
Refinement Geometric Algorithms for Type-2 Fuzzy Set Operations

Long Thanh Ngo, Long The Pham, Phuong Hoang Nguyen and Kaoru Hirota, Member, IEEE

Abstract— The paper deals with an approach to applications
of ε-approximate representation of type-2 fuzzy sets using
triangulated irregular network (TIN). Geometric algorithms
are designed for operations of type-2 fuzzy sets without using
manner of upper or lower surfaces. Operations involving meet
under minimum, join under minimum, negation, inference
process of type-2 fuzzy sets are presented as applications of
geometric representation to operations of type-2 fuzzy sets.

I. INTRODUCTION

Type-2 fuzzy logic is widely applied in real world prob-
lems. However, almost deployed applications are interval
type-2 fuzzy logic because computational complexity of
type-2 fuzzy logic is large. There are many researches on
problems arising from reducing the complexity of these
systems. Mendel et al [6], [7], [8], [9], [12], [17] have
developed theories and computations of type-2 fuzzy sets and
systems. Starczewski [17] proposed a method for complexity
reduction of operations on triangular type-2 fuzzy sets. For
the this purpose, Coupland et al [3], [4] proposed geometric
method for representation type-1 and interval type-2 fuzzy
sets, new algorithms for various operations on type-1 and
type-2 fuzzy sets and for defuzzification. An approach to
the representation [13] and geometric operations using upper
and lower surfaces of type-2 fuzzy sets are introduced by
using triangulated irregular network (TIN). Coupland et al [5]
presented new techniques also using upper and lower surfaces
for performing logical operations on type-2 fuzzy sets, given
a full exposition of the geometric inference operations with
considering computational speed and accuracy.

The paper deals with applications of ε-approximate rep-
resentation to operations of type-2 fuzzy sets without using
upper or lower surfaces. These approach allows to represent
and compute for generalized type-2 fuzzy sets, for example,
their vertical slices is non-convex function. Geometric al-
gorithms and theorems on ε-approximation of resultant sets
of Meet and Join under minimum operations are introduced
detail. Computations of inference process of type-2 fuzzy
logic systems are proposed as geometric algorithms. The
paper also discusses the feasibility of proposed algorithms
by implementing on various machines with reported runtime
tables.

The paper is organized as follows: II presents type-2 fuzzy
sets and inference, ε-approximation representation of type-2
fuzzy sets; III introduces applications to operations involving

Long Thanh Ngo, Long The Pham, is with the Center of Simulation
Technology, Le Quy Don University of Technology, Hanoi, Vietnam (email:
ngotlong@gmail.com, thelong@math.ac.vn). Phuong Hoang Nguyen is with
the Center of Health Information Technology, Ministry of Health, Hanoi,
Vietnam (email: phuongnh@fmail.vnn.vn) Kaoru Hirota is with the Tokyo
Institute of Technology, Mail-box: G3-49, 4259 Nagatsuta, Midori-ku,
Yokohama 226-8502, Japan (email:hirota@hrt.dis.titech.ac.jp)

meet and join under minimum, negation and reference pro-
cess; IV presents implementation and discusses the feasibility
of the proposed algorithms with run-times; V is conclusion
and future works.

II. TYPE-2 FUZZY SETS AND THEIR GEOMETRIC
REPRESENTATION

A. Type-2 Fuzzy Sets

A type-2 fuzzy set in X is Ã, and the membership grade
of x ∈ X in A is µÃ(x, u), u ∈ Jx ⊆ [0, 1], which is a
type-1 fuzzy set in [0, 1]. The elements of the domain of
µÃ(x, u) are called primary memberships of x in Ã and the
memberships of the primary memberships in µÃ(x, u) are
called secondary memberships of x in Ã.

