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Abstract— Military missions are highly dynamic and uncer-
tain. This characteristic comes from the nature of battlefields
where such factors as enemies and terrains are not easy to
be determined. Hence disruption of missions is likely to occur
whenever happening a change. This requires generating plans
that can adapt quickly to changes during execution of missions,
while paying a less cost.

In this paper, we propose a computational approach for
adaptation of mission plans dealing with any possible disruption
caused by changes. It first mathematically models the dynamic
planning problem with two criteria: the mission execution time
and the cost of operations. Based on this quantification, we in-
troduce a computational framework, which has an evolutionary
mechanism for adapting the current solution to new situations
resulted from changes. We carried out a case study on this newly
proposed approach. A modified military scenario of a mission
was used for testing. The obtained results strongly support our
proposal in finding adaptive solution dealing with the changes.

I. INTRODUCTION

Mission planning is one of the core elements in military
command and control. It is aimed at providing a solution that
implements the commander’s intent, establishes activities,
time or conditions for the operation, allocates capabilities,
and coordinates subordinates. This is a complicated process
that involves both aspects of science dealing with measurable
factors such as capabilities, techniques and procedures and
art where the intuition of the commanders about the rela-
tionships between friendly forces, enemies and environment
as well as the effects of the operation on the solders [5].

Further, it should be noted that dynamics and uncertainties
are unavoidable factors for military missions. The presence of
these factors, such as delaying in mission execution, failure
of capabilities, or uncertain intuition of commanders on
the relationship between operations of the mission, makes
mission planning more complex given that it is already a
difficult one [5], [7], [4]. This brings up to the planning
process a large number of what-if scenarios that usually go
beyond handling ability of human planners. Hence, to avoid
any possible disruption of the mission’s execution, there is
a need for finding a robust and responsive mechanism in
support planning staff. It becomes the motivation for us to
propose a computational approach in this paper.
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There is a fact that in dynamic mission planning the se-
lected plan is usually already in-use when a change happens.
Rescheduling the whole plan is not possible in this case
or might pay a high cost (or a high rate of casualties and
failures). Therefore, it is important to adapt the plan to new
conditions after the change. This adaptation must ensure
meeting the time-line of the mission while keeping the cost
of adjusting at a minimal level.

In this paper, we formulate a special class of resource con-
strained project scheduling (RCPS) with taking into account
dynamic factors and call it as Adaptive Mission Planning
Problem (AMPP). For this problem, commanders and their
military staff are expected to prepare adaptive plans to deal
with any changes that might happen during execution of the
mission. The question is that given the current being-used
plan, how to generate the new adaptation policy that can
satisfy both criteria: keeping the mission execution within its
time-line while maintaining the less cost of alteration? Since
the above-mentioned complexity of the problem, there is no
easy answer for this question.

The problem is first analyzed within a context of a
military mission planning process in order to capture all
important aspects of the process. The main objective is to
minimize the execution time of the mission under a limit on
available capabilities. It is then mathematically formulated
as a multi-objective planning problem. Two objectives are
proposed including the execution time of the plan, and the
cost of operating capabilities. Also, three types of changes
are proposed to the problem including the execution time
variation, the failure of capabilities, and the change of the
task-relationship network.

A general framework with a stepwise structure is in-
troduced to support the planning staff. For the adaptation
component, we adapt the current plan in a reactive-style using
an evolutionary algorithm. For any task, which is already
executed or in progress, it will not be scheduled again.
In this way, the rescheduling process will be smaller and
simpler over time since the number of tasks to be scheduled
decreases. To assist the decision making, we use the second
objective as the an additional indication to select a new
adapted plan. A set of plans are obtained trading-off between
time and cost of re-allocating the capabilities.

A case study was given based on a military scenario.
The performance of the proposed approach was analyzed
and discussed. Also three adaptive approaches are proposed
including randomly initializing, using the last population, and
the non-dominated solutions only from the last population.

The remainder of the paper is organized as follows: an

2010 Second International Conference on Knowledge and Systems Engineering

978-0-7695-4213-3/10 $25.00 © 2010 IEEE

DOI 10.1109/KSE.2010.37

77



overview of mission planning in Sections 2. The problem
formulation and proposed methodology are introduced in
Section 3. A case study is presented in Section 4. The last
section is devoted to the conclusion of the work and lessons
learnt.

