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Abstract— An efficient design of a Multi-Objective Learning
Classifier System for multi-flight navigation is presented. A
classifier is represented by a set of rules, which are used
to simultaneously navigate all the flights in the airspace.
Navigation of a flight is based on the relation of the flight
with factors of the air traffic environment such as wind, storm
as well as other flights. This system continually learns and
refines the rules of classifiers by a multi-objective optimization
algorithm - NSGAII - to discover the trade-off set of classifiers
which navigate flights without any conflict, minimal distance of
flying, minimal discomfort defined by storm level and the time
duration of flights passing through storm areas, and minimizing
total delay time of flights.

We propose to detect conflicts between flights by grouping
trajectory segments in 3-D (abscissa–x, ordinate–y, and time–
t) boxes. The conflict detection is only implemented in a box,
thus the number of conflict detection times approximates to
the number of conflicts. Further, conflicts between flights are
resolved using a hill climber by propagating delays in the take-
off time of conflicting flights. The advantage of the proposed
system is that the classifier outputs its rules in a symbolic
representation, making the overall process transparent to the
user and reusable. Moreover, the system successfully discovered
rules in all runs to optimize its performance.

I. INTRODUCTION

Aviation has grown dramatically over the last decades [1].
Worldwide air traffic is expected to continue to grow at
rates of 3-5% per year [2]. It should be noted that there
are some areas in the world with a very high air traffic
density. For example, on any given day, more than 87,000
flights are in the skies of the United States, in which about
one-third are commercial carriers, like American, United or
Southwest. On an average day, air traffic controllers handle
28,537 commercial flights (major and regional airlines),
27,178 general aviation flights (private planes), 24,548 air
taxi flights (planes for hire), 5,260 military flights and 2,148
air cargo flights (Federal Express, UPS, etc.). At any given
moment, roughly 5,000 planes are in the sky above the
United States. In one year, controllers handle an average of
64 million takeoffs and landings. There are 14,305 air traffic
controllers that work for the Federal Aviation Administration
in 2006 [3]. In these high density areas, decision support
systems in general and user preferred trajectory in particular
become more important and necessary in air traffic control.

There are many methods of formulating the trajectory
generation problem in the literature. Several methods work
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with a single aircraft only (e.g. in [4]), while others focus
on multiple aircraft. However they usually deal with a small
number of aircraft. For example, in [5], only experiments
with one, three and four aircraft were reported, while [6]
reported only the case with 3 aircraft. Besides that, the
problem is usually formulated without taking weather condi-
tions into account, such as wind and storms which affect the
movement of aircraft, such as in [4], [7], [8], or in discrete
environment [6].

Further, most methods consider pre-determined potential
flight segments for finding an optimal or near-optimal path.
These include a Hybrid A* algorithm [9], [10], Voroni
polygons [11], [12], probabilistic maps and other graphical
methods [13], [14]. Some researchers are experimenting with
various analytical techniques to solve these path-planning
problems, including singular perturbation [15], genetic al-
gorithms [16], [17] and neighboring optimal control [18] as
well as other analytical techniques. Genetic-based machine
learning techniques are also used for multi-agent path plan-
ning in discrete environments, where the movement of one
agent is from one cell to another cell in an environment of
grid cells [6].

In this paper we extend Pittsburgh Learning Classifier
Systems (LCSs), taking into account multi-objectivity for
multi-flight navigation in continuous environments. We use
NSGAII to evolve the population of classifiers. The algorithm
will search for classifiers which can navigate flights with
minimum distance, minimum discomfort, minimum delay-
ing time and without any conflict. Weather conditions are
considered while optimizing flight trajectories.

The paper is organized as follows. In Section II, we
present the background of Multi-Objective Learning Clas-
sifier Systems. In Section III, the problem of trajectory
optimization is formulated. In Section IV, the methodology
is presented with description about the whole multi-objective
learning classifier system and the details of algorithms to
initialize flights, to initialize a classifier population, and to
evaluate a classifier based on simulated trajectories using the
classifier. The details of two genetic operators (cross over and
mutation) are also presented. Section V is about experimental
design. Results and analysis are presented in Section VI.
Conclusions are drawn in Section VII.

