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Abstract. In this paper, some theorems on the equivalence between the solvability of
a random operator equation and the solvability of a deterministic operator equation are
presented. As applications and illustrations, some results on random fixed points and
random coincidence points in the literature are obtained or extended.
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1 Introduction and preliminaries

Random fixed point theory for singlevalued and multivalued random operators are
stochastic generalizations of classical fixed point theory for singlevalued and mul-
tivalued deterministic mappings. It has received much attention in recent years;
see, for example, [3], [4], [6], [20], [25], [32], [35], etc. and references therein.
Some authors (see, e.g. [4], [29], [30], [35]) have shown that under some assump-
tions the existence of a deterministic fixed point is equivalent to the existence of
arandom fixed point. In this case every deterministic fixed point theorem produces
a random fixed point theorem.

In this paper we shall deal with random equations for singlevalued and mul-
tivalued random operators. The main results of this paper are sufficient condi-
tions ensuring that the solvability of a deterministic equation is equivalent to the
solvability of a corresponding random equation. As applications and illustrations,
some results on random fixed points and random coincidence points in the litera-
ture (e.g. [2], [31, [4], [13], [20], [22], [29], [31] and [32]) are obtained or extended.

This work is supported by NAFOSTED (National Foundation for Science and Technology Develop-
ment).
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Let (2, ¥, P) be a probability space and X, Y be Polish spaces (i.e. completely
separable metric spaces). We denote by B(X) the Borel o-algebra of X, by 2%
the family of all nonempty subsets of X, by C(X) the family of all nonempty
closed subsets of X and by C B(X) the family of all nonempty closed and bounded
subsets of X. The o-algebra on 2 x X is denoted by ¥ x B(X). Noting that in
general B(X x Y) contains B(X) x B(Y) and B(X xY) = B(X) x B(Y) if
X and Y are Suslin spaces (i.e. X, Y are Hausdorff and the continuous images of
Polish spaces). The Hausdorff metric induced by d on C(X) is given by

H(A, B) = max { supd(a, B), sup d(b, A)}
acA beB

for A, B € C(X), where d(a, B) = infycp d(a, b) is the distance from a point

a € X toasubset B C X.

Let (E, A) be a measurable space. A mapping u: £ — X is said to be A-
measurable if u=1(B) = {& € E|u(w) € B} € 4 forany B € B(X). If
£:Q — X is ¥ -measurable, then £ is called an X -valued random variable. A set-
valued mapping F: E — 2% is called a multivalued mapping and it is said to
be A-measurable if F~1(B) = {w € E|F(w) N B # @} € A for each open
subset B of X (note that in Himmelberg [16] this is called weakly measurable).
The graph of F' is defined by

Gr(F)={(w,x)|w € E,x € F(w)}.

An ¥ -measurable multivalued mapping ®: Q — 2% is called an X -multivalued
random variable.
We recall the concept of random operators and multivalued random operators.

Definition 1.1. (i) A mapping f: 2 X X — Y is said to be a random operator if
for each x € X, the mapping f(-, x) is a Y -valued random variable, where
f(-, x) denotes the mapping w — f(w, x).

(ii) A mapping T:Q x X — 2Y is said to be a multivalued random operator if
for each x € X, the mapping 7'(-, x) is a Y -multivalued random variable,
where T'(-, x) denotes the mapping w — T (w, x).

(iii) The random operator f: Q2 x X — Y is said to be measurable if the mapping
f:Q2x X =Y is F x B(X)-measurable.

(iv) The multivalued random operator 7: 2 x X — 2Y is said to be measurable
if the mapping T: Q x X — 2Y is ¥ x B(X)-measurable.

(v) The random operator f: Q2 x X — Y is said to be continuous if for each
o the mapping f(w,-) is continuous, where f(w,-) denotes the mapping
x b f(w,Xx).
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(vi) The multivalued random operator 7: 2 x X — C(Y) is said to be continuous
if for each w the mapping 7T (w, -) is continuous, where T (w, -) denotes the
mapping x — T(w, x).

For later convenience, we list the following three theorems.

Theorem 1.2 ([16, Theorem 6.1] ). Let X be a separable metric space, Y a metric
space and f:Q x X — Y such that f(-, x) is measurable for each x and f(w,-)
is continuous for each w. Then f is measurable.

Theorem 1.3 ( [16, Theorem 3.3] ). Let X be a separable metric space and let
F:Q — C(X) be a multivalued mapping. Then the following three statements
are equivalent:

a) F is ¥ -measurable;
b) For each x, the mapping o — d(x, F(w)) is ¥ -measurable;

c) Gr(F)is ¥ x B(X)-measurable.

