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Abstract—Within the context of privacy preserving data min-
ing, several solutions for privacy-preserving classification rules
learning such as association rules mining have been proposed.
Each solution was provided for horizontally or vertically dis-
tributed scenario.

The aim of this work is to study privacy-preserving classifi-
cation rules learning in two-dimension distributed data, which
is a generalisation of both horizontally and vertically distributed
data. In this paper, we develop a cryptographic solution for classi-
fication rules learning methods. The crucial step in the proposed
solution is the privacy-preserving computation of frequencies of
a tuple of values, which can ensure each participant’s privacy
without loss of accuracy. We illustrate the applicability of the
method by using it to build the privacy preserving protocol for
association rules mining and ID3 decision tree learning.

I. INTRODUCTION

Data mining has emerged as a significant technology for
gaining knowledge from vast quantities of data. Data mining
allows us to analyse personal data or organisational data, such
as customer records, criminal records, medical history, credit
records, etc. However, analyzing such data creates threats
to privacy and thus, might prevent data mining works. The
challenge then is whether we can obtain results of mining
while still preserve the data secrecy. Privacy preserving data
mining (PPDM) techniques have been proposed to address this
type of problem [2].

Generally, there are mainly two kinds of privacy preserv-
ing data mining approaches: the perturbation-based approach
and the cryptography-based approach. The methods based
on perturbation (e.g., [1], [3], [23]) have been proved to be
efficient, but have a tradeoff between privacy and accuracy.
The methods based on cryptography (e.g., [22], [20], [11])
can safely preserve privacy without loss of accuracy, but
have high complexity and high communication cost. These
privacy preserving data mining methods have been presented
for various scenarios in which the general idea is to allow
mining datasets distributed across multiple parties, without
disclosing each party’s private data [2].

Classification is an important data mining technique that

has found applications in various areas, such as business, ed-
ucation, and defense. Within the context of privacy preserving
data mining, several privacy-preserving classification solutions
have been proposed, e.g., [9], [10] and [24]. The goal of
these works is for one of the participants to obtain the global
classification model from the joint data set of all parties. The
requirement of these works is that no information about private
data, except in the classification model, will be disclosed.

Each privacy preserving classification solution can be ap-
plied in a particular privacy preserving data mining scenario.
In [9], [10] and [24], they developed a privacy preserving
classification protocols from the vertically distributed data
based on a secure scalar product method. These privacy
preserving protocols have been applied for learning naive
Bayes classification, association rules and decision trees. In
[12], the privacy preserving classification was addressed for
horizontally distributed data by computing the secure sum
of all local frequencies of participating parties. Much more
complicated solutions have been proposed for the fully dis-
tributed setting [5], [22]. These works aimed to allow a miner
to learn classification rules from a data set distributed across a
large number of users, while preserving privacy of each user’s
private data.

Some randomization-based solutions proposed in [1], [3],
[15], [16] can be used in various distributed data scenarios.
The basic idea of these solutions is that every user perturbs
its data, before sending it to the miner. The miner then can
reconstruct the original data to obtain the mining results with
some bounded error. These solutions allow each user to operate
independently, and the perturbed value of a data element does
not depend on those of the other data elements, but only on
its initial value. Although these solutions are high efficient,
their use generally involves a tradeoff between privacy and
accuracy, i.e., if we require more privacy, the miner loses more
accuracy in the data mining results, and vice-versa.

In this paper, we study a privacy preserving classification
rules learning in two-dimension distributed data, which is a
generalization of both horizontally and vertically distributed
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data. The generality of this model would be experimental
proved to be better suited at practical settings in which data
may be mostly, but not completely, vertically or horizontally
distributed. The contributions of the work include:
∙ The development of a cryptographic approach to privacy

preserving classification learning in two-dimension dis-
tributed data. We proposed a protocol for privacy preserv-
ing frequency computation. The protocol ensures each
parties’s privacy without loss of accuracy. In addition, it
is efficient and based on centered management model.

∙ The applicability of the approach. To illustrate it we
present the design and analysis of the privacy-preserving
association rule mining and ID3 learning protocols.

The rest of this paper is organised as follows: Section 2
presents the preliminaries. In Section 3, we introduce a privacy
preserving protocol for frequency mining. We also prove the
correctness and privacy properties of the protocol and present
experimental results of the efficiency. In Section 4, we use the
protocol for frequency mining in Section 3 as a building block
to design a privacy preserving protocols for association rule
mining and ID3 learning. We also evaluate the efficiency of
these protocols in Section 4. The last section concludes our
research work in this paper.

II. PRELIMINARIES

A. Privacy preserving frequency mining problem

Definition 1. (Two-dimension distributed data.) A data set
𝐷𝐵 includes 𝑑 normal attributes {𝐴1, ..., 𝐴𝑑} with 𝑁 records.
𝐷𝐵 is distributed into 𝑛 ×𝑚 blocks, where 2 ≤ 𝑛 < 𝑑 and
2 ≤ 𝑚 < 𝑁 .

The parties 𝑃𝑖𝑘 with 𝑖 = 1, ..., 𝑛 and 𝑘 = 1, ...,𝑚.
Each party holds a block 𝐷𝐵𝑖𝑘 containing information about
certain attributes set 𝐴(𝑘) and certain records. The 𝐷𝐵𝑖𝑘 are
such that:
∙ 𝐷𝐵𝑖𝑘 and 𝐷𝐵𝑖′𝑘 (𝑖 ∕= 𝑖′) have the same attributes set
𝐴(𝑘) but (parts of) different records of 𝐷𝐵;

∙ 𝐷𝐵𝑖𝑘 and 𝐷𝐵𝑖𝑘′ (𝑘 ∕= 𝑘′) have disjoint attributes sets
𝐴(𝑘) and 𝐴(𝑘′) but contain information about the same
records of 𝐷𝐵;

We call 𝐷𝐵 be a two-dimension distributed data set.

Privacy preserving frequency mining problem: In this
section, we consider a scenario in which a party plays a role
as a miner, which mines the frequency of a tuples of attribute
values from 𝐷𝐵. Where, 𝐷𝐵 is called the joint data set of
all parties. Our aim is to design the distributed protocols to
obtain the frequency while preserving privacy of each party’s
data. We consider privacy as protecting individual data records
as well as protecting the frequency of the local tuples of each
party.

