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Abstract—This paper proposes an improvement of
a recently proposed semantic-based crossover, Semantic
Similarity-based Crossover (SSC)[27]. The new crossover,
called the Most Semantic Similarity-based Crossover
(MSSC), is tested with Genetic Programming (GP) on a
real world problem, as in predicting the tide in Venice
Lagoon, Italy. The results are compared with GP using
Standard Crossover (SC) and GP using validation sets. The
comparative results show that while using validation sets
give only limited effect, using semantic-based crossovers,
especially MSSC, remarkably improve the ability of GP to
predict time series for the tested problem. Further analysis
on GP code bloat helps to explain the reason behind this
superiority of MSSC.

Keywords-Genetic Programming; Semantics; Crossover;
Time Series;

I. INTRODUCTION

In the field of Genetic Programming (GP) [22], [17],
researchers have recently paid more attention to semantic
information, with a dramatic increase in the number of
publications (e.g., [11], [13], [14], [16], [15], [2], [20],
[26], [27], [5]). Previously, most research has purely
focused on syntactic aspects of GP representation. From a
programmer’s perspective, however, maintaining syntactic
correctness is only one part of program construction:
maintaining program semantic correctness is much more
desirable. Thus incorporating semantic awareness in the
GP evolutionary process could improve its performance,
extending the applicability of GP to problems that are
difficult with purely syntactic approaches.

In the realm of GP real world application, time series
prediction has been considered as a major target [9], [25],
[24], [19]. The previous work on GP application to time
series prediction problems has forcused on financial data
forecasting [9], [25], [19] or using artificial Mackey time
series [24]. Their approach is to build up forecasting mod-
els by combining different variables that can represent the
knowledge from time series data. To our best knowledge,
incorporating semantics into GP systems has never been
used in time series prediction. In this paper, we use a
new semantics based crossovers to solve the problem of
predicting the tide in Venice Lagood, Italy. This problem
has been seen in [1] as a truely difficult time series
to predict. The remainder of the paper is organised as
follows. In the next section we review the literature on GP
with semantics. The semantics similarity-based crossover
(SSC), the new semantic-based crossover (MSSC) and
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the model to predict time series are presented in Section
III. Tt is followed by a section detailing our experimental
settings. The experimental results are shown and discussed
in Section V. The last section concludes the paper and
highlights some future work.

II. RELATED WORK

Incorporating semantics into GP has recently been con-
sidered by a number of GP researchers. This results in a
dramatic increase in the number of related publications.
Generally, the work falls into three main strands:

1) using formal methods [11], [13], [14], [16], [15]
2) using grammars [28], [5], [6]
3) using structures such as GP trees [2], [20], [26], [27]

The first approach in a series of work [11], [13],
[14] was advocated by Johnson. In this work, Abstract
Interpretation and Model Checking are used to calcu-
late/extract semantics. Then, semantic information is used
to measure the fitness of individuals where it is unable to
use traditional sample point fitness. Consequently, Katz
and Peled used model checking to solve the Mutual
Exclusion problem [16], [15]. Again, individuals’ fitness is
quantified through model checking. These formal methods
have a strict mathematical foundation, that potentially may
aid GP. Perhaps because of high complexity, however,
these methods have seen only limited research despite the
advocacy of Johnson [12]. Their main application to date
has laid in evolving control strategies.

The second methodology uses Attribute Grammars as
the main formalism. By adding attributes to a grammar,
some useful semantic information about individuals can
be generated. This information can then be used to delete
bad individuals [6], or to prevent generating semantically
invalid ones [28], [5]. The attributes used to represent
semantics are, however, problem dependent, and it is not
always easy to design such attributes for a new problem.

In the last category, controlling the GP operators is
the major theme. In [2], the authors investigated the
effect of semantic diversity on Boolean domains, checking
the semantic equivalence between offspring and parents
by transformating them to a canonical form, Reduced
Ordered Binary Decision Diagrams (ROBDDs) [7]. This
information is used to determine which offsprings are
copied to the next generation. The method improved GP
performance, presumably because it increased semantic
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diversity. The method has also been applied to mutation [4]
and to the initialisation phase of GP [3].

While, most of previous research on semantics in GP
were focused on combinatorial and boolean problems [5],
[2], [20], [16], research on real-valued domains [26],
[27], [18] is only recently considered. Krawiec and Li-
chocki [18] based the semantics of individuals on fitness
cases, using it to guide the crossover operator (Approxi-
mating Geometric Crossover - AGC). AGC turned out to
be not significantly better than standard crossover (SC) on
their tested real-valued problems, and only slightly better
on Boolean domains.

