
A Parallel Cooperative Coevolution Evolutionary Algorithm

Chi Cuong VU
Department of Networking

Vinh University
Vinh, Nghe An, Vietnam
cuongvcc@gmail.com

Huu Hung NGUYEN
Department of Software Engineering

Le Quy Don Technical University
100 Hoang Quoc Viet St, Hanoi, Vietnam

hunghvktqs2003@gmail.com

Lam Thu BUI
Department of Software Engineering

Le Quy Don Technical University
100 Hoang Quoc Viet St, Hanoi, Vietnam

lam.bui07@gmail.com

Abstract

Evolutionary algorithms (EAs) have been widely applied
to solve many numerical and combinatorial optimization
problems. A special paradigm of EAs has been promoted
allowing several populations to co-evolve together. During
evolution process these populations can be either cooper-
ative or competitive. The cooperative co-evolution evolu-
tionary algorithm (CCEA) has shown a great deal in solv-
ing large and complex problems. However, there are lim-
ited studies on parallelizing cooperative co-evolution evo-
lutionary algorithms. In this paper, we propose an approach
combining CCEA with a synchronous parallel model. The
design especially facilitates solving large scale problems.
We conducted a preliminary investigation with several ex-
periments on benchmark large scale problems. The exper-
imental results indicated a promising performance of the
proposed algorithm on the selected problems.

1. Introduction

The evolutionary algorithms (i.e. the genetic algorithm,

originally proposed by Holland [4]) have been widely ap-

plied to a variety of problem domains including multi-

modal function optimization, machine learning and evolu-

tion of complex structures. However, there still exist several

situations where EAs do not show advantages; for example,

when solving large scale problems EAs suffer the effect of

”the curse of dimensionality”. CCEA has been proposed by

[7] for tackling this issue where problems are decomposed

into several parts and each is solved by an individual EA.

When the complexity of problems increases (ie.e the di-

mensionality), it causes longer processing time. For this,

parallel algorithms may be useful in reducing the computa-

tional overheads. With problems having large dimensional-

ity, decomposition is suitable scheme for a parallel process

in which each CPU executes a designated part of work. In

fact, it has been demonstrated as a good methodology with

an island model [14]. In the light of this research direction,

we propose a master/slave model for parallelizing CCEA

where master is in charge of decomposing problems and

maintaining the best solution. To our best of knowledge,

it is the first attempt to use master/slave architecture for

CCEA. The experimental results obtained on testing three

benchmark problems [11] showed a promising performance

of this master/slave model.

The remainder of the paper is organized as follows.

In section 2, we provide a summary of cooperative co-

evolution and different types of parallel models. In sec-

tion 3, a description of the proposed master-slave model for

CCEA is given. Section 4 is dedicated for experimental re-

sults and analysis when we applied our parallel cooperative

co-evolution on three benchmark functions.

2. Cooperative Co-evolution and Parallel Com-
puting

Conventional cooperative co-evolution was proposed by

Potter [7, 6, 16] as a framework to tackle complex problems

with high dimensionality. It simulates the evolution process

of an ecosystem consisting of two or more species. In na-

ture, the species are genetically isolated - meaning that indi-

viduals only mate with other members of their species. Mat-

2011 Third International Conference on Knowledge and Systems Engineering

978-0-7695-4567-7/11 $26.00 © 2011 IEEE

DOI 10.1109/KSE.2011.16

48

ing restrictions are enforced simply by evolving the species

in separate populations. The species interacts with one an-

other within a shared domain model and has a cooperative

relationship. In the case of simulating optimization pro-

cesses, a number of populations (each represents a species)

are generated and evolve concurrently. Each population

evolves on a part of the problem (a subcomponent). Dur-

ing evolution time, they can share information among each

others. A complete solution for the problem consists of all

subcomponents, which are representatives from all species.

That is the way they co-operate during evolution. The repre-

sentative of a population can be either the current best indi-

vidual of the population or a randomly-selected one. Read-

ers ar referred to [15] for a detailed description. Cooperative

co-evolution experiences three main steps:

1. Decomposing the problem: The vector of problem pa-

rameters is decomposed into several subcomponents.

They are handled by certain evolutionary algorithms.

2. Optimizing subcomponents: Use a certain EA for

evolving each subcomponent separately until the stop-

ping criteria are satisfied. This means a population will

be used for optimizing a subcomponent.

3. Co-adapting subcomponents: During the evolution

process, populations exchange information among

each other and co-adapt towards the optimal solution.

The first step (decomposition) is quite essential. This

”divide and conquer” strategy not only affects algorithm

performance, but also the convergence speed and quality of

the final solution. The problem is divided into into several

subcomponents. For each subcomponent, a population is

generated and evolves. This means they are evolving on

different problems. The complete solution is built from all

subcomponents.