Let 𝑆 ⊂ {1, ...,𝑚} and 1 ≤ ∣𝑆∣ ≤ 𝑚. In general case, we
assume that the miner needs to compute the frequency of a
data tuple (𝑇 ) that consists ∣𝑆∣ parts indexed in 𝑆. Each part
𝑇𝑘 (𝑘 ∈ 𝑆) consists of some values for some attributes ∈
𝐴(𝑘). Note that each record 𝑅𝐶𝑗 (𝑗 = 1, ..., 𝑁 ) is partitioned
into 𝑚 parts; where each part 𝑅𝐶𝑗𝑘 consists of values for the

attributes in set 𝐴(𝑘) and is owned by a party 𝑃𝑖𝑘. We consider
the map of each record 𝑗 to ∣𝑆∣ binary numbers as follows.
For each 𝑘 ∈ 𝑆

𝑢𝑗𝑘 =

{
1, if 𝑇𝑘 ⊆ 𝑅𝐶𝑗𝑘;
0, otherwise.

Thus, 𝐷𝐵 is mapped to a binary matrix (𝑈 ) that consists of
∣𝑆∣ columns and 𝑁 rows. Note that if 𝑇 ⊆ 𝑅𝐶𝑗 , all elements
of the 𝑗𝑡ℎ row of the binary matrix have 1 that means 𝜆𝑗 =∑

𝑘∈𝑆 𝑢𝑗𝑘 − ∣𝑆∣ = 0, where each 𝑢𝑗𝑘 is owned by a 𝑃𝑖𝑘.
Therefore, our purpose is to design a protocol that allows

the miner learning the number of records 𝑗 to satisfy 𝜆𝑗 = 0
while the party does not have to disclose the values 𝑢𝑗𝑘.

B. Encryption scheme selection

Our protocol requires each party to send private data to the
miner. In order to preserve privacy of each party’s data, each
party encrypts its data and then send the encrypted data to the
miner. The miner executes the protocol to obtain the frequency
from the encrypted data. We use the ElGamal cryptosystem
[21], a public key cryptosystem, consists of three algorithms:
the key generation algorithm, the encryption algorithm, and
the decryption algorithm. In the ElGamal cryptosystem, the
key generation algorithm generates the parameters (𝐺, 𝑞, 𝑔, 𝑥),
where 𝑔 be a generator for a cyclic group 𝐺 of order 𝑞. 𝑥 be
a private key that is uniformly chosen from {0, 1, ..., 𝑞 − 2}.
The public key is 𝑦 = 𝑔𝑥 that are publicly known.

The encryption of message 𝑚 ∈ the clear-text space 𝑀
defined as:

𝐸(𝑚, 𝑟) = (𝑚𝑦𝑟 mod 𝑞, 𝑔𝑟 mod 𝑞) = (𝐶(1), 𝐶(2)) = 𝐶

where 𝑟 is uniformly chosen from {0, 1, ..., 𝑞 − 2}.
Decryption of the cipher-text 𝐶 with the private key 𝑥 can

be executed by computing 𝑚 = 𝐶1(𝐶
𝑥
2 )
−1.

The encryption scheme is based on the computational
difficulty of computing the discrete logarithm of group G.
Given a prime number 𝑞, a generator 𝑔 and an expression
𝑔𝑎 mod 𝑞, it is computationally difficult to find the value
𝑎. The ElGamal encryption is semantically secure under the
Decisional Diffie-Hellman (DDH) Assumption[4]. Thus, the
encryption scheme has the indistinguishability property that
any two different messages will have different cipher-texts
since the random number 𝑟 can take many different values.
The ElGamal encryption has a randomisation property to allow
computing a different encryption from a given encryption, 𝑀 .

C. Computation model

Privacy preserving mining protocols implement among a set
of semi-honest parities. One of these parties play the special
role, which is called the miner to collect messages from all
parties and compute the final result.

We assume that all parties are online, where each party has
a communication channel with the miner. To be applicable,
we require that the protocol can ensure users’ privacy in an
environment that doesn’t have any secure channels between
the party and the miner. In addition, it should not require any
communication among the parties.
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In our solution, 𝑘 of the parties act as commodity parties,
that is called a moderator. Moderators have the special duty
of randomising the data for protecting privacy of each party’s
data. In order to make the protocol practical, we divide all
parties’ joint data sets into groups; where each group has 𝑚
records which is randomly chosen by all parties from their
database. The miner computes the frequency from one group
at a time. Our requirement is that each party should has its
data at a time. In other words, the miner should compute the
frequency of the data tuple from a group. In contrast, it should
not know which frequency generated from which group record.

We assume that prior to the protocol, each party has
obtained the key pairs for the Elgamal encryption scheme, and
each party’s public key and the miner has known by members
in the system.

D. Definition of privacy

The privacy preservation of the proposed protocol is based
on the semi-honest security model. In this model, each party
participating in the protocol has to follow rules using correct
input, and cannot use what it sees during the execution of the
protocol to compromise security. A general definition of the
secure multi-party computation in the semi-honest model is
stated in [6]. This definition was derived to make a simplified
definition in the semi-honest model for privacy-preserving data
mining in the fully distributed setting scenario [22], [5]. This
scenario is similar to our computation model. In this paper, we
consider the possibility that some corrupted parties share their
data with the miner to derive the private data of the honest
parties. One requirement is that no other private information
about the honest parties be revealed, except the final result.
In our model, information known by parties is no more than
information known by the miner. Thus, we do not have to
consider the problem in which parties share information with
each other.

A distribution ensemble 𝑋 = {𝑋𝑛}𝑛 ∈ 𝑆 is a family of
probability distributions indexed by some infinite set 𝑆 of
binary strings. We sometimes take 𝑆 = {1𝑛 : 𝑛 ∈ ℕ}, in
which case the indices in 𝑆 are viewed as natural numbers.

Definition 2. (Computational indistinguishability). Two en-

sembles, 𝑋
𝑑𝑒𝑓≡ {𝑋𝑛}𝑛∈𝑆 and 𝑌

𝑑𝑒𝑓≡ {𝑌𝑛}𝑛∈𝑆 are compu-
tational indistinguishable, denoted 𝑋

𝑐≡ 𝑌 if the following
holds: For every polynomial time algorithm, 𝐴, and every
𝑐 > 0, there exists an integer 𝑁 such that for all 𝑛 ≥ 𝑁 .