Uy et al. [26] proposed Semantics Aware Crossover
(SAC) with an aim to promote semantic diversity. SAC
is based on checking semantic equivalence of subtrees. It
showed limited improvement on some real-valued prob-
lems; SAC was subsequently extended to Semantic Simi-
larity based Crossover (SSC) [27], which performed better
than both SC and SAC on tested real-valued regression
problems [27]. However, in [27], SSC was only tested
on some toy symbolic regression problems. Moreover,
the performance of SSC could be dependent on some
predetermined parameters (e.g. the semantic sensitivities).
The objective of the work in this paper is to overcome
this weakness by proposing an improved version of SSC
resulting in a new crossover operator that will be called
the Most Semantic Similarity-based Crossover (MSSC) in
the sequel. More importantly, we test these crossovers,
in comparison with standard crossover and validation sets
method, on a real-world and hard problem.

III. METHODS

This section briefly describes our Semantic Similar-
ity based Crossover (SSC). Then, the new improvement
of SSC, the Most Semantic Similarity based Crossover
(MSSC), is detailed. Next, we present the time series
prediction model used in this paper.

A. Semantic Similarity-based Crossover

Semantic Similarity based Crossover (SSC) [27] is
inspired and extended from earlier research on Semantics
Aware Crossover (SAC) [26]. SSC used in this paper is
almost identical to that described in Uy et al. [27] with
a slightly modified semantic distance measure. Since SSC
operates on the semantics of subtrees, first a definition
of subtree semantics is needed. Formally, the Sampling
Semantics of any (sub)tree is defined as follows:

Let F be a function expressed by a (sub)tree 7 on a
domain D. Let P be a set of points sampled from domain
D, P={p1,p2,...,pn}. Then the Sampling Semantics of
T on P on domain D is the set S = {s1,s2,...,s5} where
Si ZF(p,‘),i = 1,2,...7N.

The value of N depends on the problems. If it is too
small, the approximate semantics might be too coarse-
grained and not sufficiently accurate. If N is too big, the
approximate semantics might be more accurate, but more
time-consuming to measure. The choice of P is also cru-
cial. If the members of P are too closely related to the GP

function set (for example,  for trigonometric functions,
or e for logarithmic functions), then the semantics might
be misleading. In this paper, the number of points for
evaluating Sampling Semantics is set as the number of
fitness cases of the problem, and we choose the same set
of points P as the fitness cases of the problem.

Based on Sampling Semantics (SS), we define a Sam-
pling Semantics Distance between two subtrees. In the
previous work [27], Sampling Semantics Distance (SSD)
was defined as the sum of absolute difference of all
values of SS. While the experiments showed that this
kind of SSD is acceptable, it has a major weakness that
the value of SSD is strongly dependent on the number
of SS points (N) [27]. To remedy this drawback, in this
paper, we use the mean of absolute distance as the SSD
between subtrees. In other words, let U = {uy,ua,...,uy}
and V = {v,v2,...,vy} be the SS of Subtree;(St;) and
Subtree;(Stz) on the same set of evaluating values, then
the SSD between St; and St is defined as follows:

u1—v1|—|—|u2—v2\—|—....+\uN—vN| (1)
N

Thanks to SSD, a relationship known as Semantic
Similarity is defined. The intuition behind semantic
similarity is that exchange of subtrees is most likely to
be beneficial if the two subtrees are not semantically
identical, but also they are not too semantically dissimilar.
Two subtrees are semantically similar on a domain if their
SSD on the same set of points in that domain lies within
a positive interval. The formal definition of semantic
similarity (SSi) between subtrees St; and St; is as follows:

SSD(St1,8t) = |

SSi(Sty,Str) = if o< SSD(St;,8t) < B

then true

else false

here o and [ are two predefined constants, known as the
lower and upper bounds for semantic sensitivity, respec-
tively. Conceivably, the best values for lower and upper
bound semantic sensitivity might be problem dependent.
However we strongly suspect that for almost any symbolic
regression problem, there is a range of values that is
appropriate [27]. The investigation of the effect of different
semantic sensitivities on SSC performance is beyond the
scope of this paper. In this paper, we set oo = 1073 and
B = 0.4 which are good values found in the literature [27].