Assuming that there are s populations (called Pi), the

cooperative co-evolution using to solve high-dimensional

problems is summarized as follows:

cycle = 0
For i:=0 to s
1) Initialize() //Initialize randomly

2) Evaluate()
While (termination criteria = false) do
1) cycle = cycle +1
2) For i:=0 to s
a. Pi(cycle) = Select(Pi(cycle − 1)) //Select base on

fitness

b. EAApply()
c. Evaluate()
There can be any kind of evolutionary algorithms for the

procedure EAApply(). In this paper we use the Differen-

tial Evolution (DE), a special version of evolutionary al-

gorithms dealing with real-value problems, and proposed

a.

b.

c.

Figure 1. Models of parallel EAs: a-Master-
Slave, b-Coarse grained, c-Fine grained

by Storn and Price [5, 9, 10, 8]. The classical DE will

be shown as follow (assuming that a population consists

of PS individuals and each individual is described by an

n-dimensional vector x). For each xi, we generated an off-

spring x
′
i for the next generation.

1. Mutation: for each value x
′
i

x
′
i = xj + F (xk − xl) where i,j,l,k are integers and mu-

tually different. j,l,k are randomly generated. The constant

F is used to control the differential variation

2. Crossover: for each value x
′′
i

Set x
′′
i = x

′
i if U [0, 1] ≤ CR or i = irand and if other-

wise

Where rand is a random number, U [0, 1] is a random

number between 0 and 1, and CR is crossover rate.

3. Selection
x

′
= x

′′
if f(x

′′
) ≤ f(x

′
) else x

′
= x .

The idea of parallelization is to divide computation into

smaller components, and then compute them at different

process units. According to Flynn’s taxonomy [3], there

are four parallel computer architectures, in which we con-

sider a special one called multiple instructions, multiple

data (MIMD). In MIMD, all processors can work at the

same time. Processors may execute multiple instructions

on different pieces of data. In this paper, we use MIMD to

solve benchmark problems.

For parallel EA (PEA)[1], implementation can be classi-

fied into the following models:

49

The master slave model has a single population. Mas-

ter node is designated to execute EAs (mutation, crossover

and selection) while slaves calculate fitness of individuals

(Fig 1a). This model is quite straightforward but requires a

heavy traffic load since individuals are repeatedly sent over

the interconnection channel. The coarse grained model is

more sophisticated. They contain of a number of popula-

tions that can exchange individuals during evolution process

and following a predefined interconnection pattern (see Fig

1b). The third type of PEA is a fine-grained model. The

model has many nodes that form a two-dimensional rect-

angular grid (2D mesh) see Fig 1c, each individual is em-

bedded to a grid point. Each point in 2D mesh represents a

processor that evolves the embed individual. All members

of population perform the evaluation of fitness simultane-

ously.

Several works related to parallel DE have been proposed

in [13, 2]. They applied the island model to parallel DE.

Note that they focused on parallel DE, but not co-evolution.

To our best of knowledge, there have been two models

being proposed in terms of parallelizing cooperative co-

evolution. In [12], the authors introduced a hierarchical par-

allel paradigm for cooperative co-evolution in which each

logic node is a group of computing nodes in stead of a single

node. Its is designed specifically for multi-objective prob-

lems. In [14], an island model was used for cooperative

co-evolution. Populations exchange information in a cyclic

fashion.

3. Parallelizing Cooperative Co-evolution

We attempt to parallelize the cooperative co-evolution al-

gorithm without changing the co-evolutionary feature. We

propose to design a master/slave model for it. However, this

model is quite different from the conventional master/slave

model introduced above in the sense of the evolution role. It

allows evolution of populations resided on slaves rather than

just evaluating the fitness, while the master just acts a con-

troller. In more details, the master processor is in charge of

generating a number of populations, in which each popula-

tion will evolve on a part of the problem or a subcomponent

(hence having a lower dimension: assuming a balanced de-

composition, if we have a problem with n dimensions and

s slaves, then the dimension for each subcomponents will

be n/s). Also it maintains a best individual overtime and we

call it as the global best. After that, it sends to each slave:

• A population

• The global best individual.

In each slave, the population is evolved by using the DE al-

gorithm for a finite number of times (we call it an evolution

cycle). After an evolution cycle, each slave selects a local

Figure 2. Selection the current best method
at master

best individual as its representative and then sends back to

the master for updating the global best. The procedure of

updating is as follows:

These representatives will replace their corresponding

component in the current best solution respectively. If as-

suming that we have s slaves, we will have s new complete

solutions. Also all representatives will be combined to form

a solution. Hence we will have s+1 solutions and these so-

lutions will be compared with the current best global best

solution to find the new global best one. The more detailed

description can be drawn from Figure 2. The master always

performs checking the termination condition; if this crite-

rion is met, the search process will finish. If not, master

sends the best individual and demands all slaves to continue

evolutional process.