∣𝑃𝑟(𝐴(𝑋𝑛) = 1)− 𝑃𝑟(𝐴(𝑌𝑛) = 1)∣ < 1

𝑛𝑐

For more general, we assume that there are 𝐾 parties
involved in the frequency mining protocol in which a party
plays the role as a miner. Each party 𝑃𝑖 has the input 𝑑𝑖,
where 𝑑𝑖 can be an integer number or the set of the binary
numbers. The definition of privacy preserving in semi-honest
model is presented as follows:

Definition 3. Assume that each party 𝑃𝑖 has a private set of
keys 𝐷𝑖 and a public set of keys 𝐸𝑖. A protocol for the above

defined frequency mining problem protects each user’s privacy
against the miner along with 𝑡 corrupted parties in the semi-
honest model if, for all 𝐼 ⊂ {1, ...,𝐾} such that ∣𝐼∣ = 𝑡, there
exists a probabilistic polynomial-time algorithm 𝑀 such that

{𝑀(𝑓, [𝑑𝑖, 𝑃𝑖]𝑖∈𝐼 , 𝐸𝑖} 𝑐≡ {𝑉 𝑖𝑒𝑤𝑚𝑖𝑛𝑒𝑟,{𝑃𝑖}𝑖∈𝐼
[𝑑𝑖, 𝐷𝑖]

𝐾
𝑖=1}

where
𝑐≡ denotes computational indistinguishability.

Basically, the definition 2 states that the computation is
secure if the joint view of the miner and the corrupted
parties during the execution of the protocol can be effectively
simulated by a simulator. The miner and the corrupted parties
have observed in the protocol using only the result 𝑓 , the
corrupted parties’ knowledge, and the public keys. Therefore,
the miner and the corrupted parties can not learn anything from
𝑓 . By the definition, it indicates that there exists a simulator
satisfied the above equation.

III. PRIVACY PRESERVING FREQUENCY MINING IN

TWO-DIMENSION DISTRIBUTED DATA

A. Privacy preserving frequency mining protocol

Our goal is that the miner should obtain a random permu-
tation of the set (𝑔𝑟1𝜆1 , .., 𝑔𝑟𝑁𝜆𝑁 ), without knowing each
𝜆𝑗 coming from which parties. Where, 𝑟𝑖 is randomly chosen
from [1, 𝑝 − 2] by all other parties. Note that if we obtain
this result, the miner can be counted the number 𝜆𝑗 = 0 that
is equal with 𝑔𝑟𝑗𝜆𝑗 = 𝑔0 = 1. Clearly, when 𝜆𝑗 ∕= 0, 𝑔𝑟𝑗𝜆𝑗

is the random number, the protocol does not leak any other
information except the frequency.

To achieve this goal, we use variants of the ElGamal
encryption in which it replaces 𝑚 with 𝑔𝑚 [22]. As the result,
there are the following properties:

Property 1. The decryption algorithm is not efficient when
𝑚 is large, however, there exists an efficient algorithm that
uses the private key to decide whether a ciphertext decrypts
to 1 or (𝑔0). That is suitable to our algorithms.

Property 2. It has the additive homomorphic property that
can be used to perform computation on ciphertexts from
different parts.

Property 3. It allows homomorphic computing of constant
multiplication that can be performed without decrypting.

In our solution, we assume that each party has a key
pair (𝑥𝑖, 𝑦𝑖 = 𝑔𝑥𝑖) and there 𝑡 of the 𝑛𝑚 parties play the
role as moderators. Without loss of generality, we assume
in the sequel that the moderators are numbered from 1 to
𝑡. In practice, the choice of moderators can be arbitrary that
depends on the requirement of privacy and the efficiency of
the application.

Define

𝑥 =

𝑡∑
𝑖=1

𝑥𝑖

𝑦 =

𝑡∏
𝑖=1

𝑦𝑖 = 𝑔
𝑥

In our protocol, the parties use the public value 𝑦 as a
public key to encrypt their data. Therefore, decrypting these

98



encryptions needs the private key 𝑥, which is not known to any
individual party. We call (𝑥, 𝑦) be the joint key pair. Basically,
the idea of our protocol as follows:

(1) For each value 𝑢𝑗𝑘 of the binary matrix, the party
holding the value 𝑢𝑗𝑘 encrypts this value using the joint
public key of moderators and sends this encryption to
the miner. Note that, without the help of all moder-
ators, nobody can decrypt any of this encryption. By
additional monomorphic property of Elgamal scheme,
the miner connects all encryptions of the binary values
𝑢𝑗𝑘 corresponding to the row 𝑗 to obtain the encryption
of

∑
𝑘∈𝑆 𝑢𝑗𝑘. It then adds 𝑔−∣𝑆∣ to this encryption to

obtain the encryption of 𝜆𝑗 =
∑

𝑘∈𝑆 𝑢𝑗𝑘 − ∣𝑆∣. At the
end of this step, the miner obtains the 𝑁 encryptions of
𝜆1,..., 𝜆𝑁 .

(2) The miner sends the set of encryptions of 𝜆𝑗 (𝑗 =
1, ..., 𝑁 ) to moderators. Each moderator 𝑖 (𝑖 = 1, ..., 𝑡)
computes the encryption of each 𝜆𝑖𝑗 = 𝑟𝑖𝑗𝜆𝑗 and sends
back to the miner. Where, 𝑟𝑖𝑗 are non-zero elements of
𝐺 chosen independently and uniformly at random. The
miner connects encryptions 𝜆𝑖𝑗 (𝑖 = 1, .., 𝑡) to obtain an
encryption of 𝜆′𝑗 = 𝜆𝑗

∑𝑡
𝑖=1 𝑟𝑖𝑗 . Note that 𝜆′𝑗 has a 0 if

and only if the original value 𝜆𝑗 has a 0. On the other
hand, all non-zero elements in the original values have
been changed to the randomized element. As the result,
no extra information is leaked.