Inspired from the difficulty in designing an operator
with high locality in GP, SSC was proposed with the main
objective being to improve the locality of crossover. SSC
is in fact an extension of SAC in two ways. Firstly, when
two subtrees are selected for crossover, their semantic
similarity, rather than semantic equivalence as in SAC, is
checked. Secondly, semantic similarity is more difficult to
satisfy than semantic equivalence, so repeated failures may
occur. Thus SSC uses multiple trials to find a semantically

90



Algorithm 1: Semantic Similarity based Crossover

select Parent 1 P;

select Parent 2 P;;

Count=0;

while Count<Max_Trial do

choose a random crossover point Subtree; in Py;
choose a random crossover point Subtree; in P»;
generate a number of random points (P) on the
problem domain;

calculate the SSD between Subtree; and Subtree;
on P

if Subtree; is similar to Subtree; then
execute Crossover;

add the children to the new population;

return true;
else
| Count=Count+1;

if Count=Moax_Trial then
choose a random crossover point Subtree; in Py;

choose a random crossover point Subtree; in Ps;
execute Crossover;
return true;

similar pairs, only reverting to random selection after
passing a bound on the number of trials. Algorithm 1
shows how SSC operates in detail. In our experiments, the
value of Max_Trial was set to 12, with this value having
been calibrated by earlier experimental results.

B. The Most Semantic Similarity-based Crossover

MSSC further exploits the main idea of SSC. The
purpose of MSSC is to avoid the manual determination of
the semantic sensitivities in SSC, but still keep a semantic
small change in child individual(s) after crossover. MSSC
works as follows. Firstly, N subtree pairs are randomly
selected from the two parents. The Sampling Semantic
distance (SSD) of two subtrees in each pair is calculated.
The pairs that have the smallest (most similar but not
equivalent) semantic distance of two subtrees in N pairs is
chosen for crossover. In MSSC, the concept of semantic
equivalence is the same as in SAC. Algorithm 2 shows
how MSSC works in detail. In the experiments of MSSC,
the value of Max_Trial (TM) is again set as in SSC, and
Extremal_Value is set to 10°.

C. Time Series Prediction Model

The task of time series prediction is to estimate the
value of the series in the future based on its values in
the past. There are two models of time series prediction:
one-step prediction and multi-step prediction. In one-step
prediction, the task is to express the value of x(+ 1) as
a function of previous of the N values of the time series,
x(t),...,x(t —=N+1). That is finding the function F' so that

x(t+1)=F(x@),x(t—1),...x¢t—N+1)) ?2)

Algorithm 2: The Most Semantic Similarity based
Crossover

select Parent 1 Pp;
select Parent 2 P;;
Count=0;
Max=Extremal_Value;
while Count<Max_Trial do
choose a random crossover point Subtree; in Pp;
choose a random crossover point Subtree; in Ps;
SD=SSD(Subtree;, Subtree;)
if SD is less than Max then
Max=SD;
CrossPoint1=Subtreey;
CrossPoint2=Subtree;;

Execute crossover by exchange the subtrees at
CrossPoint]l and CrossPoint2;
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Figure 1. The plot of 370 points of the tide level in Venice Lagoon.

The purpose of multi-step prediction is to obtain pre-
dictions of several steps ahead into the future, x(z +
1),x(t +2),x(¢t 4 3),..., starting from the information at
current time slice z. In this paper, we only focus on
one-step prediction and follows the work in [23] to set
N as 8. It means that the main task is to ask GP to
find model for x(7 + 1) based on its 8 previous values:
x(t),x(t=1),....x(t—17).

IV. EXPERIMENTAL SETTINGS
A. Venice Lagoon Time Series Problem

The prediction of high tide has long been the subject
of interest to humans. The motivation for such interest is
the economic benefits of the prediction/forecasting system.
Usually, high tide is the result of a combination of some
chaotic climatic elements. Therefore, tide’s behaviour is
difficult to predict, because it depends on many factors [1].
Two main factors that most affect tide level are the
astronomic and atmospheric agents. The problem has been
approached by using time series analysis and nonlinear
neural networks [10]. In this paper we use GP equipped
with semantic-based crossovers to solve the problem.
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Figure 2. The plot of 270 points that are combined into 30 fitness cases.