II. LEARNING CLASSIFIER SYSTEMS

The origin of LCSs can be seen in Holland’s work
on complex adaptive systems and his early proposal on
schemata [19]. This established the basis for the first practical
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implementation of a classifier system which was called CS-
1 (Cognitive System Level One) [20]. The system inspired
a stream of research named as the Michigan approach.
Coexisting with the early developments of Michigan LCSs, a
parallel line of LCSs was also under investigation named as
the Pittsburgh approach. It emerged with the LS-1 classifier
system [21], which inspired a main classifier scheme called
GABL [22].

In Pittsburgh LCSs each individual codifies a complete
rule set, which eliminates the need for cooperation among
individuals required in the Michigan approach. A such, the
operation of the GA is simpler, the GA does not need to con-
verge to a single solution. However, since Pittsburgh LCSs
searches in the space of possible rule sets, the search space is
larger and usually takes more computational resources than
the Michigan approach. In addition, few controls can be
exercised on the rule level. Two additional operators were
designed in GABIL to overcome these issues. GIL [23] was
another proposal that included a large set of operators acting
at different levels, whose purpose was also to gain control
over the type of rules evolved, but at the expense of an
increased parameterisation.

While an increase in flexibility resulted from the use of
variable sized individuals, parsimony pressures [24] and the
use of multiobjective fitness [25], [26] were necessary to
control the excessive growth of individuals.

III. PROBLEM FORMULATION

In this paper, aircraft are considered to fly at constant
altitude, resulting in planar motion. This is a common
restriction in air traffic models, as air space is commonly
structured in layers [27]. The problem is formulated as below

Given the following:
• a 2-D airspace, which is defined by a 2-D cell grid,

in which each cell has wind and storm information,
where wind information includes wind direction and
wind speed and storm is represented by the storm level.

• the number of flights, each flight has origin, destination,
normal speed, and a given user-preferred trajectory
option–Utility.

Find: 3-D (abscissa–x, ordinate–y, and time–t) trajectories
for flights, so that flights can

• avoid conflict with each other
• minimize delay time
• minimize distance travelled
• minimize discomfort based on their utility.
Details about the discomfort and the utility of a flight and

objectives are described as follows.
The discomfort of a flight represents the amount of time

the flight passes storm areas and how high storm levels at
these areas are:

dc =
nsegment∑

i

nsubsegmenti∑

j

timei,j ∗ stormleveli,j (1)

where dc is the discomfort encountered in a flight, nsegment
is the number of segments of a flight trajectory, one segment

is defined by two consecutive control points in the trajectory,
nsubsegmenti is the number of sub-segments of ith segment
which are created by the intersections of the segment with
weather grid. The storm and wind in these sub-segments are
constant. The ground speed of the flight in a sub-segment
is updated based on the wind speed, wind direction and
normal flight speed, then the time duration the flight uses to
pass through the sub-segment is computed by dividing the
distance of the sub-segment by the ground speed. timei,j

is the time duration the flight passes through the jth sub-
segment of the ith segment. stormleveli,j is the storm level
in the jth sub-segment of the ith segment.

The utility of a flight presents the user-preference with the
flight. In this paper, the utility of a flight ranges from 0 to
1. If the utility is high, minimizing the distance travelled is
preferred, otherwise minimizing the discomfort is preferred.
For Cargo flights that have no passengers, an airline is likely
to prefer a quicker route than a comfortable one, if the two
objectives become in conflict.

This problem needs to minimize the total delay time of
all the flights. The reason is that all the flights firstly need
to take off at a given time (in this paper, we consider it to
be time 0). In order to resolve conflicts between flights, we
firstly try to resolve them by choosing the best direction for
a flight at a segment. However, this cannot resolve all the
conflicts, thus we need to resolve the rest of the conflicts
through a hill-climber which propagates delays. With these
goals in mind, we design two objectives as in Equations 2
and 3.

obj[0] =
nflight∑

i=1

ui ∗ (
di

sdi
− 1) + (1 − ui) ∗ dci

sdci
(2)

obj[1] =
nflight∑

i=1

sti + 10000 ∗ nconflict (3)

In Equation 2, obj[0] is the first objective; nflight is the
number of flights; ui is Utility of ith flight; di is the distance
of actual trajectory of ith flight; sdi is the distance of straight
line trajectory of ith flight; dci is the discomfort of ith

flight; sdci is the discomfort of straight line trajectory with
assumption of maximum storm level in every cell a flight
passes, calculated as Equation 4, based on MaxStormLevel
(maximum storm level) and fsi (normal speed of ith flight).