(3) The miner together with 𝑡 moderators execute the 𝑡
round to permute and randomise the set of the en-
cryptions of 𝜆′1, ..., 𝜆

′
𝑁 . Note that ElGamal supports

re-randomisation, which means computing a different
encryption of M from a given encryption of M. A related
operation is a permutation of the order of items. There-
fore, it randomly rearrange the order of items. If we re-
randomise and permute a sequence of cipher-texts, then
we get another sequence of cipher-texts with the same
multiset of clear-texts but in a different order. Looking at
these two sequences of cipher-texts, the adversary cannot
determine any information about the correspondence
between the new cipher-text corresponding and the old
cipher-text.

(4) Finally, the moderators jointly help the miner to decrypt
the received new encryptions, which are in an indepen-
dent order of the original encryptions. The miner counts
how many of the decryptions are equal to 1 (𝑔0). This
number is equal to the frequency of the tuple.

The detailed protocol is implemented in phases as follows:

∙ Phase 1. Data submission. For 𝑗 = 1, ..., 𝑁

– For each 𝑘 ∈ 𝑆, the party holding 𝑢𝑗𝑘 encrypts 𝑢𝑗𝑘

using the public key 𝑦 :

𝑅𝑗𝑘 = (𝑅
(1)
𝑗𝑘 , 𝑅

(2)
𝑗𝑘 ) = (𝑔𝑢𝑗𝑘𝑦𝛼𝑗𝑘 , 𝑔𝛼𝑗𝑘)

where 𝛼𝑗𝑘 is chosen randomly from [0, 𝑞 − 1] and
after that 𝑅𝑗𝑘 is sent to the miner.

– The miner computes:

𝐶𝑗 = (𝐶
(1)
𝑗 , 𝐶

(2)
𝑗 ) = (𝑔−∣𝑆∣

∏
𝑘∈𝑆

𝑅
(1)
𝑗𝑘 ,

∏
𝑘∈𝑆

𝑅
(2)
𝑗𝑘 )

∙ Phase 2. Encryption randomisation.
– For 𝑖 = 1, ..., 𝑡, the miner sends (𝐶1,..., 𝐶𝑁 ) to the

moderator 𝑖
– Each moderator 𝑖 re-randomises the received encryp-

tions: for 𝑗 = 1, ..., 𝑁 ,

𝑅𝑖𝑗 = (𝑅
(1)
𝑖𝑗 , 𝑅

(2)
𝑖𝑗 ) = ((𝐶

(1)
𝑗 )𝑟𝑖𝑗 , (𝐶

(2)
𝑗 )𝑟𝑖𝑗 )

where 𝑟𝑖𝑗 is chosen uniformly from [0, 𝑞 − 1].
– For 𝑗 = 1, ..., 𝑁 , each moderator 𝑖 sets 𝐶𝑖𝑗 = 𝑅𝑖𝑗

and sends back to the miner.
– The miner computes: For 𝑗 = 1, ..., 𝑁 ,

𝐶𝑗 = (𝐶
(1)
𝑗 , 𝐶

(2)
𝑗 ) = (

𝑡∑
𝑖=1

𝐶
(1)
𝑖𝑗 ,

𝑡∑
𝑖=1

𝐶
(2)
𝑖𝑗 )

∙ Phase 3. Permutation. For 𝑗 = 1, ..., 𝑡,
– At the beginning of this step, the miner sends (𝐶1,...,
𝐶𝑁 ) to the moderator 𝑖.

– Each moderator 𝑖 permutes encryptions: For 𝑗 =
1, ..., 𝑁 ,

𝑅𝑗 = (𝑅
(1)
𝑗 , 𝑅

(2)
𝑗 ) = (𝐶

(1)
𝜋𝑖(𝑗)

𝑦𝛿𝜋𝑖(𝑗) , 𝐶
(2)
𝜋𝑖(𝑗)

𝑔𝛿𝜋𝑖(𝑗))

where 𝛿𝜋𝑖
is an permutation on {1, .., 𝑁} and 𝛿𝑗 is

chosen independently and uniformly from [0, 𝑞− 1].
– For 𝑗 = 1, ..., 𝑁 , each moderator 𝑖 sets 𝐶𝑗 = 𝑅𝑗

sends (𝐶1,..., 𝐶𝑁 ) back to the miner.
∙ Phase 4. Frequency computation

– The miner sends (𝐶(2)
1 ,..., 𝐶(2)

𝑁 ) to all moderators.
– Each moderator 𝑖 computes: for 𝑗 = 1, ..., 𝑁 ,

𝐶
(2)′

𝑗(𝑖) = (𝐶
(2)
𝑗 )𝑥𝑖

and sends 𝐶(2)′

𝑗(𝑖) to the miner
– The miner sets 𝑓 = 0 and works as follows: for
𝑗 = 1, ..., 𝑁 ,

𝑑𝑗 = 𝐶
(1)
𝑗 /

𝑡∏
𝑖=1

𝐶
(2)′

𝑗(𝑖)

𝑖𝑓 𝑑𝑗 = 1 𝑡ℎ𝑒𝑛 𝑓 = 𝑓 + 1;

– The miner outputs 𝑓

B. The correctness of the protocol

Theorem 1. If all participants follow the protocol, then the
miner’s result is a frequency 𝑓 as description in Section 2.A.

Proof:
- At the end of the first step, the miner obtains:

𝐶𝑗 = (𝐶
(1)
𝑗 , 𝐶

(2)
𝑗 ) = (𝑔

∑
𝑘∈𝑆 𝑢𝑗𝑘−∣𝑆∣𝑦

∑
𝑘∈𝑆 𝛼𝑗𝑘 , 𝑔

∑
𝑘∈𝑆 𝛼𝑗𝑘)

= (𝑔𝜆𝑗𝑦𝜃𝑗 , 𝑔𝜃𝑗 )

Where, denote 𝜆𝑗 =
∑

𝑘∈𝑆 𝑢𝑗𝑘 − ∣𝑆∣ and 𝜃𝑗 =
∑

𝑘∈𝑆 𝛼𝑗𝑘
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- In Phase 2, the miner receives (𝐶(2)
1 ,..., 𝐶(2)

𝑁 ) from Phase
1 and randomises each 𝐶𝑗 . It obtains:

𝐶𝑗 = (𝐶
(1)
𝑗 , 𝐶

(2)
𝑗 ) = (

𝑡∑
𝑖=1

𝐶
(1)
𝑖𝑗 ,

𝑡∑
𝑖=1

𝐶
(2)
𝑖𝑗 )