II. MILITARY MISSION PLANNING

A. Overview of planning process

Mission planing is a decision making process in which
the commander’s intent is materialized. It is a vital element
in military command and control aiming at providing a
solution that implements the commander’s intent, establishes
activities, time or conditions for the operation, allocates
resources, assigns tasks and coordinates subordinates. This
is a complicated process that involves both aspects: (1) Sci-
ence that deals with measurable factors such as capabilities,
techniques and procedures, and it is closely related to the
analytic decision making; and (2) Art where the intuition
of the commanders about the relationships between friendly
forces, enemies and environment as well as the effects
of the operation on the solders are the focus and it can
be considered as a kind of the intuitive decision making.
Mission planning is usually done for a matter of urgency or
within a short time frame of a planning horizon [5].

It is quite common in military domain that each level
in mission planning is corresponding to a level of conflict:
strategic, operational, and tactical, although the borders
between these three is not always clear. The strategic level of
a conflict involves determining national or alliance security
objectives and developing and using national resources to
accomplish those objectives. It establishes strategic military
objectives, sequences the objectives, defines limits and as-
sesses risks for the use of military and other instruments of
power, developing strategic plans to achieve the objectives,
and providing armed forces and other capabilities in accor-
dance with strategic plans. Meanwhile, the operational level
is designated for campaigns and major operations in order
to accomplish strategic objectives within theaters or areas of
operations. Linking between tactics and strategies is done
by establishing operational objectives needed to accomplish
the strategic objectives, sequencing events to achieve the
operational objectives, and initiating actions and applying
resources to bring about and sustain those events. Lastly, the
tactical level involves situations that battles and engagements
are planned and executed to accomplish military objectives
assigned to tactical units. The focus of this level is on the
ordered arrangement and manoeuvre of combat elements
in relation to each other and to the enemy in order to
achieve combat objectives established by the operational
level commander. In other words, the context of tactical
operations is defined at the strategic and operational levels
[1], [5].

Here, we focus on the planning process at the operational
level. Planners at this level need to follow the Operational Art
(OA) of using military forces. According to OA, the issues
to be done at this level includes (1) identifying the military

conditions or end-state that constitute the strategic objectives,
(2) deciding the operational objectives that must be achieved
to reach the desired end-state, (3) ordering a sequence of
actions that lead to fulfilment of the operational objectives,
and (4) applying the military resources (capabilities) allo-
cated to sustain the desired sequence of actions. From this
point onwards, we use the term mission planning to indicate
planning at the operational level, otherwise stated.

There is no doubt that the planning process is based on
a particular military doctrine. However, the main steps are
almost similar among militaries. We will take the JMAP
framework from Australian Defence Forces (ADF) [7] as an
example

• Step 0 Initialization: including obtaining mission infor-
mation (basically called intelligence preparation of the
battle-space - IPB)

• Step 1 Mission Analysis: Determining the objectives,
available capabilities and other constraints for the mis-
sion. Also forming the commanders planning guidance
for the next step.

• Step 2 Course of action (COA) Development: Develop-
ing the course of actions (ways to achieve the objectives
with regards to the constraints)

• Step 3 COA Analysis: Comparing and analyzing COAs
to obtain an optimal plan.

• Step 4 Decision & Execution: Deciding on the plan
and executing it

Note that this is a repetitive process. Step 0 will be used
to update information for all other steps. Once updated,
the steps will be restarted for further analysis. If the time
is long enough and the urgency is less, we will have a
deliberate planning (DP) process. It is used to produce plans
for contingencies and for later execution. When we need a
plan for an immediate action or in a very short time with
a high urgency, we will have a crisis action planning (or
immediate planning) process (CAP). These two types of
planning are highly interrelated with each other. DP produces
the plans, while CAP uses these plans and adapt them to the
current situations. In other words, CAP provides situation
awareness.