MaxStormLevel ∗ sdi

fsi
(4)

In Equation 3, obj[1] is the second objective; sti is the
starting time of ith flight; nconflict is the number of
conflicts between flights.

Minimizing obj[0] gives preference to minimizing the
distance traveled by a flight when the utility of the flight
is high, and to minimizing the discomfort of a flight when
the utility is low.

By minimizing obj[1], we can minimize the total delay
time and minimize the number of conflicts between flights.
With a penalty on the number of conflicts, solutions involving
flight trajectories without any conflict are preferred.
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Fig. 1. Relative Wind Direction with Flight Direction

Parameter RelativeWindDirection StormLevel Utility Action
Value rwd sl u act

TABLE I

RULE PARAMETERS AND VALUES

IV. METHODOLOGY

A. Multi-Objective Learning Classifier System

We adopt NSGAII [28] as the evolutionary multi-objective
search technique. A population of classifiers is maintained
over time in order to track the non-dominated set of classi-
fiers for flight navigation. Each classifier is a set of normal
rules and one default rule. A normal rule includes two parts:
condition and action. The condition of a normal rule is
defined by a relative wind direction with a flight direction
and a storm level, where the relative wind direction may be
either tail, cross up, cross down, or head. It is determined as
in Figure 1, the storm level may be no-storm, low, medium-
low, medium, medium-high, or high. The action of a rule is
defined by an integer number from 0 to ndirection−1, where
ndirection is the number of possible directions a flight can
choose to move. The index of a direction is determined
clockwise starting from 0. The action of a rule represents
the direction suggested by the rule when a flight satisfies the
condition of the rule. A default rule does not contain any
condition. It contains the action part only.

Table I lists the parameters (condition and action) of a nor-
mal rule and their values, where RelativeWindDirection
is the relative wind direction, StormLevel is the storm
level. The magnitude of Utility of one rule is to present
the user preference to the trajectory of a flight. If Utility is
high, minimizing distance travelled by the flight is preferred,
otherwise minimizing discomfort is preferred. This rule is
interpreted as “if (relative wind direction = rwd) and (storm
level = sl) and (flight’s utility ≥ u) then the direction
with maximum acceptable level and closest to direction act
determined clockwise is chosen”. The acceptable level of a
direction will be described in Section IV-E.

Algorithm 1 is to evolve the population of classifiers based
on NSGAII. In this main algorithm, the algorithms to assign
rank and crowding distance for the parent population, to
select two classifiers from the parent population, to merge
the parent population and child population to create a mixed
population, and to sort the mixed population based on the
crowding distance and including the most widely spread so-
lutions to the parent population, are the same as in NSGAII.
The other algorithms are presented in the following sections.

Algorithm 1 Main algorithm of Multi-Objective Classifier
System
1: popsize is the number of classifiers in a population.
2: ngen is the number of generations in the evolution process.
3: Load weather grid including wind and storm cells.
4: Initialize flights.
5: Initialize parent population of popsize classifiers.
6: Evaluate the parent population.
7: Assign rank and crowding distance for the parent population.
8: for (i=2; i≤ngen; i++) do
9: select every two classifiers in the parent population, cross-over the two to create

two new classifiers and add them to a new population called the child population.
This is repeated until the child population has popsize classifiers.

10: Mutate the child population.
11: Evaluate the child population.
12: Merge the parent population and child population to create a mixed population.
13: Sort the mixed population based on the crowding distance, and include the most

widely spread solutions to parent population.
14: end for

Fig. 2. An example of weather grid

B. Weather Grid Loading

The weather grid is stored in a flat file and loaded when
the system starts. A storm level is only assigned for 10% of
cells and for the cells with wind speed higher than average
wind speed. The grid is an approximation of the size of
the Australian airspace. The grid is four million square
kilometers. Each cell is 250x250 square kilometers. The wind
direction in one cell is −π to π, speed 0 to 80 m/s, and storm
level is between 0 and 5.

Figure 2 is an example of weather grid, where the vector
in a grid cell represents wind direction and wind speed. Wind
direction is determined based on North axis (zero axis) and
clockwise. Wind speed is represented by the length of the
vector. Wind vector with maximum speed is the longest one.
The length of other vectors is proportional to the length of
the longest vector according to the rate of the two speeds.
The 3 numbers in the top-left corner of a cell are the wind
direction, wind speed, and storm level at the cell.