Definition 2.1: A type − 2 fuzzy set, denoted Ã, is
characterized by a type-2 membership function µÃ(x, u)
where x ∈ X and u ∈ Jx ⊆ [0, 1], i.e.,

Ã = {((x, u), µÃ(x, u))|∀x ∈ X,∀u ∈ Jx ⊆ [0, 1]} (1)

or

Ã =
∫
x∈X

∫
u∈Jx

µÃ(x, u))/(x, u), Jx ⊆ [0, 1] (2)

in which 0 ≤ µÃ(x, u) ≤ 1.
At each value of x, say x = x′, the 2-D plane whose

axes are u and µÃ(x′, u) is called a vertical slice of
µÃ(x, u). A secondary membership function is a vertical
slice of µÃ(x, u). It is µÃ(x = x′, u) for x ∈ X and
∀u ∈ Jx′ ⊆ [0, 1], ie.,

µÃ(x = x′, u) ≡ µÃ(x′) =
∫
u∈Jx′

fx′(u)/u, Jx′ ⊆ [0, 1] (3)

in which 0 ≤ fx′(u) ≤ 1.
Theoretic operations of type-2 fuzzy sets such as union,

intersection and complement are described [7] as follows:

µÃ∪B̃(x) = µÃ(x)tµB̃(x) =
∫
u

∫
v

(fx(u)?gx(w))/(u∨w)

(4)

µÃ∩B̃(x) = µÃ(x)uµB̃(x) =
∫
u

∫
v

(fx(u)?gx(w))/(u?w)

(5)

µÃ(x) = µ¬Ã(x) =
∫
u

(fx(u))/(1− u) (6)

where ∨, ? are t-cornorm, t-norm, respectively. Type-2
fuzzy sets are called an interval type-2 fuzzy sets if the
secondary membership function fx′(u) = 1 ∀u ∈ Jx.



B. Inference of Type-2 Fuzzy Logic System

Consider a type-2 FLS having p inputs, x1 ∈ X1, x2 ∈
X2, ..., xp ∈ Xp, and one output y ∈ Y . Suppose that it has
M rules where the lth rule has the form

Rl : IF x1 is F̃ l1 AND ... AND xp is F̃ lp THEN y is G̃l.
(7)

This rule represents a type-2 fuzzy relation between the input
space X1×X2× ...×Xp and the output space Y of the FLS.
The membership function of this type-2 relation is denoted
as µF̃ l

1×...×F̃ l
p→G̃l(x, y), where F̃ l1 × ... × F̃ lp denotes the

Cartesian product of F̃ l1, ..., F̃ lp, and x = {x1, x2, ..., xp}.
When an input x′ is applied, the composition of the fuzzy

set X̃ ′ to which x′′ belongs and the rule Rl is found by
using the extended sup-star composition

µX̃′◦F̃ l
1×...×F̃ l

p→G̃l(y) = tx∈X̃′ [µX̃′(x)tµF̃ l
1×...×F̃ l

p→G̃l(x, y)]
(8)

Denote X̃ ′ ◦ F̃ l1 × ... × F̃ lp → G̃l as B̃l, the output set
corresponding to the lth rule. Singleton fuzzification and the
product or minimum implication are used as two process of
FLS, inference process of rule lth is described (detail in [6])
as follows:

µB̃l(y) = µF̃ l
1
(x1) u µF̃ l

2
(x2) u ... u µF̃ l

p
(xp) u µG̃l(y)

= µG̃l(y) u [upi=1µF̃ l
i
(xi)] (9)

C. Geometric Representation of Type-2 Fuzzy Sets

In [13], geometric representation of type-2 fuzzy sets is
presented as an approach using triangulated irregular net-
work. Concept of ε-approximation set is used to approximate
membership grades of type-2 fuzzy sets. ε-approximation is
defined as follows:

Definition 2.2: A type-2 fuzzy set is called ε-
approximation set, denoted Ã∗, of Ã in continuous
domain D if

‖µÃ(x, u)− µÃ∗(x, u)‖ ≤ ε, (x, u) ∈ D (10)

The theorem on representation of a type-2 fuzzy set ref-
erenced as Approximation Theorem is presented as follows:

Theorem 2.1 (Approximation Theorem): Let Ã be type-2
fuzzy set with membership grade µÃ(x, u) in continuous
domain D. There exists a type-2 fuzzy set with member-
ship grade is a TIN TÃ, denoted ÃT , so that ÃT is ε-
approximation set of Ã, i.e,