= (

𝑡∑
𝑖=1

𝑔𝜆𝑗𝑟𝑖𝑗𝑦𝜃𝑗𝑟𝑖𝑗 ,

𝑡∑
𝑖=1

𝑔𝜃𝑗𝑟𝑖𝑗 )

= (𝑔𝜆𝑗

∑𝑡
𝑖=1 𝑟𝑖𝑗𝑦

∑𝑡
𝑖=1 𝜃𝑗)𝑟𝑖𝑗 , 𝑔𝜃𝑗

∑𝑡
𝑖=1 𝑟𝑖𝑗 )

- In Phase 3, the protocol receives the set (𝐶(2)
1 ,..., 𝐶(2)

𝑁 )
and permutes this set 𝑘 times. Thus, the miner obtains:
𝐶𝑗 = (𝐶

(1)
𝜋(𝑗), 𝐶

(2)
𝜋(𝑗)), where, 𝜋(𝑗) is the final result of the

permutation of the 𝑘 times.

𝐶
(1)
𝜋(𝑗) = 𝑔𝜆𝜋(𝑗)

∑𝑡
𝑖=1 𝑟𝑖𝜋(𝑗)𝑦𝜃𝜋(𝑗)

∑𝑡
𝑖=1 𝑟𝑖𝜋(𝑗)+𝛿𝜋𝑖(𝑗) ;

𝐶
(2)
𝜋(𝑗) = 𝑔𝜃𝜋(𝑗)

∑𝑡
𝑖=1 𝑟𝑖𝜋(𝑗)+𝛿𝜋𝑖(𝑗)

Therefore, in Phase 4, the miner obtains

𝑑𝑗 = 𝐶
(1)
𝑗 /

𝑡∏
𝑖=1

𝐶𝑥𝑖
𝑖

=
𝑔𝜆𝜋(𝑗)

∑𝑡
𝑖=1 𝑟𝑖𝜋(𝑗)𝑦(𝜃𝜋(𝑗)

∑𝑡
𝑖=1 𝑟𝑖𝜋(𝑗)+𝛿𝜋𝑖(𝑗)

)

𝑔(𝜃𝜋(𝑗)

∑𝑡
𝑖=1 𝑟𝑖𝜋(𝑗)+𝛿𝜋𝑖(𝑗)

)
∑𝑡

𝑖=1 𝑥𝑖

=
𝑔𝜆𝜋(𝑗)

∑𝑡
𝑖=1 𝑟𝑖𝜋(𝑗)𝑔

∑𝑡
𝑖=1 𝑥𝑖(𝜃𝜋(𝑗)

∑𝑡
𝑖=1 𝑟𝑖𝜋(𝑗)+𝛿𝜋𝑖(𝑗)

)

𝑔(𝜃𝜋(𝑗)

∑𝑡
𝑖=1 𝑟𝑖𝜋(𝑗)+𝛿𝜋𝑖(𝑗)

)
∑𝑡

𝑖=1 𝑥𝑖

= 𝑔𝜆𝜋(𝑗)

∑𝑡
𝑖=1 𝑟𝑖𝜋(𝑗)

Thus, if 𝑑𝑗 = 1, 𝐶𝑗 is the encryption of 𝑔0 that means
𝜆𝑗 = 0. It further follows that the tuple occurs at a record of
the data set and so the frequency 𝑓 is increased to 1.

C. The privacy of the protocol

Theorem 2. The protocol in Subsection 3.A preserves the
privacy of the honest parties against the miner and up to
𝑛𝑚 − 2 corrupted parties as long as at least one of honest
parties is a moderator.

Proof: To prove this theorem, we will design a simulator 𝑀
that simulates the joint view of the miner and the corrupted
users by a probabilistic polynomial-time algorithm. Subse-
quently, this simulator is combined with a simulator for the
ElGamal cipher-texts to obtain a completed simulator. To do
so, basically we show a polynomial-time algorithm for com-
puting the joint view of the miner and the corrupted parties.
The computation of the algorithm is based on what the miner
and the corrupted parties have observed in the protocol using
only the result 𝑓 , the corrupted parties information, and the
public keys. The algorithm outputs the simulated values for the
encryptions generated by a simulator of ElGamal encryptions.
Clearly, it suffices to consider the case in which only one
moderator (ℎ1) and one regular party (ℎ2) are honest. Without
loss of generality, we assume that ℎ1 is the moderator 1. We

will show the simulator that its steps follow the protocol’s
steps.

- Phase 1, for each 𝑅𝑗 ∈ ℎ1 or ℎ2, 𝑀 computes

𝑊𝑗 = (𝑊
(1)
𝑗 ,𝑊

(2)
𝑗 ) = (

𝑅
(1)
𝑗

(𝑅
(2)
𝑗 )

∑𝑘
𝑖=2

, 𝑅
(2)
𝑗 )

= (𝑔𝑤𝑗𝑔𝛾𝑗 , 𝑔𝛾𝑗 )

where 𝑤𝑗 denotes the binary value in the row 𝑗 of the binary
matrix owned by ℎ1 or ℎ2, and 𝛾𝑗 denotes a random number
in [0, .., 𝑝 − 1]. Note that Elgamal encryption is semantically
secure under the DDH; thus,𝑀 can simulates𝑊𝑗 by a random
ciphertext of the Elgamal encryption.

- Phase 2, 𝑀 has to simulate all 𝐶1𝑗 = (𝐶
(1)
1𝑗 , 𝐶

(2)
1𝑗 ).

Note that given (𝑔𝑒1 , 𝑔𝑒2 , 𝑔𝑟𝑒1 , 𝑔𝑟𝑒2 ), since the computational
indistinguishability follows from the semantic security of
ElGamal encryption, which is well known to hold under DDH,
(𝑔𝑒1 , 𝑔𝑒2 , 𝑔𝑟𝑒1 , 𝑔𝑟𝑒2 ) and (𝑔𝑒1 , 𝑔𝑒2 , 𝑔𝑒3 , 𝑔𝑒4 ) are not computa-
tionally distinguishable. Therefore, 𝑀 can simulate each 𝐶1𝑗

by 𝐶 ′1𝑗 = (𝑔𝑒3 , 𝑔𝑒4), where 𝑒3 and 𝑒4 are randomly and
independently chosen in [0, 𝑝− 1].