C. Flight Initialization

Flights are initialized randomly with the following condi-
tions:

• The distance between the origin and destination of
one flight needs to be in a given range from
flightmindistance to flightmaxdistance;

• Flight normal speed is from minACSpeed to
maxACSpeed;

• The distance between the origins of two flights
also needs to be greater than a given distance
minorigindistance;

• Several values of Utility are used and each value is
allocated with a certain amount of flights. The specific
allocation is presented in Section V.

The straight line distance of a flight is calculated and
stored in sd property of the flight as the distance between
its origin and destination. The discomfort of a flight with
assumptions of straight line trajectory, normal flight speed
movement and maximum storm level at every cell is calcu-
lated and stored in sdc property of the flight. The boundary
of one flight is determined by the rectangle created by the
flight’s origin and destination with expansion of a given
margin.

D. Classifier-Population Initialization

A classifier population is initialized one classifier at a time,
where a classifier is initialized by initializing its set of normal
rules and its default rule.

A normal rule is initialized as follows:

• Wind of the rule is initialized randomly from 0 to 3,
corresponding to 4 relative directions between wind di-
rection and flight direction: tail, crossup, crossdown,
and head;

• Storm of the rule is initialized from 0 to 5, correspond-
ing to 6 storm levels: no−storm, low, medium− low,
medium, medium − high, and high;

• Utility of the rule is initialized from 0 to 1, which
presents user preference to the trajectory of a flight;

• Action of the rule receives an integer value from 0
to ndirection − 1, which corresponds to ndirection
possible directions the flight can choose.

The default rule of a classifier contains an action part
alone. The Action of a default rule is initialized in the same
way as the action of a normal rule. Each rule also includes an
index ID and its father index FatherID. The father of a rule
is the rule it is generated from by the mutation operator, as
presented in a subsequent section. When a rule is initialized,
its FatherID is 0. When a new rule is created by applying
the mutation operator on a rule (father rule), its FatherID
is the ID of the father rule. These indices are used to track
the changing progress of a rule.

E. Evaluation

A population is evaluated one by one. The evaluation is
repeated until there are no conflicts between flights, or the
number of conflicts does not decrease after a given number of

steps nSimStep. In each step of the loop, flight trajectories
are simulated, conflicts between flights are detected, and the
objective values of the classifier are calculated. If there are
conflicts between flights and the current step is not the final
one, conflicts between flights are resolved by delaying the
starting time of one of the conflicting flights.

The simulation is repeated until all flights complete their
journey. In each simulation step, if the distance between the
current point of a flight and its destination is more than R
(meter), the flight will move to one of the ndirection next
possible points by ndirection possible directions. Otherwise,
it will move straight to the destination and the trip is
completed. We maintain a vector storing the index of flights
which did not finish. If a flight finished, the index of the
flight will be removed from the vector. By maintaining this
vector trajectory, the simulation only needs to go through
flights which have flight index in the vector. This helps to
improve the speed.

In order to determine the next point for the flight to move,
firstly the rule to navigate the flight is chosen. If the flight at
the current state satisfies a normal rule in the classifier, this
rule is chosen to navigate the flight, otherwise the default rule
is used. Then all possible next points are determined based
on the current point of the flight and the next ndirecion
possible directions. The acceptable level of one point is
also calculated. The acceptable level of one point is first
assigned to 0. Then it is updated based on 3 conditions. First
is whether the angle between the previous flight direction
(between the previous point and the current point) and the
next flight direction (between the current point and the next
point) is less than PI/2 or not. Second is whether the next
point is in the flight’s boundary or not. Third is whether the
new segment (created by the current point and the next point)
causes conflict or not, where the segment only needs to detect
with segments in boxes it belongs to. If the first condition
is satisfied the acceptable level is 1. If the first and second
conditions are satisfied the level is 2. If all 3 conditions are
satisfied the level is 3. If there is only one point with highest
acceptable level, this point is the next point the flight choose
to move to, otherwise the point with highest acceptable level
and closest to the direction suggested by the rule the flight
satisfies is the next point.

The distance and discomfort of the flight are updated by
those created by the new segment; in which the distance of
the new segment is calculated as Euclidean distance. The
discomfort of the new segment is calculated by summing
the discomfort of every subsegment created by intersections
between the segment and weather grid, where wind and storm
are constant in a subsegment.