‖µÃ(x, u)− µÃT
(x, u)‖ < ε, ∀(x, u) ∈ D. (11)

Fig. 1 is the TIN consisting of 36 vertices and 48 faces that
represents approximately of Gaussian type-2 fuzzy sets with
ε = 0.1. The primary membership function is a Gaussian
with fixed deviation and mean mk ∈ [m1,m2] and the
secondary membership function is a triangular membership
function that its top is on the Gaussian function with mean
(m1 +m2)/2. At the point (x, u) that its color is dark, the

Fig. 1. Example of representation of a type-2 Gaussian fuzzy sets

Fig. 2. Example of two approximate Gaussian type-2 fuzzy sets

value of µÃ(x, u) is close 1.0, otherwise µÃ(x, u) is close
0.0.

III. APPLICATIONS TO OPERATIONS

This section introduces some applications of the represen-
tation to operations of type-2 fuzzy sets. Fig. 2 shows ε-
approximation representations of two type-2 Gaussian fuzzy
sets Ã and B̃ are depicted with parameters as mÃ ∈
[3, 4], σÃ = 0.5 and mB̃ ∈ [4.5, 5.5], σB̃ = 0.5.

A. Geometric Algorithms

Geometric algorithms such as break-line creation or com-
puting the intersection of two TINs are designed for com-
putations of operations of type-2 FS and inference process.
Firstly, we define the depth of a TIN in direction α.

Definition 3.1: Depth of a TIN at point P in direction α
is number of triangles that are intersected by the ray that is
from P in direction α.

The following is the algorithm for finding the triangle that
contains a point P . The algorithm is used in some operations
on TIN such as break-line creation or polyline intersection.
Fig. 3 illustrates an example of finding the triangle containing
Pi with starting vertex Vk.

Algorithm 3.1 (Finding triangle containing P ): .
Input: TIN T , the point P .
Output: triangle t containing P .
1) Find vertex V that is closest to P .
2) Identify the edge he of vertex V that is on the left and

closest to P .
a) Verify the condition: triangle t formed from two

edges that are closest to P and contains P .
b) If t does not contain P : Set V = the end vertex

of he and go to 1).
c) Otherwise terminate the algorithm.

Fig. 3. Finding the triangle containing P



Definition 3.2: Let T be a TIN and Lg =
{P1, P2, · · · , Pn} be a polyline in which Pi(i = 1, 2, . . . , n)
are vertices of T . Lg is called break-line of T if n− 1 line
segments P1P2, . . . , Pn−1Pn are edges of T .

The following algorithm is to compute the intersection of
two TINs from a point P which is an intersection point on a
boundary edge. The output of the algorithm is a polyline that
is break-line of both TINs. The following is the description
of the algorithm:

Algorithm 3.2 (Computing intersection): .
Input: TIN T1 and T2.
Output: Intersection polyline and two TINs T ′1, T

′
2.

1) Find intersection points v∗k(k = 1, ..,M) of L1 and L2

that are at boundary polylines of T1 and T2.
2) If M = 0 or set of points is empty then return.
3) For each v∗k(k = 1, ...,M)

v∗ ← v∗k. Initialize queue Qk.
While not find v∗

a) v ← v∗. Insert v into Qk.
b) Insert v into each of T1, T2, becoming vT1 , vT2 .
c) Find adjacent triangles t∗1, t

∗
2 of vT1 and vT2 ,

respectively, so that t∗1, t
∗
2 are intersected by a

segment in t∗1 and t∗2.
d) If there is a new v∗ point so that vv∗ is a

intersecting segment of t∗1 and t∗2 then
v ← v∗

Go to step a).
Else

Go to step 2).

B. Join Operation

Theoretic union operation is described as (4). Suppose
more than one calculation of u and w gives the same point
u ∨ w, for example, u1 ∨ w1 = θ∗ and u2 ∨ w2 = θ∗. Then
within the computation of (4), we would have

fx(u1) ? gx(w1)/θ∗ + fx(u2) ? gx(w2)/θ∗ (12)

where + denotes union. Combining these two terms for
the common θ∗ is a type-1 computation in which t-conorm
can be used, e.g. the maximum.