Theorem 1.4 ( [16, Theorem 5.7] ). Suppose that X is a Suslin space and that
F:Q — 2% is a multivalued mapping. If Gr(F) is measurable, then there is an
X -valued random variable £: Q — X such that £ (w) € F(w) a.s.

2 Random equations

Definition 2.1. Let f, g: Q2 x X — Y be random operators. Consider the random
equation of the form

f(@,x) = g(w, x). 2.1)

We say that equation (2.1) has a deterministic solution for almost all w if there is
a set D of probability one such that for each w € D there exists u(w) € X such
that

f(@,u(@)) = g(w, u(®)).

An X-valued random variable £: Q2 — X is said to be a random solution of
equation (2.1) if
f(,§(w) =g@,§(w) as.

Clearly, if equation (2.1) has a random solution, then it has a deterministic so-
lution for almost all . However, the following simple example shows that the
converse is not true.
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Example 2.2.Let Q = [0, 1] and let ¥ be the family of subsets A C € with
the property that either A is countable or the complement A€ is countable. Define
a probability measure P on ¥ by

P(4) = {0 if A is countable,

1 otherwise.

It is easy to check that (2, ¥, P) forms a complete probability space. Let X =
[0, 1]. Define two mappings f, g: Q2 x X — X by

x ifw=ux,

f(w,x)Z{

1 otherwise,

x ifw=ux,
g(w,x)={

0 otherwise.

It is easy to verify that f, g are random operators and for each w € Q, u(w) = wis
a solution of equation (2.1). Suppose that £ is a random solution of equation (2.1).
Then £(w) = w a.s. Hence, the mapping u: Q — X defined by u(w) = w must be
F -measurable. For B = [0,1/2) € B(X)wehaveu™'(B) =B =[0,1/2) ¢ ¥
showing that u is not ¥ -measurable and we get a contradiction.

The following theorem gives a sufficient condition on f, g ensuring that the
existence of a deterministic solution for almost all w is equivalent to the existence
of a random solution.

Theorem 2.3. Let X, Y be Polish spaces and f, g: 2 x X — Y measurable ran-
dom operators. Then the random equation f(w,x) = g(w,x) has a random
solution if and only if it has a solution for almost all w.

Moreover, if for almost all o the equation f(w,-) = g(w,-) has a unique solu-
tion, then the random equation f(w,x) = g(w, x) has a random unique solution.

Proof. Tt suffices to prove the part “if”.

Suppose that the random equation f(w, x) = g(w, x) has a solution for almost
all . Without lost of generality, we suppose that it has a solution u(w) for all .
Define a mapping F: Q — 2X*Y by

Flo) ={(x.y)[x € X, f(w,x) = g(w.x) = y}.

Because of (u(w), v(w)) € F(w), where v(w) = f(w,u(w)), F has non-empty
values for all w, so F is a multivalued mapping. We shall show that F has a
measurable graph.
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By Theorem 1.3, f and g have measurable graphs, i.e. Gr(f), Gr(g) € (¥ x
B(X)) x B(Y). We have

Gr(f) ={(w,x,y)|w € 2, x € X, f(w,x) =y},
Gr(g) ={(w,x,y)|w € Q,x € X, g(w,x) =y},
Gr(F)={(w,x,y)|lweQ,xeX, flw,x) =g(w,x) =y}

It is clear that
Gr(F) = Gr(f)NGr(g).

Hence, Gr(F) € (F xB(X)xBY)=F xB(X xY).
By Theorem 1.4, there exists a measurable mapping &: 2 — X x Y such that
§(w) € F(w) as. Let £(w) = (§1(w), &2(w)). We have

f(@,§1(0) = g0, §1(@) = &(0)  as.

Since & is measurable, £1: Q2 — X is also measurable. Thus &; is a random
solution of the random equation f(w, x) = g(w, x).

Now, assume that for almost all w the equation f(w, x) = g(w, x) has a unique
solution and £, n are two random solutions. From this it follows that £ (w) = n(w)
a.s. and we are done. o

Corollary 2.4. Let X,Y be Polish spaces and f,g: Q2 x X — Y continuous ran-
dom operators. Then the random equation f(w,x) = g(w,x) has a random
solution if and only if it has a solution for almost all w.

Moreover, if for almost all @ the equation f(w,x) = g(w,x) has a unique
solution, then the random equation f(w,x) = g(w, x) has a random unique so-
lution.

