
 

  Abstract—This paper proposes an improved lattice-reduction 
aided (LRA) MMSE detection by combining the LLL algorithm 
and the Gram-Schmidt (GS) procedure.  The proposed detection 
reduces the column vectors of the MIMO channel matrix using 
the LLL algorithm and the GS procedure to create mutually 
purely orthogonal column vectors of the reduced channel matrix.  
Then the decision boundary becomes the same as that for the ML 
detection.  Compared to the conventional LRA MMSE detector, 
the proposed detector achieves much closer BER performances to 
those for the ML detector in both the 4×4 MIMO and the 8×8 
MIMO systems. 
 

Index Terms— Gram-Schmidt orthogonalization, lattice-reduc- 
tion,  LLL algorithm, MIMO, MMSE, signal estimation. 

I. INTRODUCTION 
Recently, the lattice-reduction (LR) aided (LRA) detection 

has been receiving attractive attention since it achieves high 
channel capacity in the multiple-input multiple-output (MIMO) 
systems. The LR transforms the column vectors of the MIMO 
channel matrix close to mutually orthogonal, followed by the 
estimation of the transmitted signals [2]−[7].  The most popular 
LR algorithm is the well-known LLL algorithm introduced by 
Lenstra, Lenstra, and Lovász [1].  Using this algorithm, the 
LRA detector achieves highly reliable signal estimation and 
hence good bit error ratios (BERs).  In particular, the LRA 
detector in a 4×4 MIMO system achieves BER relatively close 
to that with the maximum likelihood (ML) detector [2]−[5], [9], 
[10].  In contrast, the LRA detector in an 8×8 MIMO system 
does not achieve so good BER performance as the LRA 
detector in a 4×4 MIMO system does, compared to BERs for 
the ML detector [4], [9], [10].  This is because the signal 
transmitted from each antenna is interfered by more signals 
transmitted from the other antennas in the 8×8 MIMO system 
than in the 4×4 MIMO system.  This fact implies that the 
detection scheme used for the 4×4 MIMO system is not directly 
applicable to the 8×8 MIMO system and that some adequate 
detection schemes should be needed for the 8×8 MIMO system. 

In [9], we previously proposed a “combined forward and 
backward LR (F-LR and B-LR) aided detection scheme.”  This 
scheme improved the BER performance by around 3dB at 
BER≈10−5 over that with the conventional LRA detection in the 
8×8 MIMO system.  But the BER performance was still far 
from that with the ML detection. 

In this paper, we propose an LRA minimum mean square 
error (MMSE) detection scheme by combining the LLL algo- 
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rithm and the Gram-Schmidt (GS) orthogonalization procedure, 
aiming at achieving BER close to the BER for the ML detec- 
tion in the 8×8 MIMO system.  We first reduce the column vec- 
tors of the basis channel matrix using the LLL algorithm, and 
then reduce the LLL-reduced column vectors using the GS 
procedure.  Then the GS-reduced column vectors become mu- 
tually purely orthogonal and almost of equal length.  Hence the 
decision boundary becomes the same as that for the ML detec- 
tion.  As a result, the proposed detection scheme extremely im- 
proves the BER performance, which is very close to that with 
the ML detection both in the 4×4 and the 8×8 MIMO systems. 

The remainder of this paper is organized as follows.  Section 
II presents the system model and the conventional LRA 
detection.  Section III presents the basic concept of the GS 
procedure based lattice-reduction.  In Section IV, we propose a 
GS procedure based LRA MMSE detection which is applicable 
to the 8×8 MIMO systems.  Section V gives the computer simu- 
lation results and makes discussion.  Finally, we summarize and 
conclude the paper in Section VI. 