For OA, it is also essential to define several key concepts.
Firstly, it is end-state. A state is a behaviour of a system at
a particular time step. End-state can be considered the final
behaviour of the system when the system stops operating. For
JMAP, end-state is defined as the set of conditions which
will achieve the strategic objective. The national end-state
is the set of desired conditions, incorporating the elements
of national power, that will achieve the national objectives.
The military end-state is the set of desired conditions beyond
which the use of military forces is no longer required to
achieve the national objectives. The military end-state for
mission planned at the operational level is defined by the
command at the strategic level. This needs to be done in
Step 1.

Second concept is centre of gravity (COG). It is the point
of gravitational attraction of an object. For JMAP, COG is
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considered as the key characteristic, capability, or locality
from which a military force derives its freedom of action,
strength or will to fight. Another one is critical vulnerability
(CV). That is a characteristic or key element of a force that
if it is destroyed, captured, or neutralized will significantly
reduce the fighting capability of the force and its COG. Also,
it needs to mention decisive point (DP). JMAP defines a
DP as a major event that is a precondition to the successful
disruption or negation of COG. A DP can be defined either
in a time or geographical space. A mission plan might have
many DPs. The line of DPs forms a path to attack or defeat
enemies and to achieve the end-state. We also call it as the
line of operations - (LOP). Determining LOP is the most
important component of the operational level planning. The
sequence of operations needs to be done in order to achieve
the end-state. Each operation or (action or task) is defined to
take care one DP.

B. Mission planning problem

Determining COG, CV, and especially DPs is a challenge.
It relies very much on the experience and knowledge of the
staff and commanders. Further, given that these concepts
are defined, finding LOPs is also a big deal. The scope
of the problem triggers a large possibilities of LOPs. The
limitation of capabilities, synchronization of operations (the
precedence relationship between operations), and time make
it very difficult to arrange the sequences of tasks to achieves
all DPs. From a computational point of view, it is valuable to
quantify these concepts. Given the limitation of capabilities,
precedence, and time , there is a need to schedule the tasks
to obtain the optimal sequence.

Note that a task is defined as a tactical operation (or action)
that a military force must do for achieving a DP. From the
previous analysis, we can see that modeling tasks is a very
important component. Quantitatively, a task usually has

• A set of pre-conditions: Defining operational conditions
for a task that need to be achieved before commencing
it. It might be derived from the defined relationship
between tasks.

• A set of effects: it is usually defined by the DP.
• A duration for execution: A task can not be executed

without a time limit in order to synchronize with other
tasks.

• A set of required capabilities: This might be equipment,
weapon, vehicles or troops

Based on this definition, the planning problem can be
transformed as follows

Parameters
• A set of tasks (a decomposition of the mission)
• A set of synchronization constraints for tasks.
• A limit on the capabilities available for the mission
Objective
• Military end-state (that can be expressed as a set of

conditions)
Outcome
• Plans that offer different lines of operations

C. Dynamics and uncertainties

Dynamics and uncertainties are unavoidable factors for
military missions. This is the nature of wars where enemies
as well as environmental aspects are highly unpredictable.
That is the reason for introducing the concept of the crisis
action planning. One of important requirements from the US
Army is that the planning process needs to be continuous
and adaptive to any changes. The presence of these factors,
such as delaying in mission execution, failure of capabilities,
or uncertain intuition of commanders on the relationship
between operations of the mission, makes the task of mission
planning more complex [5], [7], [4] with a large number
of what-if scenarios that usually goes beyond the handling
ability of human planners. Hence, there is a need for finding
a robust and responsive mechanism in support planning staff.

There are many aspects that might be changed during the
mission. Here, we describe three most typical ones to demon-
strate the concept including the execution time of tasks, the
availability of capabilities, and the relative relationship of
tasks. During the mission, there is no guarantee that a task
will be completed in time. That might be cause of the fatigue
of the troops, equipment, logistics, or new reinforcement of
the enemies. Because of the limitation on the capabilities, if
a task is late, there will be no return of the capabilities to
do other tasks that are scheduled at the time. The question
is how to adapt the current plan to deal with this change?
It should be aware that any changes of the plan can cause
a huge cost in terms of logistics and safety. Further, there
will be that at some points, the disruption of capabilities
might happen. This might be troop wounded or equipment
damaged. There is a need to adjust the plan to deal with
this disruption. Finally, during the mission, the importance
of a task might change due to the reinforcement or changes
of enemies. This might affect the relationship between tasks.
Some tasks might be better to be executed before others. The
staff and commanders have to figure out how to deal with
this without causing too much cost.