Proof. By Theorem 1.2, f and g are measurable random operators. Hence the
claims follows from Theorem 2.3. O

Thus, every theorem concerning the solvability of deterministic operator equa-
tions produces a theorem on random operator equations. As an illustration, we
have the following theorem.

Theorem 2.5. (i) Let h be a continuous random operator on a separable Hilbert
space X satisfying the Lipschitz property, i.e. there exists a mapping L: Q —
(0, 00) such that for all x1,x, € X,w € Q

(@, x1) = (@, x2)|| < L(w)|x1 — x2f|.
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Assume that k(w) is a positive real-valued random variable such that
L(w) <k(w) a.s.
Then for any X -valued random variable n, the random equation h(w, x) +

k(w)x = n(w) has a random unique solution.

(i) Let X be a separable Banach space and let L(X) be the Banach space of
linear continuous operators from X into X. Suppose that A:Q2 — L(X)
is a mapping such that for each x € X, the mapping w — A(w)x is an X -
valued random variable and A(w) is a real-valued random variable satisfying

[A(w)]| < Alw) a.s.
Then for any X -valued random variable 1, the random equation
(A(@) — A@))x = n(w)
has a random unique solution which is denoted by (A(w) — A(w)I)™ .

Proof. (i) The random equation under consideration is of the form f(w,x) =
g(w, x) where f, g are the random operators given by f(w, x) = h(w, x) +
k(w)x, g(w, x) = n(w). Clearly, f, g are continuous random operators. By
the Lipschitz property of &, we have for all x1,x; € X

(f(@,x1) = f(®,x2),x1 — x2)

= (h(a), x1) — h(w, x2), x1 — x2) + k(w) - ||x1 — x2||?

> k(®) - |x1 — x2]I> = [|h(@, x1) — h(w, x2) | - [|x1 — x2]|

> [k(w) — L(@)] - |x1 — x2[I> = m(®) - ||x1 — x2|*> as.,
where m(w) = k(w) — L(w) > 0. Hence there is a set D of probability
one such that for each w € D the mapping f(w, -) is strongly monotone. By
the deterministic result due to Browder [8, Theorem 1], there exists a unique
element u(w) € X such that f(w,u(w)) = n(w). Hence, the equation

f(w,x) = g(w, x) has a unique solution for almost all w. By Corollary 2.4
the random equation i (w, x) +k(w)x = n(w) has a random unique solution.

(i1) The random equation under consideration is of the form f(w, x) = g(w, x),
where f, g are the random operators given by

flw,x) = Al@)x = AMw)x,  gw,x) = ).
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Clearly, f, g are continuous random operators. By assumption and the well-
known deterministic result, for almost all w there exists a unique element
u(w) € X such that f(w,u(w)) = n(w). Hence the equation f(w,x) =
g(w, x) has a unique solution for almost all w. By Corollary 2.4 the random
equation (A(w) — A(w)I)x = n(w) has a random unique solution. ]

Now we extend Theorem 2.3 to the case of multivalued random operators.

Definition 2.6. Let S, T: Q2 x X — C(Y) be multivalued random operators. Con-
sider the random equation of the form

S(w,x) N T(w,x) # 0. (2.2)

We say that the random equation (2.2) admits a deterministic solution for almost
all w if there is a set D of probability one such that for each w € D there exists
u(w) € X such that

S(w,u(w)) N T(w,u(w)) # 0.

An X -valued random variable £: 2 — X is said to be a random solution of the
equation (2.2) if
S, (@) NT(w,E(w) #0 as.

The following theorem gives a sufficient condition under which the existence of
a deterministic solution for almost all w is equivalent to the existence of a random
solution.

Theorem 2.7. Let X and Y be Polish spaces and let S,T:Q x X — C(Y) be
measurable multivalued random operators. Then the random equation S(w, x) N
T (w, x) # @ has a random solution if and only if it has a solution for almost all w.

More generally, let T,,: 2 x X — C(Y) be measurable multivalued random
operators (n = 1,2,...). Then the random equation (\,—; Tn(w,x) # @ has
a random solution if and only if it has a solution for almost all w.

Proof. 1t suffices to prove the part “if””. Suppose that equation (2.2) has a solution
for almost all w. Without lost of generality, we suppose that equation (2.2) has a
solution for any w. Let F: Q — 2X*Y be a mapping defined by

Flw)={(x,y)|xe X,y € S(w,x) N T(w, x)}.