- Phase 3, 𝑀 has to simulate all 𝑅𝑗 = (𝑅
(1)
𝑗 , 𝑅

(2)
𝑗 ) =

(𝐶
(1)
𝜋1(𝑗)

𝑦𝛿𝜋1(𝑗) , 𝐶
(2)
𝜋1(𝑗)

𝑔𝛿𝜋1(𝑗)). 𝑀 simulates this using a ran-
domly permuted vector of 𝑚 ElGamal cipher-texts, among
these 𝑚 cipher-texts, the number of encryptions of 𝑔0 should
be equal to the output of the protocol, all the remaining cipher-
texts should be the random number.

- Phase 4, each message 𝐶(2)′

𝑗(1) in the protocol can be
simulated using:

𝐶
(2)′

𝑗(1) =
𝐶

(1)
𝑗

𝑑𝑗
∏𝑘

𝑖=2 𝐶
(2)′
𝑗(𝑖)

where it is similar to the choosing a uniformly random element
of 𝐺. This finishes the simulation algorithm.

IV. COMPLEXITY ANALYSIS

A. Communication analysis

Let us assume that the size of the moderator’s key is 𝑏
bits. Phase 1 requires the transmission of 2∣𝑆∣𝑁 encryptions,
for a total of 2∣𝑆∣𝑁𝑏 bits. In phase 2, 2𝑡𝑁𝑏 bits cipher-texts
are transmitted. In each iteration of phase 3 , 2𝑁𝑏 bits are
transmitted, for a total of 2𝑡𝑁𝑏 bits. Phase 4 transmits 𝑡𝑁𝑏
bits. Since, the total is (5𝑡+ 2∣𝑆∣)𝑁𝑏.
B. Computational complexity evaluation

In this section, we show the results of the complexity
estimation of the protocol and the efficiency measurement
of the protocol in practice. In the proposed protocol, the
computational cost of all parties in the first phase is 2∣𝑆∣𝑁
modular exponentiations. The computational cost of the miner
is at most of all (∣𝑆∣ + 𝑡)𝑁 modular multiplications for the
first phase and the second phase, and𝑁 modular multiplication
inversions for the last phase. Each moderator uses 5𝑁 modular
exponentiations. We conclude that the total computational
complexity is 𝑂((∣𝑆∣ + 𝑡)𝑁) modular exponentiations. Note
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N
∣𝑆∣ 200 400 600 800 1000

2 0.22 0.44 0.67 0.88 1.11
3 0.33 0.66 0.97 1.32 1.65
5 0.55 1.08 1.64 2.14 2.75
10 1.2 2.2 3.2 4.3 5.5
20 2.1 4.3 6.5 8.7 10.8

TABLE I
TIME (SECONDS) USED BY ALL PARTIES FOR DATA ENCRYPTION

𝑁 200 400 600 800 1000

Time 0.15 0.32 0.48 0.63 0.8

TABLE II
TIME (SECONDS) USED BY EACH MODERATOR

that these computational costs do not include the overhead
of key generation and computing two parameters 𝑥 and 𝑦.
However, generating these parameters belongs to the prepa-
ration period of the mining process. Therefore, it can be
implemented before the protocol is executed without affecting
the computation time of the protocol.

For evaluating the efficiency of the protocol in practice,
we build an experiment on the privacy preserving frequency
mining in C environment, which runs on a laptop with CPU
Pentium M 1.8 GHz and 1GB memory. The used crypto-
graphic functions are derived from Open SSL Library.

To measure the computation cost of the frequency mining
protocol in worst case, we assume that all parties involve in
the protocol except the miner are the moderators. We measure
the computation cost of the frequency mining protocol for 10
parties. Before executing the protocol, we generate a pair of
keys for each party, with the size of public keys set at 512
bits.

Table 1 illustrates our measurements of all parties’s compu-
tation time in the submission phase: it is in regard to 𝑁 and
∣𝑆∣, for a typical scenario, where 𝑁 = 1000, ∣𝑆∣ = 20. The
computation time of all parties is about 10.8 seconds. Table
2 illustrates our measurements of a moderator’s computation
time: it is linear in 𝑁 and does not depend on 𝑡 and ∣𝑆∣. For
a typical scenario where 𝑁 = 1000, the computation time of
a moderator is about 0.8 seconds. The miner’s computation
time: it is linear in 𝑁 , ∣𝑆∣, and 𝑡. However, it is very small,
it only is 65𝑚𝑠 when 𝑁 = 10000, ∣𝑆∣ = 20, and 𝑡 = 10.

V. PRIVACY PRESERVING FOR CLASSIFICATION RULES

LEARNING IN TWO-DIMENSION DISTRIBUTED SETTING

A. Privacy preserving association rules mining

1) Association rules and frequent itemset: The association
rules mining problem can be formally stated in [17]. Let 𝐼 =
𝐼1, 𝐼2, ..., 𝐼𝑑} be the set of all items. Let 𝐷𝐵 a transaction
database, where each transaction 𝑇 is a set of items such that
𝑇 ⊆ 𝐼 . Associated with each transaction is a unique identifier,
denoted by 𝑇𝐼𝐷. We say that a transaction 𝑇 contains 𝑋 , a
set of some items in 𝐼 , if 𝑋 ⊆ 𝑇 . The problem is to find the
association rules that have an implication of the form 𝑋 ⇒

𝑌 [𝑠, 𝑐], where 𝑋 ⊆ 𝐼 , 𝑌 ⊆ 𝐼 , and 𝑋 ∩ 𝑌 = 𝜙. The support
𝑠 and the confidence 𝑐 of the rule 𝑋 ⇒ 𝑌 are defined as:

𝑠 = 𝑃 (𝑋 ∪ 𝑌 ) = 𝑇 (𝑋 ∪ 𝑌 )
∣𝐷𝐵∣

𝑐 = 𝑃 (𝑋∣𝑌 ) = 𝑇 (𝑋 ∪ 𝑌 )
𝑇 (𝑌 )

Where 𝑇 (𝑋) stands for the number of transactions containing
the set 𝑋 in 𝐷𝐵 and ∣𝐷𝐵∣ denotes the total number of
transactions in 𝐷𝐵. The strong association rules are required
to meet a minimum support (𝑠𝑚𝑖𝑛) and a minimum confidence
(𝑐𝑚𝑖𝑛) defined by the miner.