Also, the selected plan is usually in use when happening
a change. Rescheduling the whole mission is not possible
in this case or might pay a high cost (or a high rate of
casualties and failures). It is important to adapt the plan to the
new conditions causing by the change. This adaptation must
ensure meeting the time-line of the mission while keeping the
cost of adjusting at a minimal level. This means the existence
of multi-objectivity within this adaption process is apparent.

III. METHODOLOGY

We start with formulating the mission planning problem
under the presence of dynamics and uncertainties. Since deal-
ing with the matter of adaptation for mission planning, we
call it as the Adaptive Mission Planning Problem (AMPP).

A. Mathematical formulation of AMPP

The problem formulation is described as follows:

• Inputs:
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– A set V of N tasks: V = V1, V2, ..., VN , these are
non-pre-emptive. Each Vi will have:

∗ A duration di
∗ A vector rri of required capabilities by tasks:

rri = {rrij} with j = 1, ...,M (M is the
number of capability types)

– A network G of tasks where nodes and arcs
represent the tasks and the precedence relations
respectively: G = (V,E). Pred(j) defines a set
of direct predecessors, while Succ(j) is the set
of direct successors of task j. A dummy node 0
represents the starting point (central base)

– A matrix c of operational costs c = {ci,j,k}, i =
0, .., N ; j = 0, ..., N , and k = 1, ...,M . Here ci,j,k
is the cost to move a capability type k from task i
to task j. ci,0,k = 0∀i, k - no cost imposed on the
return of items to the base

– A set R of M capabilities R = {R1, R2, ..., RM}
• Parameters:

– A vector of start time ts: ts = {tsi}, with i =
1, ..., N

– For each Ri at time t, a vector of locations for each
item of a capability type lit is defined to indicate
where the item is located (or the task index). A
zero value means the item is at the central base):
lit = {lijt}, j = 0, ..., |Ri|

– For each Ri at time t, a vector of previous locations
for each item of a capability type lcit is defined
to indicate where the item was from (or the task
index). A zero value means the item is at the central
base): lcit = {lcijt}, j = 0, ..., |Ri|

– For each Ri at time t, a vector of locations for each
item of a capability type mit is defined to indicate
if the item was moved or not: mit = {mijt}, j =
0, ..., |Ri|

mijt =

{
1 lijt! = lcijt
0 otherwises

(1)

– A vector rt = rit, i = 1, ...,M presents the current
amount of resources being used at time t

– Indices of the tasks: I = {I1, I2, ..., IN} (a sched-
ule)

• Constraints:
– Precedence constraint

Ii �∈ Succ(Ij)∀i, j|Ii ≤ Ij (2)

– Time constraint

tsi + di ≤ tsj (3)

∀j, and ∀i ∈ Prec(j)
– Capability constraint

rit ≤ |Ri| (4)

∀i and t

• Objective functions:

– Makespan (f1): Minimization of the start time of
the last task to be scheduled)

f1 = tsN (5)

where N is the last task to be scheduled
– Cost of resource operations (f2)

f2 =
∑

t=1→T

∑
j=1→M

∑
k=1→|Rj |

mjkt × clcjkt,ljkt,j

(6)

• Outputs:
A schedule ts based on the obtained index I ts =
{ts1, ts2, ..., tsN}

• Dynamic factors
– Duration: Dynamic duration of a task Vi is defined

as d′i(t). It is reasonable to consider this change
following a probabilistic distribution that usually is
N(di, δ), where N is the normal distribution with
the mean as the pre-defined duration di. Constraint
Eq. 3 is rewritten as follows

tsi + d′i(t) <= tsj (7)

– Availability of capabilities: we use a sign function
to indicate the availability of capabilities:

l′ijt = sign(t) ∗ lijt (8)

where sign(t) is the sign function returning either
+1 or -1, a negative value means unavailable but
at the location |lij |. Note that the number of capa-
bilities that change their status usually follows the
Poisson distribution.

– Precedence network: The dynamic function rep-
resenting this change is defined as reversing the
relationship between two tasks on network G.