If θ ∈ F t G, the possible {u,w} pairs that can give θ
as the result of the maximum operation are {u, θ} where
u ∈ (−∞, θ] and {θ, w} where w ∈ (−∞, θ]. The process
of finding the membership of θ in Ã t B̃ can be computed
as follows:

fFtG(θ) = φ1(θ) ∨ φ2(θ) (13)

where

φ1(θ) = sup
u∈(−∞,θ]

{
fx(u)∧gx(θ)} = gx(θ)∧ sup

u∈(−∞,θ]

{
fx(u)}

(14)
and

φ2(θ) = fx(θ) ∧ sup
w∈(−∞,θ]

{
gx(w)} (15)

The following is the theorem on ε-approximation of resul-
tant set between two ε-approximation sets.

Fig. 4. p in the overlapped region.

Theorem 3.1: Let TÃ, TB̃ be TINs and ε-approximation
of Ã, B̃, respectively, and Lgs are all polylines being break-
lines and intersections or boundaries of TÃ and TB̃ so that
there exist no edge of both TINs that is intersected by their
intersections in 2-D plane Oxu. If TC̃ is a TIN formed from
set of triangle ti(i = 1, . . . , n), in which ti is a triangle of
TÃ or TB̃ and three vertices of ti meet equation (4), and
type-2 fuzzy set C̃ is the resultant set of the join operation
under minimum of Ã and B̃ then TC̃ is ε-approximation of
C̃.

Proof: Let vi(i = 1, . . . , n) are vertices of TC̃ . Because
of the formation of TC̃ using join operation under minimum,
TC̃ is an ε-approximation of C̃ at their all vertices and points
on the intersection polylines or boundary polylines. We prove
the theorem at points in the domain that not be vertices. If
p(x, u) is a point in the domain of C̃ that µÃ(x, u) = 0
or µB̃(x, u) = 0 then TC̃ is ε-approximation of C̃. Now
we prove the theorem at points that µÃ(x, u) > 0 and
µB̃(x, u) > 0.

Suppose that these exist p(xp, up) is a point in triangle t in
the region depicted in Fig. (4) that TC̃ is non-ε-approximation
of C̃. µC̃(p) is computed as follows:

µC̃(xp, up) = (µÃ(xp, up) ∧ supk(µB̃(xp, uk)))
∨(µB̃(xp, up) ∧ supk(µÃ(xp, uk))) (16)

In the figure, Lg1 may be a intersection break-line or
boundary break-line. So we have

sup
k

(µÃ(xp, uk)) = sup
k

(µB̃(xp1 , uk))

sup
k

(µB̃(xp, uk)) = sup
k

(µB̃(xp1 , uk)) (17)

The cause of non-ε-approximation at p may be µÃ(xp, up)
or µB̃(xp, up) because TC̃ meets ε-approximation criterion
at p1 and equation (17). These is reasonless because of the
supposition of ε-approximation of TÃ and TC̃ . Hence, TC̃ is
ε-approximation of C̃ at p.

On the basis of the theoretic operation between two type-
2 fuzzy sets, we proposed an algorithm for join operation
between Ã and B̃ using geometric algorithms. Let C̃ that its
ε-approximation TIN TC̃ be the resultant type-2 fuzzy set.

To describe computation of geometric operation, the first
is the algorithm used to compute the supremum of fx(u),
where u ∈ [0, θ] or u ∈ [θ, 1], of a TIN. Let Pt is a ray



Fig. 5. Compute the supremum of a TIN at P.

from the point (x0, θ) to the end point ((x0, 0) or (x0, 1)).
The algorithm is described as follows (Fig. 5).

Algorithm 3.3: getSupremum(P, ysup, opt)
Input: TIN T , point P , operation opt (JOIN or MEET).
Output: ysup is the supremum value.
1) Find the triangle tk containing p. This operation uses

the algorithm described in the above section.
If no existing tk then return 0;

2) If opt is join operation then ray pt is segment from p
to (xp, 0). Otherwise, if opt is meet operation then ray
pt is segment from p to (xp, 1).