In order to detect conflicts between flights, the 3-D (x,
y, t) space is divided to the 3-D grid of 3-D boxes. When
a new segment is determined for a flight, it is added into
the segment vector. Its index is also added to the segment
index vector of 3-D boxes that the 3-D box enveloper of
the segment intersects with. If the index of a box in these
boxes is not in the box index vector, it is also inserted in the



vector in an ascending order. The earliest arrival time of all
the flights is also updated, based on the arrival time at the
next point of the new segment.

Conflict detection is implemented in every step of the
simulation for segments in boxes whose starting time is
earlier than the earliest arrival time of all the flights. By
maintaining the box index vector, the algorithm only needs to
go through boxes which contain at least one segment index.
The box indices are also sorted, thus the algorithm only
needs to start from the first index and stop when it meets the
index of a box whose starting time is later than the earliest
arrival time. In order to maintain the box index vector, when
a box is first added a segment index, binary searching is
implemented to find the proper position to insert the index of
the box in the box index vector, so that the indices of boxes
are sorted in the ascending order. When conflict detection
for a box finishes, the index of the box in the box index
vector is removed; the segment index vector of the box is
also released. This helps to reduce frequently the amount of
system memory required. When all the flights finish, conflict
detection is applied for the rest of boxes. Conflict detection
in a box is implemented between every two segments in the
box. Because two segments may appear in several boxes, thus
two segments in a box are only applied conflict detection if
the box’s index is the smallest in the list of indices of boxes
containing the two segments. This index is determined by
the maximum x, y, t indices of the minimum ones from the
2 terminal points of each segment.

In order to detect conflict between two segments of the two
flights, the intersection point is firstly determined between the
two spatially. Then the arrival time at the intersection point
of the two flights is calculated. If the difference between
the two arrival times is less than 5 (minute) the two flights
conflict.

The arrival time of a flight at a point from a point is
determined by Equation 5:

AT2 = AT1 +
m∑

i=1

TDi (5)

where AT1 is the arrival time of the flight at the first
point; AT2 is the arrival time of the flight at the second
point; m is the number of subsegments that are created by
the intersections between the segment between the first and
second points with weather grid. TDi is the time duration
the flight passes ith subsegments.

TDi is calculated by Equation 6:

TDi = Di/GSi (6)

where Di is the distance of ith subsegment, GSi is the
ground speed of the flight at ith subsegment.

The ground speed gs of a flight at a subsegment is
constant. It is determined, based on the flight normal speed
fs and relative wind direction rwd and absolute wind speed
ws at the subsegment (they are also constant). If rwd at the
position is tail wind, the gs is fs + ws. If rwd at the position
is cross up, the gs is fs + ws/2. If rwd at the position is

cross down, the gs is fs - ws/2. If rwd at the position is
head wind, the gs is fs - ws.

In order to track conflicting flights with a flight, each
flight has a conflicting flight vector that stores the indices of
flights with which the flight is in conflict. When a conflict is
detected between the two segments of two flights, the index
of a flight is added into the conflicting flight vector of the
other flight if the index is not available in the conflicting
flight vector. For each flight f , the algorithm goes through its
conflicting flights one by one until it finds a conflicting flight
which has not delayed and finished later than f , or all the
conflicting flights are inspected. If f and the conflicting flight
have not delayed yet, the algorithm will delay the starting
time of the flight which finished earlier than the other by
5 (minute). If f is delayed, the algorithm will stop going to
the next conflicting flight of f .

F. Genetic Operators

The crossover operators crosses two classifiers parent1
and parent2 to create two new classifiers child1 and child2.
Firstly, it generates a random number rand. If rand is less
than the cross over probability pcross classifier, the algo-
rithm will use the cross over point site generated randomly
from 0 to nrule − 1 to cross parent1 and parent2. The
default rule DefaultRule of parent1 and parent2 is also
crossed. If rand is higher than pcross classifier child1
and child2 will be the clone of parent1 and parent2,
respectively.

The mutation operator goes through every normal rule.
For each one it generates a random number rand. If rand is
less than the mutation probability, the rule will be mutated.
In order to mutate a rule, an integer number mp from 0 to 3
is generated randomly, which indicates the mutated part of
the rule. If mp is 0, the relative wind direction of the rule is
mutated. If mp is 1, the storm level of the rule is mutated.
If mp is 2, the utility of the rule is mutated. If mp is 3, the
action of the rule is mutated. The default rule of the classifier
is also mutated.

V. EXPERIMENT DESIGN

Table II presents flight utility allocation.