∗ A function rev(i, j)(t) is defined for this change
defining reverse precedence between two task i
and j.

∗ i, j ∈ V ′(t) where V ′(t) is the set of un-
executed tasks

• Parameters after a change
Structures of lit, lcit, mit and rt remain unchanged.
The only change is applied to the indices in which I =
I1, I2, ..., IN ′ with N ′ is the numbers of tasks in V ′(t)

B. A general framework

In this section, we propose a step-wise framework to
support the staff during their planning process. The steps
are described as follows:

• Step 1: Obtain a set of trade-off plans and select one for
execution. This needs a multi-object algorithm to carry
the task.

• Step 2: Execute the plan
• Step 3: Update planning information. If tasks are done,

Go to Step 8
• Step 4: Process changing information. If no change, Go

to Step 2
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• Step 5: Check the current plan
• Step 6: Trigger the adaptation procedure that also needs

a multi-objective mechanism.
• Step 7: Decide a new solution for execution and Go to

Step 2
• Step 8: Complete the mission
In summary, for Step 3, it is the time for obtaining

information from environment. If all tasks are done, the
mission is completed. Also, if there is no information about
any change or disruption, all the next steps will be discarded.
In case of occurring a change, the staff needs to check the
current plan for any possible infeasibility. If it is still feasible,
there is no need to adjust the plan. Conversely, the adaptation
procedure (that will be detailed in the next subsection) will
be used to generate new set of plans. The loop is continued
until the mission is completed.

C. Adaptation procedure

1) An evolutionary multi-objective approach for adapta-
tion: We need to design a multi-objective approach that
can offer a set of trade-off solutions for the commanders
and their staff to make the decision (as in Step 1 and
Step 6 of the framework). Here, we propose to use a GA
approach using dominance relations. The algorithm starts
with a population being initialized by techniques proposed
in the next section. This population will be evolved over
time. During the evolution process, all good solutions are
preserved.

To perform this task, we employ the non-dominated sorting
mechanism as proposed in NSGA-II [3] where the parent
population and offsprings are combined and sorted in order
to generate a population for the next generation. Selection
of solutions for producing offspring is also performed as in
NSGA-II where a scheme of crowding tournament selection
is used. However, the crossover and mutation operations are
redesigned since the original operators for NSGA-II are not
suitable for our problem.

- Solution representation:
Representation is an important issue to our problem. In

our problem, a complete solution must contain information
for the schedule of task execution. It contains an indirect
representation of a schedule. The indices of this sequence
indicate the order of scheduling, while the element at each
index is the ID of a task in V ′(t) to be executed: S =
(I1, I2, ..., IN ′)

- Schedule generation and evaluation:
We simply select the serial sequence generation scheme

(SSGS) as the scheme for our schedule generation. For
this scheme, when a task is scheduled, it is necessary to
check whether it will violate the precedence relation and
resource constraint (introduced by the second component of
the solution) or not. This shows an interaction between the
two components of a solution.

Evaluation of a solution involves calculation of two ob-
jectives. The task list is to make the schedule and therefore
the makespan. The cost objective will be determined by
simulating the plan with regards to the current in-use plan.

- Genetic operators:
The crossover operator is crucial for the behavior of GAs.

Two solutions are selected and their features are combined
to generate two offspring. Similar mechanisms occur in
biology, this operator allows children to inherit characteristics
from their parents. However, from a search and optimization
perspective, this operator provides exploitation ability to the
algorithm in which offspring are generated in sub-spaces
around parents.

We apply a two-point crossover strategy (partial map-
ping) to our algorithm with a constraint on the precedence
feasibility. This means that for each crossover operation,
we need to select two crossing points for each component.
Also, mutation is another important operator. It randomly
changes the values of one or more genes in the chromosomes
according to a certain distribution. This bio-inspired operator
helps to reintroduce some genetic materials lost during the
evolutionary process and some variability to the population.
In search/optimization, this operator strengthens the explo-
ration ability of the algorithm. It might help the algorithm to
search unexplored areas of the search space. The mutation
operation works as follows two consecutive genes are swaped
with a predefined probability, if the newly formed sequence
of tasks is precedence feasible.