3) Find p1 is the intersection point of ray pt and edges
of tk. Note that p1 is different to p, so existing only
one point p1.
If no existing the point p1 then return 0;

4) If ysup is not higher the elevation y∗ of T at P1 then
set ysup = y∗.

5) Compute recursion for the point p1.
return getSupremum(p1, ysup, opt);

Note that the ray pt in the above algorithm for join
operation is the segment from p to the point (xp, 0) in 2-
D plane. The complexity of this algorithm depends on the
depth d of the TIN at P in direction of u axis, i.e. O(d).

The following part is the sequence of computations needed
to obtain for join operation under minimum and product.

Algorithm 3.4: Join operation under minimum.
Input: Two TINs TÃ and TB̃ of two type-2 fuzzy sets Ã

and B̃.
Output: TC̃ is ε-approximation of the resultant type-2

fuzzy set.
1) Initialize a TIN TC̃ .
2) Find polylines that are intersection of TÃ and TB̃ .

Create break-lines for TÃ and TB̃ from these polylines.
3) For each triangle tj of TÃ and TB̃ , suppose that (v1j ,

v2j , v3j) are three vertices of tj and v4j is center of
gravity of tj .
Set dk = 0
For each vertex vkj = (xkj , ukj , ykj)(k = 1, 2, 3, 4.)
of tj do.

a) Compute
ysup = getSupremum(vkj , 0, JOIN) for TB̃
y1 = min{µÃ(xkj , ukj), ysup}.

b) Compute

Fig. 6. The resultant set of join operation under minimum

ysup = getSupremum(vkj , 0, JOIN) for TÃ
y2 = min{µB̃(xkj , ukj), ysup}.

c) Set dk+ = fabs(ykj −max{y1, y2})
If dk < ε then
Insert tj into TC̃ .

4) Reject triangles t of TC̃ that abscissa y of its three
vertices equals 0.

Computational complexity. The algorithm involves two
steps. The first step is to find the intersection polylines of
two TINs and the complexity is discussed in above algorithm.
The second step computes the join operation at vertices and
gravity center of triangles, so the complexity of this step is
O(N), where N are sum of number of vertices of TINs.

Fig. 6 shows the resultant set of join operation under
minimum between two type-2 Gaussian fuzzy sets in Fig.
2.

C. Meet Operation

Theoretic meet operation is described as (5). If θ ∈ F uG,
the possible {u,w} pairs that can give θ as the result of
maximum operation are {θ, u} where u ∈ [θ,∞) and {w, θ}
where w ∈ [θ,∞). The process of finding the membership
of θ in Ã u B̃ can be computed as follows:

fF1tF2(θ) = φ1(θ) ∧ φ2(θ) (18)

where
φ1(θ) = gx(θ) ∧ sup

u∈[θ,∞)

{
fx(u)} (19)

and
φ2(θ) = fx(θ) ∧ sup

w∈[θ,∞)

{
gx(w)} (20)

Theorem 3.2: Let TÃ, TB̃ be TINs and ε-approximation of
Ã, B̃, respectively, and Lgs are all polylines that are break-
lines and intersections or boundaries of TÃ and TB̃ so that
there exist no edge of both TINs that is intersected by their
intersections in 2-D plane Oxu. If TC̃ is a TIN formed from
set of triangle ti(i = 1, . . . , n), in which ti is a triangle of
TÃ or TB̃ and three vertices of ti meet equation (5), and
type-2 fuzzy set C̃ is the resultant set of the meet operation
under minimum of Ã and B̃ then TC̃ is ε-approximation of
C̃.

Proof: In the same way as the proof of theorem (3.1),
we prove the theorem at points that µÃ(x, u) > 0 and
µB̃(x, u) > 0.