The time series data to predict in this paper is high
tide in Venice Lagoon, Italy. The data is measured in
centimetres each hour along the years 1990 to 1995 [1].
We took 370 points (from position of 11 to position of
380) from this data set. 10 first values were discarded
to ensure that the measurement system will be the stable
state. This data is plotted in Figure 1. We divided these
data into two sets, one for training and the other for testing.
The first 270 values are used for the training set. They
are combined into 30 fitness cases. Figure 2 shows 270
values of 30 these fitness cases. Similarly, 30 fitness cases
were used for the testing set. We divided the testing set
into 3 sets with the number of points in the future is 10%
(k=0,1,2). These 3 sets will be referred as Tk with
k=0,1,2 in the following text.

B. GP Parameters Settings

The GP parameters used for our experiments are shown
in Table I. In this paper, 3 population sizes of 250, 500
and 1000, were tested. Correspondingly, three values of
generation: 100, 50, 25 respectively, were used. These
values fixed the number of fitness evaluations as 25000.
The terminal set includes 8 variables, X;, X», ..., Xg, and
a constant 1. These eight variables present 8 values of
time series in the past. Despite this being an experiment
purely concerned with the prediction ability of crossover,
we have retained mutation with a small rate in the system
because the aim of the experiment is to study crossover
in the context of a normal GP run. Our experiments were
conducted on six configurations as follows:

1) Standard Crossover (SC): The fitness is measured as
the error rate on the whole training set. The best-of-
run individual is the individual with the lowest error
rate on the training set in entire evolutionary time.
This individual was then tested on the testing data
set to give the result for solution prediction capacity
of the run.

2) Standard Crossover with Validation (SCV): The
training set is randomly divided into 2 (for each
run): 67% is used for training (training set) and
the remaining 33% is used for validating (validation
set). At each generation the fitness of individuals
is measured on the training set and this fitness is
used for tournament selection. A two-objective trial
(fitness and size of an individual) is conducted in
order to extract a set of non-dominated individuals
(the Pareto front). The individuals in the Pareto
front are then evaluated on the validation set, with
the best of run individual selected as the one of
these with the smallest error rate on the validation

Table 1
RUN AND EVOLUTIONARY PARAMETER VALUES.

Parameters Value
Population size 250, 500, 1000
Generation 100, 50, 25
Selection Tournament
Tournament size 3

Crossover probability 0.9

Mutation probability 0.05

Initial Max depth 6

Max depth 15

Max depth of mutation tree 15

Non-terminals +, -, *, / (pro. one),

sin, cos, exp, log (pro. one)
X1, X2, .., Xg, 1

30 fitness cases

30 fitness cases

mean of absolute error on all
fitness cases

100 independent runs for
each value

Terminals
Training set
Testing set
Raw fitness

Trials per treatment

set. This configuration is similar to the validation
configuration in [8].

3) Semantic Similarity based Crossover (SSC): This
configuration is similar to configuration 1 with only
the difference is that SSC rather than SC is used.

4) Semantic Similarity based Crossover with Validation
(SSCV): This configuration is similar to configura-
tion 2 but with SSC replaces SC.

5) The Most Semantic Similarity based Crossover
(MSSC): This configuration is similar to configu-
ration 1 but MSSC is used instead of SC.

6) The Most Semantic Similarity based Crossover with
Validation (MSSCYV): This configuration is similar
to connfiguration 2 but with MSSC rather than SC.

V. RESULTS AND DISCUSSION

This section presents the effect of semantic-based
crossovers, in comparison with standard crossover and
with validation set method, on GP performance, GP ability
to predict, and GP code bloat.

A. On the GP Performance

To compare the three crossovers, we recorded classic
performance metrics, the mean and the standard deviation
of the best fitness. The results are shown in Table II. It can
be seen from this table that both semantic-based crossovers
helped to improve the performance of GP. It is reflected
by the values of the mean best fitness found by SSC and
MSSC were often smaller than one found by SC. The
exception only lies in one case of SSC with population
size of 250. It should, however, be noted from this table
that while the improvement of SSC versus SC seemed not
remarkable, the size of the improvement of MSSC over
SC was much bigger.
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Table 11
MEAN AND STANDARD DEVIATION OF THE AVERAGE OF BEST
FITNESS ON THE TRAINING SET (SMALLER VALUE IS BETTER)

Pop250 Pop500 Pop1000
Methods Mean Std | Mean Std | Mean  Std
SC 476 1.58 | 493 150 | 539 1.22
SSC 501 1.61 | 476 122 499 1.15
MSSC 4.02 143 | 400 1.11 | 433 1.02
SCV 441 170 | 421 1.13 | 473 1.08
SSCV 431 179 | 416 1.18 | 472 0.99
MSSCV 326 139 333 1.19| 4.06 1.03

The table also reveals that by using validation sets the
mean best fitness was smaller than the case when they
were not used. The reason, perhaps, is that GP was trained
on a smaller set of data (20 fitness cases when using
validation sets and 30 fitness cases in the other case). It
is noteworthy that, even in this case, the semantic-based
crossovers were still better than SC. Moreover, MSSC was
still the best out of the three crossovers.