II. SYSTEM MODEL AND  CONVENTIONAL LRA DETECTION 

A. System Model 
A MIMO system with M transmit and N (N≥M) receive 

antennas is investigated here.  In the system, the signals are 
transmitted over a rich scattering flat fading channel.  We 
assume that the receiver has perfect knowledge of the channel 
state information.  Let H=[h1,…,hM] be the basis channel 
matrix, of which the entry hn,m : n∈[1,N], m∈[1,M], at the n-th 
row and the m-th column is the complex channel gain between 
the m-th transmit and the n-th receive antennas.  The channel 
gains are assumed to be mutually uncorrelated and of the 
complex Gaussian process with zero mean and unity variance.  
Let zn be the additive noise at the n-th receiver, where zn’s: 
n∈[1,N], are mutually uncorrelated.  Each zn is assumed to be of 
the complex Gaussian process with zero mean and variance of 
N0, where N0 is the one-sided noise power spectral density.  Let 
s=[s1,…,sM]T, y=[y1,…,yN]T, and z=[z1,…,zN]T be the transmit 
signal, receive signal, and the additive noise vectors, respec- 
tively.  Then we have 

1 1 2 2 M Ms s s= + = + + + +y Hs z h h h z     (1) 

B. LLL Algorithm 
The most popular LRA detector employs the LLL algorithm 

shown in Table I.   In the table, the optimum value of δ in terms 
of achieving low BER is dependent on the MIMO size and the 
modulation order, and on Eb/N0 for MMSE.  We will determine 
the value of δ in Section V.  The operator ⎡x⎦ denotes the 
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rounding of x in the real and the imaginary parts separately.  
The algorithm transforms the basis channel matrix H to the 
reduced channel matrix H' and creates the transform matrix T. 
The column vectors of H' are nearly orthogonal to one another, 
and T is a unimodular matrix with det{T}=±1.  Using H' and T, 
eq. (1) is rewritten as 

1( )( )− ′= + = + ≡ +y Hs z HT T s z H v z      (2) 
where H'=HT and v=T−1s. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

For the MMSE estimation, following Hassibi [8], define the 
extended receive signal vector y , the extended channel matrix 
H , and the extended additive noise vector z , respectively, as 

, ,
M Mρ ρ

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

H zy
y H z

0 I s
     (3) 

where 1/ρ =Es/MN0 and Es=E[|sm|2]: m∈[1,M].  Here E[·] is the 
ensemble average operator.  The IM is the M×M identity matrix, 
and 0M is the M×1 vector with all zero entries. Then input H  
instead of H into step (1) of Table I.  The column vectors ph : 
p∈[1,M], of H  are reduced to create the reduced channel 
matrix ′H  and the transform matrix T. Using ′H  and T, eq. 
(2) is extended as 

1( )( )− ′= + = + ≡ +y Hs z HT T s z H v z      (4) 
where ′ =H HT  and v=T−1s. Note that T and v in (4) are 
different from those in (2). 

C. Estimation of Transmitted Signal 
For the MIMO detection, the MMSE estimation is popular. 

In [8], Hassibi proposed a zero-forcing (ZF) similar form of the 
MMSE detector with introduction of y  and H  in (3).  Then 
the MMSE estimation can be expressed in the similar form to 
the ZF as 

† H 1 H( )Mρ −= = +s H y H H I H y       (5) 
where †H  denotes the pseudo inverse of H .  Then, s  is 
transformed to 1−=v T s  in the v-domain.  In the case that the 
entries of s are of the commonly used quadrature amplitude 
modulation (QAM) mapping, proper shifting and scaling of s  
is necessary before deriving v .  The detailed explanation on 
the shifting and scaling operation is given in [7].  We express 

this operation as : [ ]=s sS .  After that, the entries of v  are 
rounded as ˆ ⎡ ⎦=v v .  Next, v̂  is transformed to ˆ ˆ=s Tv  in the 
s-domain.  Then, ŝ  is shifted back and scaled back in the above 
case.  We express this operation as 1ˆ ˆ: [ ]−=s sS .  At this stage, 
entries ˆms : m∈[1,M], of ŝ  are forced to the nearest symbol 
constellation point if they are lying outside the symbol 
constellation.  We express this operation as ˆ ˆ: [ ]=s sC . 