Suppose that these exist p(xp, up) is a point in triangle t in
the region depicted in Fig. (4) that TC̃ is non-ε-approximation
of C̃. µC̃(p) is computed as follows:

µC̃(xp, up) = (µÃ(xp, up) ∧ supk(µB̃(xp, uk)))
∧(µB̃(xp, up) ∧ supk(µÃ(xp, uk))) (21)



In the figure, Lg1 may be a intersection break-line or
boundary break-line. So we have

sup
k

(µÃ(xp, uk)) = sup
k

(µB̃(xp1 , uk))

sup
k

(µB̃(xp, uk)) = sup
k

(µB̃(xp1 , uk)) (22)

The cause of non-ε-approximation at p may be µÃ(xp, up)
or µB̃(xp, up) because TC̃ meets ε-approximation criterion
at p1 and equation (22). These is reasonless because of the
supposition of ε-approximation of TÃ and TC̃ . Hence, TC̃ is
ε-approximation of C̃ at p.

We also proposed the algorithm for the computation of the
meet operation between two T2FSs Ã and B̃ using geometric
algorithms on TIN. Call C̃ with the approximate set C̃T (its
TIN is TC̃) is the resultant type-2 fuzzy set of meet operation.

Algorithm 3.5: Meet operation
Input: Two TINs TÃ, TB̃ represent Ã, B̃.
Output: TC̃ is the resultant T2FS.
1) Initialize a TIN TC̃ .
2) Find polylines that are intersection of TÃ and TB̃ .

Create break-lines from these polylines.
3) For each triangle tj of TIN TC̃ , suppose that (v1j , v2j ,

v3j) is three vertices of tj and v4j is center of gravity
of tj .
Set dk = 0
For each vertex vkj = (xkj , ukj , ykj)(k = 1, 2, 3, 4.)
of tj do.

a) Compute
ysup = getSupremum(vkj , 0,MEET ) for TB̃
y1 = min{µÃ(xkj , ukj), ysup}.

b) Compute
ysup = getSupremum(vkj , 0,MEET ) for TÃ
y2 = min{µB̃(xkj , ukj), ysup}.

c) Set dk+ = fabs(ykj −max{y1, y2})
If dk < ε then
Insert tj into TC̃ .

4) Reject triangles t of TC̃ that y-dimension of its three
vertices equals 0.

Computational complexity. As the same way of the join
operation under minimum, the algorithm involves two steps.
The first step is to find intersection polylines of two TINs.
The second step computes meet operation at vertices and
gravity center of triangles, so the complexity of this step is
O(N), where N is sum of number of vertices of TINs T1,
T2.

Note that the above algorithm contains a procedure of
getSupremum using algorithm 3.3 in which the ray Pt is
the segment connecting from Pt to the point (P.x, 1) in 2-D
plane.

Fig. 7 shows the resultant set of meet operation under
minimum between two type-2 Gaussian fuzzy sets depicted
in Fig. 2.

D. Negation operation
Theoretic complement operation is described as (6). Let

Ã be a type-2 fuzzy set and C̃ be the resultant one from the
negation operation. The algorithm is described as follows:

Fig. 7. Meet operation under minimum

Algorithm 3.6: Negation operation
Input: TIN TÃ represents T2FS Ã.
Output: TC̃ is the resulting T2FS.
1) Call TC̃ is a clone of TÃ.
2) For each vertex vk = (xk, uk, yk) of TC̃

Set uk = 1.0− uk.

E. Inference

Consider a type-2 FLS having n inputs, x1 ∈ X1, x2 ∈
X2, ..., xn ∈ Xn and one output y ∈ Y . Suppose that it has
M rules as follows
Rl: IF x1 is Ãl1 AND . . . AND xp is Ãlp THEN y is B̃l

The used fuzzification is singleton. Inference process is
described as equation (9). For each point (y, u), (9) is
rewritten as follows:

µB̃l(y, u) = [. . . [µG̃l(y, u) u µF̃ l
1
(x1, u)] . . . u µF̃ l

p
(xp, u)]

(23)
Observe that µB̃l(y, u) is computed by the meet operation

for µG̃l(y, u) and µF̃ l
1
(x1, u) at x1. Then resultant type-2

fuzzy set is applied by the meet operation with the next
fuzzified set µF̃ l

2
(x2, u) at x2. The procedure is repeated p

times until the last fuzzified set µF̃ l
p
(xp, u) is applied at xp.