Utility 0 0.1 0.3 0.5 0.7 0.9 1
Percentage 5% 15% 15% 15% 15% 25% 10%

TABLE II

FLIGHT UTILITY ALLOCATION

The parameters we used are: number of flights is 100, the
minimum and maximum speed of a flight is 150 m/s and
250m/s respectively, the minimum and maximum distance
of a trip is 100km to 4000km respectively, the minimum
distance between the origins of two flights is 50km, number
of generations is 100, population size is 100, number of
rules per classifier is 50, the crossover probability is 0.9,
the mutation rate is the reciprocal of the number of rules +
1, and the distance of a flight’s moving step is 25km.
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The system is designed to run in parallel for the evaluation
process. In which one individual is assigned to a separate
CPU for evaluation when the CPU is free. The experiment
runs on 5 CPUs. The CPU type is Intel Nehalem 2.93GHz
and the memory allocated for each CPU is 73.75 MB.

VI. RESULTS & ANALYSIS

A. Non-dominated front

We did experiments with 10 seeds (1/11, 2/11,...10/11),
which are called seed1, seed2,... and seed10. Figure 3 shows
the non-dominated front of the 10 seeds in the final genera-
tion.

We found that the range of the two objectives improves
significantly from the first generation to the last. For example,
in the experiment with seed2, the range of obj[0] is from
about 0.0171 to 0.0511 in the first generation, while it is from
about 0.0144 to 0.0386 in the final generation. The range of
obj[1] is from 24,900 to 79,500 in the first generation, while
it is from 11,100 to 43,500 in the final generation. Both the
lower and upper bounds of obj[0] and obj[1] reduce from the
first generation to the last generation.

B. Trajectory and Time Span Track

Table III presents the number of conflicts, the value of
objectives each conflict resolution step of the two best
classifiers with smallest obj[1] in the final generation of
seed2. The objective values in the final conflict resolution
step in the table show that while one solution is the best in
one objective, it is the worst in the other objective. Aircraft
trajectories created by both the classifiers and the other
classifiers of the non-dominated set are free from conflicts.

Figure 4 presents simulated trajectories and time spans
of flights in the final conflict resolution step, by delaying

TABLE III

NUMBER OF CONFLICTS AND OBJECTIVE VALUES OF THE CLASSIFIER

WHOSE obj[1] IS SMALLEST IN EACH STEP OF CONFLICT RESOLUTION

BY DELAYING STARTING TIME, SEED2

Step conflicts obj[0] obj[1]
1 46 0.0387423 460000
2 26 0.0386249 266300
3 15 0.0386493 159300
4 4 0.0385274 50500
5 0 0.0385526 11100

starting-time of conflicting flights for a non-dominated clas-
sifier in the final generation of seed2. In this figure, the
following information is presented:

• Two objective values (obj[0], obj[1]) in top-left of the
figure with red color

• Trajectories of all the flights, each trajectory has starting
time and ending time with blue color

• An intersection in 3-D box between 2 trajectories (but
not conflict) is presented by a green circle

• A conflict is presented by a red circle
• Arrival time of first flight at the conflict point in green

(second)
• Arrival time of second flight at the conflict point in black

(second)
• Four texts below the time spans are the number of delay

flights, total delay time, the minimum delay time, and
the maximum delay time.

Note that the time difference of the two flights at their
conflict point is less than 300 second. There is not any red
circle in the figure because all conflicts are resolved by delay
propagation in the take-off time of conflicting flights. Aircraft
trajectories in Figure 4 are long, because objective obj[1] is
to minimize the number of conflicts and delay time. Flights
choose longer trajectories to avoid conflicts with each other.

C. Generation-rule track

Table IV shows the generation-rule track of a non-
dominated classifier in the final generation of seed2. The
track of a rule in one row presents the rule from the first
generation to the last generation it changes. Each rule has
usage (the number of times the rule is used to navigate
flights), id (rule index), father id (index of the father rule),
and content. The last rule is in the rule set of one of the
two classifiers. The content of a rule may be the same as
that of the father rule, because although the rule is subject
to the mutation operator it does not change. From Table IV
we can see that the action suggested by the default rule of
the classifier whose obj[0] is the smallest is 3. The direction
index of 3 is the straight direction from the current point of a
flight to its destination, because in our experiment we choose
the number of possible directions for a flight to choose to
move is 7 and the direction index is determined by clockwise
from 0. The reason for the straight direction suggested by
the default rule is that objective obj[0] is to minimize the
distance travelled and the discomfort of flights.