Since equation (2.2) has a solution for any w, the mapping F has non-empty values
for all w, so F is a multivalued mapping. We shall show that F has a measurable
graph.
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We have
Gr(S) ={(w,x,y)|lweQ,xe X,y € S(w, x)},
Gr(T) ={(w.x,y) |0 €Q.x € X,y € T(»,x)},
Gr(F)={(w,x,y)|lwe,xeX,yeSw,x)NT(w,x)}.
It is clear that
Gr(F) = Gr(S) N Gr(T).
By Theorem 1.3, S and T have measurable graphs, i.e. Gr(S),Gr(T) € (¥ x
B(X)) x B(Y). Hence, Gr(F) e (F xBX)xBY)=F xB(X x7Y).

By Theorem 1.4, there exists a measurable function £: Q2 — X X Y such that
£(w) € F(w) as. Let E(w) = (§1(w), &2(w)). We have

Er(w) € S(w,61(@) NT(w,&1(w)) as.

Since £ is measurable, £1: 2 — X is also measurable. Thus £; is a random
solution of the equation S(w, x) N T(w, x) # @.
A similar argument can be used for the general random equation

ﬂ Th(w, x) # 0.
n=1

O

The above theorem shows that the measurability of S, 7' together with the ex-
istence of the deterministic solution for almost all @ implies the existence of a
random solution. The converse is not true as the following simple example illus-
trates.

Example 2.8.Let @ = {0,1}, ¥ = {0,Q2}, X = [0,1],Y = [2,3] and let
T:Q x X — C(Y) be a mapping defined by 7(0,x) = T(1,x) = Y for any
x € X. Let D be a non-Borel subset of X. We define S: Q2 x X — C(Y) by

Y ifxeD,

Smﬂ):S“x%:Ln ifx e D.

where D = X \ D. It is easy to check that S and 7 are multivalued random
operators. Let B = (2, 3). Because

STYUB) = {(0.x) | S(w.x)NB # 0} =QxD ¢ F x B(X),

S is not measurable. However, the X -valued random variable & defined by & (w) =
¢ for any w, where ¢ is an arbitrary element of X, is a random solution of the
random equation S(w, x) N T(w, x) # .
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Corollary 2.9. Let X and Y be Polish spaces and T,,: 2 x X — C(Y) contin-
uous multivalued random operators (n = 1,2,...). Then the random equation
ﬂzozl Tu(w,x) # @ has a random solution if and only if it has a solution for
almost all w.

Proof. By Theorem 2.7, it suffices to show that if 7: Q2 x X — C(Y) is a con-
tinuous multivalued random operator, then 7" is a measurable multivalued ran-
dom operator. By Theorem 1.3, to prove the measurability of 7', we prove the
measurability of the mapping (w, x) +— d(y,T(w, x)) for each y € Y. Define
¢y: Q2 x X — Rby ¢y(w,x) = d(y, T(w, x)). By the continuity of the mapping
x — T(w,x) it follows that ¢y, (w, x) is continuous w.r.t. x. We now prove the
measurability of ¢y (w, x) w.r.t. w. Indeed, for each fixed x, T'(w, x) is measur-
able, so w — d(y, T (w, x)) is measurable by Theorem 1.3. By Theorem 1.2, ¢y,
is measurable. This means that (w, x) — d(y, T (w, x)) is measurable for each
y € Y and we are done. o

3 Applications to random fixed point theorems

Let X be a separable metric space and C a nonempty complete subset of X, let
f:Q2x C — X be arandom operator and T: Q x C — 2% a multivalued random
operator. Recall that

(i) an X-valued random variable £ is said to be a random fixed point of f if

f@.§(w)) =§(@)as.,

(i) an X-valued random variable £ is said to be a random fixed point of T if

£(w) e T(w, E(w)) as.,

(iii) an X-valued random variable £ is called a random coincidence point of the

pair (£, T)if f(w,&(w)) € T(w, £(w)) a.s.

As a concequence of Theorem 2.3 and Theorem 2.7 we get the following random
fixed point theorem.

Theorem 3.1. Let X be a Polish space, f:Q2 x C — X a measurable random
operator and T: Q2 x C — C(X) a measurable multivalued random operator.

(1) f has a random fixed point if and only if for almost all  the mapping f(w,-)
has a fixed point.

(ii) T has a random fixed point if and only if for almost all @ the mapping T (w, -)
has a fixed point.
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(iii) The pair of random operators ( f, T') has a random coincidence point if and
only if for almost all w the pair of mappings (f(w,-), T (w,-)) has a coinci-
dence point (i.e. there exists u(w) such that f(w,u(w)) € T(w, u(w)).