Algorithm at master can be described as follows:

For i:=0 to s
1) Initialize() //Initialize randomly

2) SendToSlave()
cycle = 0
GetBest(bestIndividual)
While termination criteria = false do
1) cycle = cycle +1
2) For j:=0 to s
a. SendToSlave(bestIndividual)
b. (Waiting for slaves)
c. ReceiveFromSlave(bestComponents)
3) Update(bestIndividual)
Algorithm at slaves i can be described as follows:

50

Figure 3. Parallel Cooperative Co-evolution
Model

ReceiveFromMaster()
While terminatioin criteria = false
1) ReceiveFromMaster(bestIndividual)
2) GAApply() //with a predefined fitness evaluations

3) Evaluate()
4) SendToMaster(bestComponent)
(Waiting for master)
As depicted in Figure 3, populations are delivered to

slaves through an interconnection between processors. The

populations are only sent from the master at the first time.

Evolution of each species is executed separately and con-

currently. The cooperation among species can be seen as

contributing the best individuals for forming the complete

solution of the problem, which is maintained on the master.

So, in terms of communication during the evolution pro-

cess, only s best individuals are sent from the slaves to the

master. Inversely, only one global best solution is sent from

the master to slaves.

Note that, there is a tradeoff in controlling the number of

slaves. Increasing the number of slaves will give better per-

formance since the dimension of each sub-problem solving

by a population will be reduced. However, if there are many

slaves, it might cause a traffic problem on the interconnec-

tion channel such as the low bandwidth or bottleneck effect

at the master processor. So we need to negotiate the number

of slaves to achieve the balance. Master must wait for the

best individuals of populations from slaves. The time that

different slave using to complete an evolutional cycle is dif-

ferent. Therefore, master has to execute the parallel process

No. Slaves Time Best

1 9.416 8027.137

F1 2 4.518 149.299

3 1.960 0.635

4 2.661 0.141

5 1.665 0.00283

1 48.507 79476328.100

F2 2 28.462 2677892.884

3 16.200 40788.236

4 26.447 18195.565

5 20.742 5804.950

1 19.85 20.48

F3 2 9.159 12.65

3 5.31 11.93

4 7.11 5.70

5 5.22 4.27

Table 2. Obtained results: each line shows
the time to complete a run and the best in-
dividual found

synchronously.

4. Empirical Results and Discussion

To demonstrate the performance of our proposed model

of parallelizing, we built an application using MPICH2 li-

brary which can support well for parallel computing and

using C language. We have chosen three benchmark func-

tions [11] and called them as F1, F2, F3 as test suits. The

function detail will be showed in the following table:

We employed the classical DE (with CR=0.9 and F=0.3)

for evolving populations. For all test suits, the population

size was 100. We tested problem with dimensionality of

500 variables. We conducted experiments with different

number of sub-populations: 1 (no decomposition), 2, 3, 4

and 5. Equivalently, the dimension in each case was re-

duced from 500 to 250, 166, 125, and 100. We used 200000

fitness evaluations. In addition, we also evaluated the op-

timal when the cycles increasing and population was sub-

component smaller. We used a clustering network (LAN

10/100Base-TX) with three PCs and each PC has two pro-

cessors: Each pair of processors has the speed of 2.4, 2.0,

and 2.2 Ghz respectively. So in total we had six processors

(processing nodes). We always designated one processor

for the master. Different computers have different process

speeds. Each problem was tested for 20 times. All perfor-

mance times are evaluated in second unit.

After conducting the experiments, we summarized the

results in Table 2. Note that we used the case of one popu-

lation (no decomposition) to compare with the parallelized

ones. First of all, we can observe from the table that when

51

Prob. Description Min Max Opt. Solution

F1 F1(x) =
∑D

i=1 xi 100 -100 (0,0,...0)

F2 F2(x) =
∑D−1

i=1 (100(x2
i − xi+1)2 + (xi − 1)) 100 -100 (0,0,...0)

F3 F3(x) = −20 exp(−0.2
√

1
D

∑D
i=1 xi − exp(1

D

∑D
i=1 cos(2πxi))) + 20 100 -100 (0,0,...0)

Table 1. Description of testing problems

we increase the number of populations (or slaves), the to-

tal computing time was reduced accordingly. This is clearly

understandable since the computation load was divided on

more slaves.