2) Starting a population after a change: The initial popu-
lation is very important in such time-demanding scenarios as
mission planning. A good initialization will give the search a
quick convergence towards the optimal solution. For AMPP,
a natural way should be to start with random initialization
of the initial population as done in [6] for RCPS. This
method is very straightforward to implement, but gives a
slow convergence during the adaptation process since the
population is started from scratch. An opposite view is also
taken when adapting the current plan for AMPP that is to
start the population from the last population obtained from
the previous change. This helps to speed up the search if
the new optima is somewhere close to the area of the old
population. However, if the effect of the change is large,
the old population becomes entirely infeasible, this method
turns to be the random one. We also implemented it with
three others adjusting from adaption for RCPS with a single
objective:

• The last population - LP: For this approach, we use
the last population obtained from the previous adaption
period P (t− 1) (dealing with change at change t− 1)
as the initial population P (t) to deal with the change t.
Any solution that is infeasible with regard to the new
conditions caused by the change will be randomly re-
initialized. So, if P(t-1) is the last population with size
N, then P(t) is defined as

P (t) = P1(t− 1) + P ′(t) (9)

where P1(t − 1) is the set of N1 solutions that are
feasible under the new conditions caused by the change
and P ′(t) is the set of N − N1 newly randomly
initialized.

81



• the set of non-dominated solutions from the last
population- NDLP: Instead of using all individuals
in the last population, we propose to use the non-
dominated only. This will help to focus on the area
of the best solutions only. The rest of the population
will be randomly initialized to ensure diversity of the
population at some degrees. P(t) is defined as

P (t) = P (t− 1)′ + P ′(t) (10)

where P (t− 1) is the set of N ′ non-dominated solu-
tions that are feasible under the new conditions caused
by the change and P ′(t) is the set of N − N ′ newly
randomly initialized.

• Randomly initialized population - RI: This approach
simply creates P(t) by randomly initialization without
caring any information in the past.

IV. A CASE STUDY

A. Test scenarios

We deign a military mission to validate our proposal.
Note that this mission is aimed at providing an educational
test only; it does not imply any particular military. For
this mission, the military is to face a major peacekeep-
ing operation of protecting a troubling Pacific Island. The
strategic objective for this mission is to protect the newly
installed government. The end state for this mission is the
defeat of the insurgents. The main available capabilities for
this mission include (exclude the landing facilities that are
already provided conveniently):

• 12 Light Mortar Batteries (C1)
• 13 Infantry Companies (C2)
• 4 C130s (C3)
• 12 Apache helicopters (C4)

After analyzing the mission, the commanders and staff
concluded that the mission will have 30 tactical tasks includ-
ing setting up bases/checkpoints, conducting surveillance by
some special troops taken from infantry companies and by
helicopters, securing the government, diplomatic missions,
and foreigners, protecting some key infrastructures, attacking
insurgent sites, and regular patrolling either in the cities or
countryside. The precedence relationship between tasks is
given in Figure 1. The requirements for these tasks are listed
as follows

Further, during the mission, the time delay in executing
tasks is unavoidable. The intelligence source at that island is
not highly reliable that cause the estimation of insurgents less
accurate. Further, because of tropical weather, the failure of
capabilities are highly expected with a small rate. However,
the current logistic supports at the island can help to quickly
repair or reinforce the capabilities. Also, the precedence of
the tasks is quite relative because of unreliable intelligence
information. So changes of the precedence relationship is
expected. So, we will have three scenarios being equivalent
with three types of change.

Task ID Duration C1 C2 C3 C4
1 18 4 0 0 0
2 14 10 0 0 0
3 16 0 0 0 3
4 23 3 0 0 0
5 18 0 0 0 8
6 15 4 0 0 0
7 19 0 1 0 0
8 12 6 0 0 0
9 17 0 0 0 1

10 19 0 5 0 0
11 22 0 7 0 0
12 16 4 0 0 0
13 23 0 8 0 0
14 19 3 0 0 0
15 10 0 0 0 5
16 16 0 0 0 8
17 15 0 0 0 7
18 23 0 1 0 0
19 17 0 10 0 0
20 22 0 0 0 6
21 27 2 0 0 0
22 22 3 0 0 0
23 13 0 9 0 0
24 13 4 0 0 0
25 17 0 0 4 0
26 18 0 0 0 7
27 23 0 8 0 0
28 17 0 7 0 0
29 20 0 7 0 0
30 20 0 0 2 0

TABLE I

PROPERTIES OF TASKS

Fig. 1. Precedence network of tasks.