(iv) Let S: Q2 x C — C(X) be another measurable multivalued random oper-
ator. Then the pair (S, T) has a common random fixed point if and only if
for almost all w the pair of mappings (S(w, ), T (w,-)) has a common fixed
point.

Proof. (i) Use Theorem 2.3 for the random equation f(w, x) = g(w, x), where
g(w,x) = x.

(i1) Use Theorem 2.7 for the random equation 7'(w, x) N S(w, x) # @, where
S(w, x) = {x}.

(iii) Use Theorem 2.7 for the random equation 7' (w, x) N S(w, x) # @, where

S(w,x) = {f(0, )}

(iv) Use Theorem 2.7 for the random equation
T(w,x)NS(w,x)N R(w, x) # 0,

where R(w, x) = {x}. |

Remark. ¢ Claim 1 extends [27, Lemma 3.1 ], which plays a crucial role in the
proof of its main results, where it is assumed that f is a continuous random
operator satisfying the so-called condition (A).

* Claim 2 removes some assumptions on 7" in Theorem 3.1, Theorem 3.2 and
Theorem 3.3 of [4].

* Claim 3 extends and improves Theorem 3.1, Theorem 3.3 and Theorem 3.12
in [29], which contains most of the known random fixed point theorems as
special cases (see [29, Remark 3.16]).

In view of Theorem 3.1 every fixed point theorem for deterministic mappings
or multivalued deterministic mappings gives rise to some random fixed point the-
orems for random operators or multivalued random operators, respectively. As
illustrations we have the following theorems.

Theorem 3.2. Let X be a Polish space and [:Q2 x X — X a measurable random
operator satisfying the following contractive condition:
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Forallw € Qandall x,y € X

d(f(®.x), f(@.y)) = Ao)max {d(x,y).d(x, f(@.x)).d(y. f(@. ),
1
Sldx. fl@.y) +d(y. [, )]}
+ B(w) max{d(x, f(w.x)).d(y. f(w. y)}
+r@)d(x, f(w,y)) +d(y, f(0,x)],

where A, B,y: 2 — (0, 1) are mappings such that A + B + 2y = 1.
Then f has a random unique fixed point.

Proof. For each fixed w, by Ciric [12, Theorem 2.1], f(w,-) has a unique fixed
point. By Theorem 3.1, f has a random unique fixed point. |

Theorem 3.3. Let X be a Polish space, f:Q x X — X a random operator and
let T:Q x X — CB(X) be a multivalued random operator such that T (w, X) C
f(w, X) for all w and that forall x,y € X

H(T(w,x), T(w,y))
< Mw)max {d(f(®.x), f(@.y)).d(f(@.x).T(®,x).d(f(®.y).T(,y)),

S @, %), T, 1) + d(f@, ). T(@, )]},

where A: Q2 — [0, 1). In addition, suppose that for each w either

1) f(w,) and T (w,-) are continuous and compatible

or
(i) f and T are measurable and T (w, X) or f(w, X) is complete.

Then f and T have a random coincidence point.

Recall that the mappings 7: X — CB(X) and f: X — X are compatible if
for each sequence (x,) in X satisfying lim fx, € lim7Tx, € CB(X) we have
lim H(fTx,, Tfx,) =0.

Proof. By [18, Theorem 2] and [20, Theorem 1.4], for each w, f(w,-) and T (w, -)
have a coincidence point. By Theorem 3.1, f and 7 have a random coincidence
point. |
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Theorem 3.3 extends I. Beg and N. Shahzad [3, Theorem 5.1], which claims
thatif forall x,y € X,w € €,

H(T (0., x), T(0,y)) < Mw)d(f(®.x), f(w,y)),

where A: Q — (0, 1) is measurable, T'(w, X) C f(w, X) and f(w,"), T(w,-) are
continuous and compatible, then f and T have a random coincidence point.

Theorem 3.4. Let X be a Polish space and let S,T:2 x X — C(X) be measur-
able multivalued random operators. If

H(S(w,x), T(w,y)) < AMw)max {d(x,y).d(x, S(®,x)),d(y.T(o, y)),
%[d(y, S(w,x)) +d(x, T(w, y)]}

forall x,y € X, w € Q, where A:Q — (0,1), then S and T have a common
random fixed point.

Proof. By [34, Corollary 2.6], S(w,-) and T'(w, -) have a common deterministic
fixed point. By Theorem 3.1, S and T have a common random fixed point. o
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