The following is the modified algorithm for inference process
based on TIN of type-2 fuzzy sets G̃l, F̃ l1, . . . , F̃

l
p.

Algorithm 3.7: Inference process for the lth rule.
Input: TF̃1

, . . . , TF̃p
, TG̃ are linguistic T2FSs of the lth

rule and x1, . . . , xp are crisp inputs of the system.
Output: TC̃ is the resultant T2FS.
1) Initialize array of 3-D vectors aIP .
2) For each pair (xk, TF̃k

) do
Make a segment Lk from (xk, 0) to (xk, 1)
Find intersection points Pj = (xPj

, uPj
, yPj

) between
Lk and edges of the TIN TF̃k

and insert Pj into aIP .
3) For each point Pj in aIP do

Make a break-line of TG̃l from the segment connected
from (xmin, uPj ) to (xmax, uPj ).

4) For each pair (xk, TF̃k
) do

For each vertex vj = (xvj
, uvj

, yvj
) of TIN TG̃l

a) Set v = vj
b) Compute ysup =

getSupremum(v, 0,MEET ) for TF̃k
.

Compute y1 = min{µG̃(xv, uv), ysup}.
c) Set xv = xk.
d) Compute ysup =

getSupremum(v, 0,MEET ) for TG̃.



Fig. 8. Example of singleton fuzzification of rule

Fig. 9. Example of inference process

Compute y2 = min{µF̃k
(xv, uv), ysup}.

e) Set yvj = max{y1, y2}
Computational complexity. The algorithm can be divided

into three steps. The first step is to find all of the intersection
points between Lk and edges of antecedent TINs. The
complexity of this step depends on the depth of the TIN
at xk in direction Lk, i.e. O(d) where d � nk is the depth
at xk in direction Lk and nk is number of triangles of TF̃k

.
The second step is to create break-lines in x axis for the
resultant TIN of the rule from set of intersection points. The
complexity is O(nk). The last step is to compute fuzzy value
of inference process at the vertices of TIN, so the complexity
of this step is linear, i.e. O(n), where n is number of vertices
of consequent TIN.

Example: Suppose that rules of type-2 fuzzy logic system
has the form as follows:

IF X1 is F̃1 AND X2 is F̃2 THEN Y is G̃
The type fuzzy sub-sets F̃1, F̃2 are described in Fig.

8(a) and Fig. 8(b), respectively, G̃ is described in Fig. 8(b).
Suppose that X1 = 3.0 and X2 = 4.5 are the inputs of the
inference process. The result of this process is depicted in
Fig. 9; the original elevation image of G̃ is in Fig. 9(a) and
the output type-2 fuzzy set is in Fig. 9(b).

IV. EXPERIMENTAL RESULTS

We tested the feasibility of algorithms with various
membership grades such as triangle-triangle, Gaussian-
Triangle(primary and secondary membership functions are
Gaussian and triangular functions, respectively), Gaussian-
Interval. We implemented operations consisting of join, meet,
negation, inference process. Each operation was implemented
over static inputs with series of 100 operating cycles. This
was repeated 30 times to reduce experimental error. Testing
type-2 fuzzy sets are represented by TIN with vertices
and faces also shown in the table. Some resultant type-2
fussy sets are described by figures in III. The results were
summarized run-times (in milliseconds) in table I.

V. CONCLUSION

The paper has presented some applications of geometric
representation of generalized type-2 fuzzy sets using triangu-
lated irregular network to operations. Geometric algorithms
for finding a triangle containing P , intersection of two TINs
are designed as basic algorithms for computing operations.

