spread. Several analyses on the behaviors of components
of the algorithm were thoroughly investigated. Moreover,
DMEA pioneers the explicit use of direction information as a
shallow local search mechanism within EMOAs. For future
work, the use of direction information will be analyzed to
characterize its behavior and evolutionary dynamics.

Acknowledgments The authors gratefully acknowledge the financial
support from the Australian Research Council via the ARC Discovery
Grant No. DP0667123. The first author also gratefully acknowledges
financial support from Vietnam’s National Foundation for Science and
Technology Development (NAFOSTED) Grant No. 107.04-2011.09

123



Memetic Comp. (2011) 3:271–285 285

References

1. Abbass HA (2006) An economical cognitive approach for
bi-objective optimization using bliss points, visualization, and
interaction. Soft Comput 10(8):687–698

2. Abbass HA, Sarker R, Newton C (2001) PDE: a Pareto frontier dif-
ferential evolution approach for multiobjective optimization prob-
lems. In: Proceedings of the congress on evolutionary computation,
IEEE Service Center, Seoul, Korea, vol 2, pp 971–978

3. Bleuler S, Laumanns M, Thiele L, Zitzler E (2003) Pisa: a plat-
form and programming language independent interface for search
algorithms. In: Evolutionary multi-criterion optimization. Lecture
notes in computer science, vol 2632. Springer, Berlin, pp 494–508

4. Bui LT, Alam S (2008) Multi-objective optimization in computa-
tional intelligence: theory and practice. Information Science Ref-
erence Series: IGI Global, Hershey, USA

5. Bui LT, Abbass HA, Essam D (2009) Local models—an approach
to distributed multi-objective optimization. Comput Optim Appl
42(1):105–139

6. Caponio A, Neri F (2009) Integrating cross-dominance adaptation
in multi-objective memetic algorithms. In: Goh C-K, Ong Y-S, Tan
KC (eds) Multi-objective memetic algorithms. Studies in compu-
tational intelligence, vol 171. Springer, Berlin, pp 325–351

7. Coello CAC (2006) Evolutionary multi-objective optimization: a
historical view of the field. IEEE Comput Intell Mag 1(1):28–36

8. Coello CAC, Veldhuizen DAV, Lamont GB (2002) Evolution-
ary algorithms for solving multi-objective problems. Kluwer,
New York

9. Coello CAC, Pulido GT, Lechuga MS (2004) Handling multiple
objectives with particle swarm optimization. IEEE Trans Evol
Comput 8(3):256–279

10. Coello CAC, Lamont GB, Veldhuizen DAV (2007) Evolution-
ary algorithms for solving multi-objective problems. Springer,
New York

11. Deb K (2001) Multiobjective optimization using evolutionary
algorithms. Wiley, New York

12. Deb K, Thiele L, Laumanns M, Zitzler E (2001) Scalable test prob-
lems for evolutionary multi-objective optimization. TIK-Report no.
112. Tech. rep., Computer Engineering and Networks Laboratory
(TIK), Swiss Federal Institute of Technology (ETH), Zurich

13. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elit-
ist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol
Comput 6(2):182–197

14. DeJong KA (1975) An analysis of the behavior of a class of genetic
adaptive systems. PhD thesis, University of Michigan, Ann Arbor

15. Díaz-Madron̈ero M, Peidro D, Mula J, Ferriols FJ (2009) Fuzzy
multiobjective mathematical programming approaches for opera-
tional transport planning in an automobile supply chain. J Quant
Methods Econ Bus Adm 9:44–68

16. Goh CK, Teoh EJ, Tan KC (2008) Hybrid multiobjective evolu-
tionary design for artificial neural networks. IEEE Trans Neural
Netw 19(9):1531–1548

17. Knowles J, Corne D (2000) Approximating the nondominated
front using the Pareto archived evolution strategy. Evol Comput
8(2):149–172

18. Kwan CM, Chang CS (2008) Timetable synchronization of mass
rapid transit system using multiobjective evolutionary approach.
IEEE Trans Syst Man Cybern Part C 38(5):636–648