TABLE IV

GENERATION-RULE TRACK OF THE CLASSIFIER WHOSE OBJ[0] IS THE SMALLEST, SEED2

rule usage gen id father id content
0 3 0 2092 0 IF (RWD = Cross Down) AND (SL = Medium High) AND (U ≥ 0.2162147) Then 5
1 64 0 4184 0 IF (RWD = Head) AND (SL = No-Storm) AND (U ≥ 0.5942413) Then 2

2 10
0 2094 0 IF (RWD = Tail) AND (SL = Low) AND (U ≥ 0.4757735) Then 5
33 8320 2094 IF (RWD = Tail) AND (SL = Low) AND (U ≥ 0.4757735) Then 4

3 11
0 2095 0 IF (RWD = Tail) AND (SL = Low) AND (U ≥ 0.251077) Then 3
30 7988 2095 IF (RWD = Tail) AND (SL = Low) AND (U ≥ 0.8248061) Then 3
57 10677 7988 IF (RWD = Tail) AND (SL = Medium) AND (U ≥ 0.8248061) Then 3

4 1627 0 2096 0 IF (RWD = Cross Up) AND (SL = No-Storm) AND (U ≥ 0.5868399) Then 3

5 33
0 2097 0 IF (RWD = Cross Down) AND (SL = Medium Low) AND (U ≥ 0.1730221) Then 4
20 6992 2097 IF (RWD = Cross Down) AND (SL = Medium Low) AND (U ≥ 0.1730221) Then 4

6 10 0 4189 0 IF (RWD = Head) AND (SL = Low) AND (U ≥ 0.652337) Then 3
7 444 0 4190 0 IF (RWD = Tail) AND (SL = No-Storm) AND (U ≥ 0.6701415) Then 3

8 0
0 2967 0 IF (RWD = Tail) AND (SL = High) AND (U ≥ 0.4261159) Then 5
71 12037 2967 IF (RWD = Tail) AND (SL = High) AND (U ≥ 0.3700761) Then 5

11 58
0 2970 0 IF (RWD = Cross Up) AND (SL = Medium High) AND (U ≥ 0.4347744) Then 3
88 13866 2970 IF (RWD = Cross Up) AND (SL = Medium High) AND (U ≥ 0.1039975) Then 3

12 0 0 2971 0 IF (RWD = Cross Up) AND (SL = High) AND (U ≥ 0.8356706) Then 5
13 9 0 2972 0 IF (RWD = Tail) AND (SL = Medium Low) AND (U ≥ 0.02297481) Then 2

14 0
0 2973 0 IF (RWD = Head) AND (SL = High) AND (U ≥ 0.1870232) Then 6
22 7187 2973 IF (RWD = Head) AND (SL = High) AND (U ≥ 0.1870232) Then 6
80 12970 7187 IF (RWD = Tail) AND (SL = High) AND (U ≥ 0.1870232) Then 6

15 2137 0 2974 0 IF (RWD = Cross Down) AND (SL = No-Storm) AND (U ≥ 0.4222877) Then 3

16 12
0 2975 0 IF (RWD = Cross Up) AND (SL = Medium High) AND (U ≥ 0.018061) Then 3
82 13243 2975 IF (RWD = Cross Up) AND (SL = Medium High) AND (U ≥ 0.018061) Then 5

18 0
0 2416 0 IF (RWD = Head) AND (SL = Medium High) AND (U ≥ 0.8860291) Then 4
11 6160 2416 IF (RWD = Tail) AND (SL = Medium High) AND (U ≥ 0.8860291) Then 4
57 10678 6160 IF (RWD = Tail) AND (SL = Medium High) AND (U ≥ 0.8860291) Then 4

21 10
0 4051 0 IF (RWD = Cross Up) AND (SL = No-Storm) AND (U ≥ 0.7535361) Then 4
18 6868 4051 IF (RWD = Cross Up) AND (SL = Medium) AND (U ≥ 0.7535361) Then 4

22 21 0 4052 0 IF (RWD = Head) AND (SL = No-Storm) AND (U ≥ 0.3961009) Then 4

23 100
0 4053 0 IF (RWD = Cross Up) AND (SL = Medium) AND (U ≥ 0.2372111) Then 4
37 8749 4053 IF (RWD = Cross Up) AND (SL = Low) AND (U ≥ 0.2372111) Then 4