A set of items is referred as an itemset. An itemset that
contains 𝑘 items is a 𝑘-itemset. The support count of an
itemset is the number of transactions containing the itemset.
The minimum support count is defined as 𝑠𝑚𝑖𝑛∣𝐷𝐵∣. An
itemset is frequent if its support count is not less than the
minimum support count. Association rule mining is a two-
step process: (1) Finding all frequent itemsets; (2) Generating
strong association rules from the frequent itemsets.

Agrawal et al. [17], [2] presented the Apriori algorithm to
efficiently identify frequent itemsets for boolean association
rules. The name of the algorithm is based on the fact that the
algorithm uses the Apriori property, i.e., all nonempty subsets
of a frequent itemset must also be frequent.

2) Finding a frequent itemset: Assume that the transactions
set 𝐷𝐵 is two-dimension distributed into 𝑛𝑚 parties as in
Section 2.𝐴. Each party 𝑃𝑖𝑘(𝑖 = 1, ..𝑛, 𝑘 = 1, ..,𝑚) owns
𝐷𝐵𝑖𝑘 that contains information about certain attribute set 𝐼(𝑘)

and certain records. Given a candidate set 𝑐 of the 𝑘 items, the
parties wish to cooperatively find whether or not the candidate
set is frequent from the joint transaction set (𝐷𝐵), without
disclosing each party’s individual transactions and even the
local frequent itemsets.

Assume that 𝑐 is partitioned into parts 𝑐𝑘, where 𝑘 ∈ 𝑆,
S⊆ {1, ..,𝑚}. Each 𝑐𝑘 consists of items ∈ 𝐼(𝑘). Note that if
𝑐 is frequent in 𝐷𝐵, it is frequent in at least one horizontal
partition 𝐷𝐵𝑖, where 𝐷𝐵𝑖 = 𝐷𝐵𝑖1∪ ...∪𝐷𝐵𝑖𝑚. In addition,
if 𝑐𝑘 is frequent in 𝐷𝐵𝑖, every 𝑐𝑘 (𝑘 ∈ 𝑆) is frequent in 𝐷𝐵𝑖𝑘.
Considering a map from each 𝐷𝐵𝑖𝑘 to a binary number that
is done by each 𝑃𝑖𝑘 as follows:

𝑣𝑖𝑘 =

{
1, if 𝑐𝑘 is frequent in 𝐷𝐵𝑖𝑘;
0, otherwise.

Thus,𝐷𝐵 is mapped to the binary matrix 𝑛×𝑚 (𝑉 ). Hence,
𝑐 is frequent in at least one horizontal partition 𝐷𝐻𝑖 as long
as at least a row 𝑖 in 𝑉 with all elements are 1. As the result,
𝑣𝑖 =

∑
𝑘∈𝑆 𝑣𝑖𝑘 − ∣𝑆∣ = 0. Clearly, using frequency mining

can allow the miner to find a random permutation of (𝑔𝑣1 , ...,
𝑔𝑣𝑚). Therefore, the miner can identify whether 𝑐 is frequent
or not, without knowing 𝑐 be frequent in which 𝐷𝐵𝑖.

3) Finding all frequent itemsets and their support counts:
In the classic Apriori algorithm [17]. The key issue is com-
puting the support of an itemset. To find out if a particular
itemset is frequent, we count the number of records where
the values for all the attributes in the itemset are 1. Thus, the
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problem is to compute the frequency of values’ tuples that all
values in the tuple are 1. The privacy preserving protocol for
finding frequent itemsets and support counts follows Apriori
algorithm as below:

1: {Finding an item 1-Itemsets is frequent}
2: 𝐶1 = 𝐼
3: The miner sets 𝐿1 = ∅
4: for each 𝑐 ∈ 𝐶1 do
5: The miner uses the frequency mining protocol to iden-

tify whether or not 𝑐 is frequent
6: if 𝑐 is frequent then
7: The miner does: 𝐿1 = 𝐿1 ∪ 𝑐
8: Let 𝑐 ∈ 𝐼(𝑘), the miner broadcasts the requirement

for computing 𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝑐) to all 𝑃𝑖𝑘 (𝑖 ∈ {1, ..., 𝑛}).
9: All parties involve in frequency mining protocol to

compute 𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝑐)
10: end if
11: end for
12: for {𝑝 = 2; 𝐿𝑝−1 ∕= ∅ 𝑝++} do
13: The miner does: 𝐶𝑝=Approri-gen(𝐿𝑝−1)
14: for each 𝑐 ∈ 𝐶𝑝 do
15: The miner uses the frequency mining protocol to

identify whether or not 𝑐 is frequent
16: if 𝑐 is frequent then
17: The miner does: 𝐿𝑝 = 𝐿𝑝 ∪ 𝑐
18: Let 𝑐 consists of items partitioned into the sets 𝑐𝑘,

where 𝑘 ∈ 𝑆, 𝑆 ⊂ {1, ...,𝑚}, the miner broadcasts
the requirement for computing 𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝑐) to all
𝑃𝑖𝑘 (𝑘 ∈ 𝑆).

19: The miner and the parties involve in frequency
mining protocol to compute 𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝑐)

20: end if
21: end for
22: end for

4) Analysis of protocol:

Statement 1. (Correctness). If all participants follow the
protocol, then the miner’s result is the frequent itemsets and
the support count of each frequent itemset

Proof:Candidate itemsets are generated by the Apriorigen
procedure. The correctness of that procedure has proved [17].
The 𝐶𝑝 sets are generated correctly as long as the input to
the procedure is correct. We show by induction that the 𝐿𝑝

sets are generated correctly. At steps 1 − 9 with 𝑝 = 1,
𝐿1 is correctly generated by the frequency mining protocol.
Assume that 𝐿𝑝−1 has been correctly generated, then 𝐶𝑝 is
correctly generated by Apriorigen procedure. Since frequency
ming protocol is correct, the support count of each 𝑐 ∈ 𝐶𝑘−1

is computed correctly. Hence, 𝐿𝑝 is generated correctly from
𝐿𝑝−1. The entire frequent itemsets and the support counts
gives correct results.