We also conducted a test of statistical significance of
the improvement of SSC and MSSC in Table II over
SC and of SSCV, MSSCV over SCV using Wilcoxon
signed-rank test with the confidence level of 99%. In this
table, if the improvements of SSC, MSSC over SC and
of SSCV, MSSCV over SCV are statistically significant,
the results are printed in bold face. The results of this
test confirm the significant improvement of MSSC over
SC and of MSSCV over SCV, while it reveals that the
improvement of SSC over SC and SSCV over SCV is
not statistically significant. We further conducted a test of
statistical significant of the improvement of MSSC over
SSC and MSSCV over SSCV with the confidence level of
99%. The result is (although not highlighted in this table
) that MSSC and MSSCYV are significant better than SSC
and SSCV, respectively, in terms of the average of the
best fitness. These results give clear evidence that MSSC
not only helps to overcome the limitation of SSC but also
helps to significantly improve GP performance, at least on
solving this real world problem.

B. On the Ability to Predict

To examine and compare the ability of these methods
to predict, we use a new performance metric to measure
the quality of the solution of a run. For each run, the best
individual (based on its fitness on the training data sets or
on validation sets) was selected as the final solution of the
run. This solution is then tested on the testing data sets.
We define € = 5 as a constant to determine the quality of a
solution. For a solution with fitness f7 on the testing sets,
we define it as a good solution if the fitness on this set is
less than €. We counted the number of good solutions out
of 100 runs and the results are shown on Table III.

It can be seen from this table that the prediction
ability of the GP systems (both with and without using
semantic-based crossovers) depends on the GP parameters
settings. When using a small population size and a bigger

Table III
THE NUMBER OF GOOD SOLUTIONS (GREATER VALUE IS BETTER)

Pop250 Pop500 Pop1000
Methods | " o 3 |1 T2 T3 | T1 T2 T3
SC 12 12 13 |24 21 20|27 26 22
SSC 5 5 4|25 22 23033 32 27
MSSC | 6 5 5|26 24 21|48 47 45
SCV 15 14 11 22 20 15|26 25 2l
SSCV |16 14 13|16 16 16|27 28 23
MSSCV |20 18 16 |29 26 25|48 47 45

number of generations, the prediction ability of GP is
poorer than when using a large population with a smaller
number of generations. The table also shows that using
semantic-based crossovers could not help to improve the
predictability of GP running with a small population and
big number of generations. The number of good solutions
of SSC and MSSC on population size of 250 are smaller
than ones of SC. The reason behind this is that when the
GP systems run for a big number of generations, they
could be over-fitting on training data (Table II shows that
the average of the best fitness of the GP systems run with
a big number of generations is less than ones run with a
small number of generations) and it was even worse when
they are equipped with semantic based crossovers.

However, what is more important is that semantic-based
crossovers helped to enhance the ability of GP to predict
when overfitting is not such a serious problem (population
size of 500, and population of 1000). The table shows that
the number of good solutions found by SSC and MSSC
were often slightly greater than ones found by SC on the
setting of population size of 500. When the population size
is 1000, MSSC helped to remarkably improve the ability
of GP to predict. It can be observed that the number of
good solutions found by MSSC on this population size
setting is substantially greater than ones found by both
SC and SSC.

The table also shows that using validation sets only
gives a positive impact when the population size is 250.
For this setting, the number of good solutions found by
using crossovers with validation sets were often greater
than ones without using validation sets. For other settings
of population size (i.e. 500 and 1000), using validation sets
gave very limited impact. The reason might be that using
validation sets helps to prevent over-fitting when the GP
systems were run for a long time, and when GP population
were still under-fitting (population size of 500 and 1000),
validation sets method was not essentially effective in
improving the ability of GP to predict.

The second metric measures the ability of these methods
to predict by recording the median of the best fitness on
the testing data sets. The results of the median of the
best fitness on testing sets are presented in Table IV.
The results in this table are consistent with the ones in
Table III. It again confirms the improvement of semantic-
based crossovers, especially MSSC, when they were used
with a large population and smaller number of generations.