B. Parameter settings

From the problem description, we can see that the chro-
mosome size is obviously 30. We used a population size
of 40. The crossover and mutation rates were 0.9 and 1/30
respectively. The results were recorded after the tenth change.
Each experiment was repeated for 30 times with different
random seeds in the hope of eliminating the stochastic
behavior caused by the random generator.

C. Results and discussion

We start discussion with an analysis on the behaviour of
the proposed approach on the test scenarios. We look at the
results after 10 changes from a run and take these results for
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analysis. We take the results obtained by LP as an example
demonstrating how the adaption process happened by our
proposed framework. The changes happened at time slots
1, 3, 7, 10, 13, 14, 17, 18, 19, and 22. At time zero, the
baseline plan indicated that task 2 was only one that needed
to be executed first and it was followed by tasks 1 and 3
at time 14. The objective values of the plan were (224 and
719.339). Note that tasks 1 and 2 can not be scheduled at
the same time since both required 14 units of C1 while the
maximum of C1 is 12. After a change at time 1 (note that
task 2 was in-progress), it found 6 new adaptive plans. The
plan with objective values of (179.553 and 1065.609) was
selected. With this plan, task 3 was scheduled at time 1 and
5 tasks were kept the original starting time unchanged. The
process continued until the change number 10. Again, we
obtained 8 plans trading-off on time and cost. Note that at
this time tasks 2 and 3 were already completed and tasks 1,
4, 7, and 12 were in-progress. So their time was not affected
by the adaptation process.

For the second type, the first change was at time 4 when
only task 2 was in-progress (it started at time 0) and task
3 was about to start. After the change, we adapted the plan
with the remaining tasks (including task 3). We obtained 11
new plans, assumed the plan with objective values of (194
and 1034.598) for execution. With this plan, tasks 1, 10, and
25 were kept for their original starting-times and the rest
was adjusted with new starting-times. Finally, after the tenth
change, we obtained new 5 plans for adaptation process and
these plans can be submitted to the decision makers.

In the case of the third type, after the fist change (at time
4), we obtained 5 trade-off solutions. The process continued
with quite similar manner as the above two. However, here
the new adapted plan kept the same starting-times for none
task (except task 2 that was already in-progress at time 0).
These results clearly show the nature of the change that this
type can cause a large difference in terms of feasibility before
and after a change.

A visualization of the non-dominated solutions obtained
from all runs was given in Figure 2 with different colors.
It shows us quite diverse sets of non-dominated solutions
spreading over two objectives. It is important to have this di-
versity since we need to offer the decision makers alternatives
for adapting against the change. Based on the capacity to
afford the cost, the decision makers will select the final plan
for the adaptation process. The above analysis has shown this
matter.

D. Comparison of starting methods

We now discuss the relative performance methods (LP,
NDLP, and RI). We compare them using the non-dominated
plans obtained after the last change (after change No 10) of
all 30 runs. Here we use the measure of the ’set coverage’ -
SC [2] to access the performance of these approaches. SC is
determined between two sets A and B (SC(A,B)) by counting
the number of solutions in B that are dominated by a solution
in A: SC(A,B) = |b∈B|∃a∈A:a�b|

|B| where a � b indicates a
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Fig. 2. Sets of non-dominated solutions over all 30 runs

dominates b. Obviously SC(A,B) is not necessary to be equal
SC(B,A).