Statement 2. (Privacy.) The protocol preserves the privacy of
the honest users against the miner and up to 𝑛𝑚−2 corrupted
parties as long as there is at least an honest be the moderator.

Proof: Since all support count computations and frequent
itemsets identification are done independently using frequency
mining. This statement follows immediately from Theorem 2.

5) Evaluation of complexity: The communication analysis
critically depends on the number of frequency computations
called. We incur the cost of privacy preserving frequency
mining for each call. Let 𝑟 be the maximum size of a frequent
itemset, and let 𝐶𝑖(𝑖 = 1, ..., 𝑟) and 𝐿𝑖(𝑖 = 1, ..., 𝑟) represent
the number of candidate itemsets and the found number of fre-
quent itemsets at each round, the total communication consists
of cost of finding frequent and the cost of the support counts
computation that is: 𝐶 =

∑𝑟
𝑖=1(5𝑡+ 2𝐶𝑖)𝑛𝑏+ (5𝑡+ 2𝐿𝑖)𝑁𝑏

bits. Similarity, the computational complexity is 𝑂(
∑𝑟

𝑖=1((𝑡+
𝐶𝑖)𝑛+ (𝑡+ 𝐿𝑖)𝑁) modular exponentiations.

B. Privacy preserving learning of ID3 tree in two-dimension
distributed data

Using the primitive of proposed privacy-preserving fre-
quency mining, we can learn ID3 trees in two-dimension dis-
tributed data without loss of accuracy. The miner’s algorithm
has the same complexity as the original ID3 tree algorithm,
except for an additional linear overhead factor. Which has a
value determined by the number of times frequency mining
protocol using to compute gain.

1) ID3 decision tree learning: we firstly present a brief
review of ID3 decision trees. An ID3 tree is a rooted tree
containing nodes and edges. Each internal node is a test node
and corresponds to an attribute. The edges going out of a node
correspond to the possible values of that attribute. The ID3
algorithm works as follows. The tree is constructed top-down
in a recursive fashion. At the root, each attribute is tested to
determine how well it alone classifies the samples. The best
attribute is then chosen and the samples are partitioned accord-
ing to this attribute. The ID3 algorithm is then recursively
called for each child of this node, using the corresponding
subset of data.

Thus, major problem of the algorithm is choosing the best
attribute that can achieve the maximum information gain at
each node. Clearly, the problem of choosing the best attribute
can be reduced to computing entropies that require computa-
tion of the frequency of tuples of values[24].

2) Protocol of privacy-preserving ID3 tree learning: Let
𝐷𝐵 be a data set that has the set of (non-class) attributes
𝐴 = {𝐴1, .., 𝐴𝑙} and 𝑉 the class attribute. Without loss
of generality, we assume that all attributes have the same
domain size d: {𝑎1, ..., 𝑎𝑑}. 𝐷𝐵 is two-dimension distributed
into 𝑛𝑚 parties as in Section 2.𝐴. Each party 𝑃𝑖𝑘(𝑖 =
1, ..𝑛, 𝑘 = 1, ..,𝑚) owns 𝐷𝐵𝑖𝑘. There are 𝑛 parties 𝑃𝑖𝑚

(𝑖 = 1, ..𝑛) holding the classification attribute 𝑉 . The parties
wish to cooperatively build the 𝐼𝐷3 decision tree classifier
from the joint data set of all parties, without disclosing each
party’s individual transactions and even the number of the
local records. Assume that parties have set a system as the
computation model described in Section 3. In this section,
we use frequency protocol as the primitive to design the
privacy protocol for building decision tree following the ID3
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Algorithm:
PrivacyPreservingID3(𝐴, 𝑉,𝐷𝐵)

1. If 𝐴 is empty, return a leaf-node with the class value
assigned to the most of all transactions in 𝐷𝐵.

2. Use the privacy preserving method to count the number
of records with each class label. If 𝐷𝐵 consists of
records which have the same class label 𝑣, return a leaf
node with 𝑣.

3. Otherwise:
- Determine the best attribute 𝐴𝑖 for 𝐷𝐵 using the
privacy-preserving method.
- For 𝐴𝑖 = {𝑎1, ..., 𝑎𝑑}, let 𝐷𝐵(𝑎1) ,..., 𝐷𝐵(𝑎𝑑) be
a partition of 𝐷𝐵 that every record in 𝐷𝐵(𝑎𝑗) has
attribute value 𝑎𝑗 .
- Return a tree whose root is labeled 𝐴𝑖, the root has
outgoing edges labeled 𝑎1,..., 𝑎𝑑 s.t. each edge 𝑎𝑗 goes to
the tree 𝑃𝑟𝑖𝑣𝑎𝑐𝑦𝑃𝑟𝑒𝑠𝑒𝑟𝑣𝑖𝑛𝑔𝐼𝐷3(𝐴−𝐴𝑖, 𝑉,𝐷𝐵(𝑎𝑗)).

3) Analysis of protocol: The communication/computation
depends on the number of records, number of vertically
partition, number of attributes, number of attribute values
per attribute, number of classes and complexity of the tree.
For a rough analysis, the cost of computation involves in
terms of the time number of frequency mining protocol called
to build the tree. Assume that there are 𝑟 nodes in final
classification tree. In total, each node needs 𝑝(1 + 𝑑𝑙) the
calls of frequency mining protocol. All node of the tree need
𝑝𝑟(1 + 𝑑𝑙) the frequency computation. Therefore, in total the
entire classification process will require O(𝑝𝑟𝑑𝑙𝑁(𝑡 + ∣𝑆∣))
encryptions and O(𝑝𝑟𝑑𝑙𝑁(𝑡+ ∣𝑆∣)𝑏) bits communication.

VI. CONCLUSION

In this paper, we proposed a method for privacy-preserving
classification learning in two-dimension distributed data,
which has not been investigated previously. Basically, the
proposed method is based on the ElGamal encryption scheme
and it ensures strong privacy without loss of accuracy. We
illustrated the applicability of the method by applying it to
design the privacy preserving protocol for some learning meth-
ods such as association rules mining, decision tree learning.
We conducted experiments to evaluate the complexity of the
protocols. The experimental results showed that the protocols
are efficient and practical.
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