93



Table IV
THE MEDIAN OF ERROR ON TESTING SETS (SMALLER VALUE IS

BETTER)

Pop250 Pop500 Pop1000
Methods 1o " p3 (11 T2 T3 |T1 T2 T3
SC 72 74 79 166 68 7.0 (59 6.1 62
SSC 85 85 87|65 6.6 68 (57 58 6.0
MSSC 9.0 92 9.6 (63 63 65|50 51 52
SCV 84 86 93 (66 68 72|61 62 64
SSCV 82 85 92165 6.7 67 (62 64 64
MSSCV |74 7.6 79 (63 64 62 |52 53 53

Table V
MEAN OF POPULATION SIZE AND MEAN SIZE OF THE BEST FITNESS
(THE NUMBER OF NODES, SMALLER VALUE IS BETTER)

Pop250 Pop500 Pop1000
Methods Pop Best | Pop Best | Pop Best
SC 74.4 116 | 42.8 64.8 | 27.7 328
SSC 71.1 116 | 435 69.5 | 28.1 36.1
MSSC 938 175 | 432 934 | 219 364
SCV 71.4 347 | 457 285 | 289 18.1
SSCV 76.2 369 | 443 254 | 266 16.7
MSSCV | 80.2 342 | 459 273 | 21.6 143

The table also shows the over-fitting phenomenon of a
GP run with a big number of generations and a small
population and the limited effect of using validation sets
method on the ability of GP to predict.

C. On the Code Bloat Effect

Since there is a strong correlation between the com-
plexity of learnt solutions and their ability to generalise
(Ockham’s razor or Minimum Description Length [21]),
statistics on population size and solution size were also
recorded and analysed. This includes the average size of
a GP population (Pop column) and the average size of the
best fitness (on training sets with SC, SSC and MSSC or
on validating sets with SCV, SSCV, and MSSCV) (Best
column). The results are shown in Table V.

It can be seen from this table that GP bloats remarkably
when it is run with a big number of generations (i.e. the
population size of 250). Moreover, in these runs, MSSC
produced more bloat than SSC and SC. This explains why
the predictability of GP system was reduced and the ability
to predict of MSSC is worse than SC in this experiment
setting. The table also reveals that on the population of
500, three crossovers have almost the same code bloat
effect. However, the size of the best fitness individuals
found by MSSC is still greater than one of SC. Therefore,
the ability of MSSC to predict is only slightly better than
SC on this setting. Only when using a larger population
(1000) and a smaller number of generations (25), MSSC
produced less bloat than SC, even the best individuals’
size was still a little greater than of SC. This is one of
the main reasons for the significant improvement of the
predictability of GP with MSSC over GP with SC on this
experiment setting.

Although, the previous subsection shows that using a
validation set method gives only a limited impact on
improving the ability of GP to predict, using validation sets
method helps to substantially reduce the size of the best
individuals. This is confirmed by the results in Table V
(Best column). The size of the best fitness when used with
validation set method was always substantially smaller
than without using this method. Therefore, the solutions
found by a validation set method is more readable than
one without using this method. Perhaps, this is the main
advantage of using validation set method in this problem.

In conclusion, this section shows three important results.
The first is that using a larger population and small number
of generations is better, on the tested problem, than using
a smaller population but bigger number generations. Sec-
ondly, semantic-based crossovers, especially MSSC, could
help to significantly improve the ability to predict when
GP is run with small a number of generations and a large
population. Last, using validation could help to find less
complex solutions, hence, more comprehensible.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a new semantic-based
crossover called the Most Semantic Similarity based
Crossover (MSSC). MSSC overcomes the limitation of
a recently proposed semantic based crossover, Seman-
tic Similarity based Crossover (SSC) by eliminating its
dependence on the wupper semantic sensitivity. We test
these semantic-based crossovers on a real-world problem:
predicting the tide in Venice Lagoon, Italy. The results
are compared with the standard crossover. The validation
sets method is also tested. The results shows that using
semantic-based crossovers, especially MSSC, with a small
number of generations helps to substantially improve the
ability of GP to predict the tide. The results also show
that using a validation set method helps to find the simpler
solutions though it does not help to improve the prediction
ability of GP.

In the near future, we are planning to use a valida-
tion method to dynamically prevent the over-fitting of
semantic-based crossovers, especially MSSC.
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