The mean values and standard errors from 30 runs are
reported in Table II for all methods. It seems that using the
last population (LP) is a reasonable way to deal with changes.
However, with changes that make a significant effect (ie.
make the whole population severely infeasible), LP might
not be able to offer a good start the adaptation process. That
is why in comparison to RI, LP was better than RI for types
1 and 2, but it was worse for the third type. As indicated
above, for the third type, a single change might cause all
current population becomes infeasible, and if so the use of
LP does not make much sense. Obviously, RI seems to be
the unstable one as it was inferior to LP in almost all cases.
This is expected since the initial population is randomly re-
initialized without any past information. Meanwhile, LP and
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Types LP NDLP RI

1
LP NA NA 0.083±0.037 0.389±0.073
NDLP 0.040±0.015 NA NA 0.350±0.068
RI 0.376±0.075 0.400±0.074 NA NA

2
LP NA NA 0.021±0.012 0.532±0.068
NDLP 0.010±0.006 NA NA 0.532±0.068
RI 0.283±0.066 0.286±0.066 NA NA

3
LP NA NA 0.014±0.010 0.235±0.062
NDLP 0.014±0.010 NA NA 0.235±0.062
RI 0.409±0.073 0.409±0.073 NA NA

TABLE II

THE VALUES OF SC OBTAINED AFTER ADAPTING AGAINST CHANGE NO.

10

Types LP NDLP RI

1
LP NA NA 0.056±0.005 0.391±0.008
NDLP 0.036±0.002 NA NA 0.377±0.008
RI 0.379±0.006 0.383±0.006 NA NA

2
LP NA NA 0.035±0.002 0.470±0.008
NDLP 0.028±0.002 NA NA 0.469±0.008
RI 0.292±0.006 0.294±0.007 NA NA

3
LP NA NA 0.007±0.001 0.246±0.006
NDLP 0.007±0.001 NA NA 0.246±0.006
RI 0.329±0.015 0.329±0.015 NA NA

TABLE III

AVERAGE VALUES OF SET-COVERAGE OBTAINED FROM ADAPTATION

OVER A RANGE OF CHANGES

NDLP had a quite similar behaviour. That is because for
our test cases, the set of obtained non-dominated solutions
occupied almost all the last population, especially in the case
of type 3, the last population was entirely filled by non-
dominated solutions.

Further the results somewhat indicate the degree of diffi-
culty of changing types. For types 1 and 2, changes did not
make the sequence of tasks infeasible in terms of precedence
constraints. The matter of adaptation is to find the alternatives
that give a suitable cost of adjusting capabilities. However,
for type 3, the sequence can also be infeasible with even a
single flip of the precedence network. This is reflected via the
obtained results. For type 3, the SC rates of LP and NDLP
obtained against RI were less than that of types 1 and 2.

To get a more concrete support, we calculated the SC
values of the non-dominated sets for several changes around
the current being-considered change (change number 10).
We started from the fifth change until the change No. 12.
The average values of SC obtained after adapting to these
changes were given in Table III. Again, LP and NDLP was
consistently better than RI for all types of change, especially
for the more difficult ones : types 2 and 3. Meanwhile RI
had quite inconsistent behaviour over types of changes. The
use of the past information certainly was a great help for
searching under new conditions caused by changes.

V. CONCLUSION AND FUTURE WORK

In this paper, for the first time, we proposed an evolu-
tionary multi-objective approach for adaption in dynamic
military mission planning (at the operational level). We
propose to investigate a special class of planning problems

called Adaptive Mission Planning Problem (AMPP). For this
problem, commanders and their military staff are expected
to prepare adaptive plans to deal with any changes that
might happen during execution of the mission. A step-wise
framework was proposed for supporting the planning process.

The problem is first analyzed within a context of a
military mission planning process in order to capture all
important aspects of the process. The main objective is to
minimize the execution time of the mission under a limit on
available capabilities. To address the multi-objectivity during
adaptation process, it is then mathematically formulated
as a multi-objective planning problem. Two objectives are
proposed including the execution time of the plan, and the
cost of operating capabilities. Also, three types of changes
are proposed to the problem including the execution time
variation, the failure of capabilities, and the change of the
precedence network.

We adapt the current plan in a reactive-style using an evo-
lutionary algorithm. For any task, which is already executed
or in progress, it will not be scheduled again. In this way,
the rescheduling process will be smaller and simpler over
time since the number of tasks to be scheduled decreases.
To assist the decision making, we use the second objective
as the an additional indication to select a new adapted plan.
A set of plans are obtained trading-off between time and
cost of re-allocating the capabilities. A case study based on
a military mission was used to validate our approach. We
also implement three other initialization techniques within
the proposed evolutionary approach.
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