24 0
0 4054 0 IF (RWD = Head) AND (SL = Low) AND (U ≥ 0.7490645) Then 4
31 8174 4054 IF (RWD = Tail) AND (SL = Low) AND (U ≥ 0.7490645) Then 4
44 9427 8174 IF (RWD = Tail) AND (SL = Medium) AND (U ≥ 0.7490645) Then 4

25 10 0 4055 0 IF (RWD = Head) AND (SL = Medium Low) AND (U ≥ 0.8258837) Then 3
26 0 0 4056 0 IF (RWD = Tail) AND (SL = Medium) AND (U ≥ 0.7132748) Then 2

28 9
0 4058 0 IF (RWD = Cross Down) AND (SL = High) AND (U ≥ 0.01458683) Then 4
30 8070 4058 IF (RWD = Cross Down) AND (SL = High) AND (U ≥ 0.7737651) Then 4

32 0 0 2124 0 IF (RWD = Head) AND (SL = Medium) AND (U ≥ 0.7893357) Then 6

33 0
0 2125 0 IF (RWD = Tail) AND (SL = Medium High) AND (U ≥ 0.777858) Then 1
79 12870 2125 IF (RWD = Tail) AND (SL = Medium High) AND (U ≥ 0.4513453) Then 1

34 2
0 2126 0 IF (RWD = Cross Up) AND (SL = High) AND (U ≥ 0.7757045) Then 0
43 9322 2126 IF (RWD = Cross Up) AND (SL = High) AND (U ≥ 0.6241231) Then 0

37 14
0 2129 0 IF (RWD = Head) AND (SL = Medium Low) AND (U ≥ 0.1078173) Then 4
74 12427 2129 IF (RWD = Head) AND (SL = Medium Low) AND (U ≥ 0.1078173) Then 3

39 72 0 2131 0 IF (RWD = Head) AND (SL = No-Storm) AND (U ≥ 0.04602336) Then 3
41 0 0 2133 0 IF (RWD = Tail) AND (SL = Low) AND (U ≥ 0.4066338) Then 4

42 0
0 2134 0 IF (RWD = Head) AND (SL = High) AND (U ≥ 0.3508267) Then 0
4 5405 2134 IF (RWD = Head) AND (SL = Medium High) AND (U ≥ 0.3508267) Then 0

43 0 0 4226 0 IF (RWD = Head) AND (SL = Medium High) AND (U ≥ 0.41808) Then 2

44 0
0 4227 0 IF (RWD = Head) AND (SL = Medium) AND (U ≥ 0.6708537) Then 5
35 8513 4227 IF (RWD = Head) AND (SL = Medium) AND (U ≥ 0.6708537) Then 6

46 1144 0 2138 0 IF (RWD = Cross Up) AND (SL = No-Storm) AND (U ≥ 0.2928225) Then 3
50 2598 0 2142 0 3

D. Time Consumption and Result Comparison

The experiment was completed in 27 minutes 33 seconds.
If we use 20 CPUs, this time can be reduced to 7 minutes.
Therefore, running the system in the distributed environment
can scale the application with higher number of flights and
larger air space.

We did another experiment where all flights use straight-
line trajectories from origin to destination and conflicts
between flights are resolved by propagating delays of con-
flicting flights as presented above. The two objectives obj[0]
and obj[1] provided by this experiment are 0.0169062 and
48600 respectively, while obj[0] is from about 0.0144 to
0.0386 and obj[1] from 11,100 to 43,500 when we did

experiment with seed2. All the solutions obj[1] provided by
the experiment with seed2 is less than 48600 and also a lot of
solutions with obj[0] less than 0.0169062. This established
more confidence in the proposed approach.

VII. CONCLUSION

In this paper, we describe an efficient Multi-Objective
Learning Classifier System for multi-flight navigation using
NSGAII. A classifier is represented by a set of rules. These
rules navigate all the flights in the airspace in every sim-
ulation step based on the interaction between flights with
the air traffic environment such as wind, storm and other
flights. This system continually learns and refines the rules
of classifiers by NSGAII to find out the non-dominated set of



Fig. 4. Simulated Trajectories and Time Spans in Final Conflict Resolution
Step of the classifier whose obj[1] is the smallest, seed2

classifiers to minimize distance, discomfort, minimize total
delay time of flights and avoid conflicts between flights.
The results show that the system works well with a high
number of flights and can provide a variety of solutions
for different objectives. Many solutions are better than the
baseline straight-line trajectories with delay-propagation.
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