TABLE I
RUN-TIME OF COMPUTATIONS OF TYPE-2 OPERATIONS

MF
TIN

Join Meet Neg. Inf.vert., faces
Triangle-Triangle 9 v, 8 f 148.0 151.4 < 1 308.6
Gaussian-Triangle 36 v, 48 f 447.9 449.0 < 1 364.3
Gaussian-Interval 17 v, 15 f 114 91 < 1 237

Geometric computations of the operations such as join, meet
and negation operations have proposed on the basis of the
representation. Computations for inference process of Type-
2 FLS have also presented according to the idea of sup-star
composition. Algorithms for geometric operations, inference
process have implemented for summarizing run-times that
speed of algorithms may be fast enough for applications.

The approach based on computational geometry using TIN
is one of methods for reduction of computational complexity
of type-2 fuzzy logic and could be applied to computations
of hybrid systems of type-2 fuzzy sets.

REFERENCES

[1] M. Berg, M. Kreveld, M. Overmars, and O. Schwarzkopf (1997). Com-
putational Geometry: Algorithms and Applications. Springer-Verlag,
Berlin.

[2] L. P. Chew (1989), ”Constrained Delaunay Triangulations”, Algorith-
mica 4(1),pp. 97-108.

[3] S. Coupland, R. John (2004), ”Fuzzy Logic and Computational Geom-
etry”, Proc. RASC , pp. 3 - 8, Nottingham, UK.

[4] S. Coupland, R. John (2007), ”Geometric Type-1 and Type-2 Fuzzy
Logic System”, IEEE Trans. on Fuzzy Systems, 15(1), pp. 3 - 15.

[5] S. Coupland, R. John (2008), ”New geometric inference techniques for
type-2 fuzzy sets”, International Journal of Approximate Reasoning,
49(1), pp. 198-211.

[6] N. Karnik, J.M. Mendel and Liang Q. (1999), ”Type-2 Fuzzy Logic
Systems”, IEEE Trans. on Fuzzy Systems, 7(6), pp. 643-658.

[7] N. Karnik and J.M. Mendel (2001), ”Operations on Type-2 Fuzzy Sets”,
Fuzzy Sets and Systems, 122, pp.327-348.

[8] N. Karnik and J.M. Mendel (2001), ”Centroid of a Type-2 Fuzzy Set”,
Information Sciences, 132, pp. 195-220.

[9] Liang Q. and J.M. Mendel (2000), ”Interval Type-2 Fuzzy Logic
Systems: Theory and Design”, IEEE Trans. on Fuzzy Systems, 8(5),
pp. 535-550.

[10] J.M. Mendel and R. I. John (2002), ”Type-2 Fuzzy Sets Made Simple”,
IEEE Trans. on Fuzzy Systems, 10(2), pp. 117-127.

[11] J.M. Mendel , John R. I., Feilong Liu (2006), ”Interval Type-2 Fuzzy
Logic Systems Made Simple”, IEEE Trans. on Fuzzy Systems, 14(6),
pp. 808-821.

[12] J.M. Mendel (2007), ”On a 50% savings in the computation of
the centroid of a symmetrical interval type-2 fuzzy set”. Information
Sciences, 172, pp. 417-430.

[13] Long Thanh Ngo, Long The Pham, Phuong Hoang Nguyen, K.Hirota
(2007), ”On approximate representation of type-2 fuzzy sets using
triangulated irregular network”, Foundations of Fuzzy Logic and Soft
Computing, Lecture Notes in Computer Science, LNCS 4529, Springer,
pp. 584-593.

[14] J.R. Shewchuk (1996), Triangle: Engineering a 2D Quality Mesh
Generator and Delaunay Triangulator, Proc. First Workshop on Applied
Computational Geometry pp. 124-133, Pennsylvania, USA.

[15] J.R. Shewchuk (1997), Delaunay refinement mesh generation, PhD
Thesis, Carnegie Mellon University, Pittsburgh, USA.

[16] J.R. Shewchuk (2002), Delaunay Refinement Algorithms for Triangu-
lar Mesh Generation, Computational Geometry: Theory and Applica-
tions 22(1-3):21-74.

[17] Janusz T. Starczewski (2006), ”A Triangular Type-2 Fuzzy Logic
System”, Proc. FUZZ-IEEE 2006, pp. 7231-7239, Vancouver, Canada.