19. Lara A, Coello CAC, Schuetze O (2010) Using gradient informa-
tion for multi-objective problems in the evolutionary context. In:
GECCO’10, pp 2011–2014

20. Ong YS, Tan KC, Goh C-K (eds) (2009) Multi-objective me-
metic algorithms. Studies in computational intelligence, vol 171.
Springer, Berlin

21. Osman IH, Kelly JP (eds) (1996) Meta-heuristics: theory and
applications. Kluwer, New York

22. Price K, Storn R, Lampinen J (2005) Differential evolution—a
practical approach to global optimization. Springer, Berlin

23. Rudolph G, Agapie A (2000) Convergence properties of some
multi-objective evolutionary algorithms. In: Proceedings of the
congress on evolutionary computation. IEEE Press, New York,
pp 1010–1016

24. Schaffer JD (1985) Multiple objective optimization with vector
evaluated genetic algorithms. In: Genetic algorithms and their
applications: proceedings of the first international conference on
genettic algorithms, Hillsdale, New Jersey, pp 93–100

25. Shir OM, Bäck T (2009) Niching with derandomized evolution
strategies in artificial and real-world landscapes. Nat Comput
8(1):171–196

26. Shir OM, Preuss M, Naujoks B, Emmerich M (2009) Enhancing
decision space diversity in evolutionary multiobjective algorithms.
In: Matthias E et al (eds) Proceedings of the 5th international
conference on evolutionary multi-criterion optimization, France,
pp 95–109

27. Snyman JA (2005) Practical mathematical optimization: an intro-
duction to basic optimization theory and classical and new gradi-
ent-based algorithms. Springer, Berlin

28. Storn R, Price K (1995) Differential evolution—a simple and effi-
cient adaptive scheme for global optimization over continuous
spaces. Technical report tr-95-012. Tech. rep., ICSI

29. Tan KC, Khor EF, Lee TH (2005) Multiobjective evolutionary
algorithms and applications. Springer, Berlin

30. Tan KC, Chiam SC, Mamun AA, Goh CK (2009) Balancing explo-
ration and exploitation with adaptive variation for evolutionary
multi-objective optimization. Eur J Oper Res 197(2):701–713

31. Veldhuizen DAV (1999) Multiobjective evolutionary algorithms:
Classifications, analyses, and new innovation. PhD thesis, Depart-
ment of Electrical Engineering and Computer Engineering, Air
Force Institute of Technology, Ohio, USA

32. Zitzler E (1999) Evolutionary algorithms for multiobjective opti-
mization: methods and applications. PhD thesis, Ph.D. dissertation,
Swiss Federal Institute of Technology (ETH), Zurich, Switzerland

33. Zitzler E, Deb K, Thiele L (2000) Comparison of multiobjective
evolutionary algorithms: empirical results. Evol Comput 8(2):173–
195

34. Zitzler E, Thiele L, Deb K (2000) Comparison of multiobjective
evolutionary algorithms: empirical results. Evol Comput 8(1):173–
195

35. Zitzler E, Laumanns M, Thiele L (2001) SPEA2: improving the
strength Pareto evolutionary algorithm for multiobjective optimi-
zation. In: Giannakoglou KC, Tsahalis DT, Periaux J, Papailiou
KD, Fogarty T (eds) Evolutionary methods for design optimization
and control with applications to industrial problems. International
Center for Numerical Methods in Engineering (Cmine), pp 95–100

123


	DMEA: a direction-based multiobjective evolutionary algorithm
	Abstract
	1 Introduction
	2 Common concepts
	3 Related work
	4 Direction-based multi-objective evolutionary algorithm
	4.1 Overview
	4.2 Directional information
	4.3 Niching information
	4.4 General structure of algorithm
	4.5 Computational complexity

	5 Experiments
	5.1 Testing problems
	5.2 Performance measurement methods
	5.3 Experimental setup
	5.4 Experimental results and comparison with existing algorithms
	5.5 Behaviour of the algorithm over time
	5.6 Division of the objective space

	6 Conclusions
	Acknowledgments
	References