There is an exception in the case of 3 slaves in which the

computation time slightly shorter than that of the 4-slave

case. This might be the result of overheads that came from

threading management system of MPI. In our setup, 3-slave

case used 2 PCs while 4-slave one used 3 PCs (since we

need one more processor for the master). Therefore, it re-

quired more controlling work from the operating systems

for 3 PCs than 2 PCs. Further, the time spending on a fit-

ness evaluation is really short (about 0.01 millisecond), so

in 4-slave case, it might consumed more time for manage-

ment of the system took a significant portion of the total

time.

Regarding the convergence results, the table obviously

shows the advantage of using decomposition for solving the

large scale problems. Our parallel model guaranteed this

advantage. For F1, this is the easiest problem with a single

and global optimal point. However, with a large dimension,

DE’s performance deteriorated badly with the best solution

of 8027.137. With our parallel model, when the number of

slaves increased, the quality of the best found solution also

increased (0.00283). The similar finding is also applied for

F2 and F3.

5. Conclusion

In this paper, we proposed a model of parallel co-

operative co-evolutionary algorithm and applied to solve

large scale optimization problems. In our model, a master

will be in charge of decomposing the problem and main-

taining the global best solution. Each slave will evolve on

a sub-problem and they will exchange the best individuals

to the master after each evolutionary cycle. We conducted

experiments on three benchmark problems to validate the

proposed model. The obtained results showed a clear ad-

vantage of using our parallel cooperative co-evolution sys-

tem for solving large problems.

Acknowledgments

We acknowledge the financial support from Vietnam’s

National Foundation for Science and Technology (Devel-

opment Grant 102.01-2010.12).

References

[1] E. Alba and M. Tomassini. Parallelism and evolutionary al-

gorithms. IEEE Trans. Evolutionary Computation.

[2] J. Apolloni et al. Island based distributed differential evo-

lution: An experimental study on hybrid testbeds. In

Eighth International Conference on Hybrid Intelligent Sys-
tems, pages 696–701. IEEE, 2008.

[3] M. J. Flynn. Some computer organizations and their ef-

fectiveness. IEEE Trans. Comput., 21:948–960, September

1972.

[4] J. Holland. Adaptation in Natural and Artificial Systems .

MIT Press, 1975.

[5] F. Neri and V. Tirronen. Recent advances in differential evo-

lution: a survey and experimental analysis. Artificial Intelli-
gence Review, 33(1):61–106, 2010.

[6] M. Potter. The Design and Analysis of a Computational
Model of Cooperative Coevolution. PhD thesis, George Ma-

son University, 1997.

[7] M. Potter and K. De Jong. A cooperative coevolutionary

approach to function optimization. Parallel Problem Solving
from NaturePPSN III, pages 249–257, 1994.

[8] K. Price, R. Storn, and J. Lampinen. Differential evolution:
a practical approach to global optimization. Springer Ver-

lag, 2005.

[9] R. Storn. System design by constraint adaptation and differ-

ential evolution. Evolutionary Computation, IEEE Transac-
tions on, 3(1):22–34, 1999.

[10] R. Storn and K. Price. Differential evolution–a simple and

efficient heuristic for global optimization over continuous

spaces. Journal of global optimization, 11(4):341–359,

1997.

[11] P. Suganthan, N. Hansen, J. Liang, K. Deb, Y. Chen,

A. Auger, and S. Tiwari. Problem definitions and evaluation

criteria for the cec 2005 special session on real-parameter

optimization. Technical report, Nanyang Technological Uni-

versity, Singapore, 2005.

[12] K. Tan, Y. Yang, and C. Goh. A distributed coopera-

tive coevolutionary algorithm for multiobjective optimiza-

tion. Evolutionary Computation, IEEE Transactions on,

10(5):527–549, 2006.

52

[13] D. Tasoulis, N. Pavlidis, V. Plagianakos, and M. Vrahatis.

Parallel differential evolution. In Evolutionary Computa-
tion, 2004. CEC2004. Congress on, volume 2, pages 2023–

2029. IEEE, 2004.
[14] M. Weber, F. Neri, and V. Tirronen. Shuffle or update paral-

lel differential evolution for large-scale optimization. Soft
Computing-A Fusion of Foundations, Methodologies and
Applications, pages 1–19.

[15] R. Wiegand. An analysis of cooperative coevolutionary al-
gorithms. PhD thesis, Department of Computer Science,

George Mason University, 2003.
[16] Z. Yang, K. Tang, and X. Yao. Large scale evolutionary opti-

mization using cooperative coevolution. Inf. Sci., 178:2985–

2999, 2008.

53