III. BASIC CONCEPT OF GRAM-SCHMIDT PROCEDURE BASED 
LRA MMSE DETECTION 

In this section, the basic concept of the proposed GS 
procedure based LRA MMSE detection is explained shortly.  
The LLL algorithm transforms the extended basis channel mat- 
rix H  to the reduced channel matrix ′H , of which the column 
vectors are mutually nearly orthogonal.  The algorithm also 
makes the reduced column vectors almost of equal length.  If 
the reduced column vectors were mutually purely orthogonal, 
the decision boundary for the receive signal should be the same 
as that for the ML detection.  Unfortunately, the LLL algorithm 
does not make the column vectors of the reduced channel mat- 
rix ′H  mutually purely orthogonal.  Hence we will make them 
purely orthogonal using the GS procedure, as described below. 

Table II shows a GS orthogonalization algorithm. This 
algorithm weakly reduces the column vectors of the LLL- 
reduced channel matrix H' to create the GS-reduced channel 
matrix Ĥ  and the transform matrix T̂ .  The column vectors of 
Ĥ  are mutually purely orthogonal.  Note that the algorithm in 
Table II is computationally-simple since it weakly reduces the 
column vectors of H'.  
 
 
 
 
 
 
 
 
 
 
 

For MMSE, the column vectors of ′H  are weakly reduced 
using Table II to create the GS-reduced channel matrix Ĥ  and 
the transform matrix T̂ .  Extending (4), we have 

1

1

( )( )
ˆˆ ˆ( )( )

−

−

′= + = + ≡ +

′= + ≡ +

y Hs z HT T s z H v z

H T T v z Hu z
    (6) 

where ˆ ˆ ˆ′= =H H T HTT , ˆ= =s Tv TTu , and ˆdet{ } 1= ±TT .  
Note that T̂  is an upper triangular matrix with unity diagonal 
entries and the others of non-integers. 

The soft estimate of u is expressed as 1ˆ( )−=u TT s .  Since 
the entries of 1ˆ( ( ) )−=u TT s  are not integers, the entries of u  
cannot be decided by quantization like the LRA detection.  A 
most critical problem for the proposed detection is how to 
decide u  to create the estimate û  in the u-domain.  This prob- 
lem will be uniquely solved using a novel method in Section IV.  
Once u  is decided to be û , the estimate of the transmitted 
signal s is obtained as  ˆˆ ˆ=s TTu , and then let 1ˆ ˆ: [ ]−=s sS  and 

(1)  Begin  Input H, T:=IM=[t1,…,tM], set δ, 1 1
ˆ =h h  

  (2)     for p:=2 to M 
  (3)          for q:=p−1 down to 1 
  (4)              H 2

,
ˆ ˆ/ || ||p q q p qµ = h h h  

  (5)              , ,: , :p p q p p qp q p qµ µ⎡ ⎡⎦ ⎦= − = −h h h t t t  
  (6)          end 
  (7)          Let ˆ

p p=h h . 
(8)          for q:=p−1 down to 1 

  (9)              H 2
,

ˆ ˆ ˆ/ || ||p q q p qµ = h h h  
(10)              ,

ˆ ˆ ˆ:p p p q qµ= −h h h  
(11)         end 
(12)         If 2 2

1 , 1 1
ˆ ˆ ˆ|| || || ||p p p p pδ µ− − −≤ +h h h , let p:=p+1.

(13)         Else, swap the (p−1)-th and the p-th columns. 
        Let p:=max{p−1, 2}, and 1 2

ˆ =h h  if p=2. 
(14)     end 
(15)  End 

TABLE I 
THE LLL ALGORITHM 

(1)  Begin  Input 1 1
ˆ[ ,..., ], : [ ,..., ],M M M′ ′ ′= = =H h h T I t t  

                    set ˆ ˆ,p p p p′= =h h t t : p∈[1,M] 
(2)      for p:=2 to M 
(3)          for q:=p−1 down to 1 
(4)              H 2

,
ˆ ˆ ˆ/ || ||p q q p qµ = h h h  

(5)              , ,
ˆ ˆ ˆ ˆ ˆ ˆ: , :p p p q q p p p q qµ µ= − = −h h h t t t  

(6)          end 
(7)      end 
(8)  End

TABLE II 
GRAM-SCHMIDT ORTHGONALIZATION ALGORITHM 
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ˆ ˆ: [ ]=s sC . 

IV. PROPOSED LRA MMSE DETECTION BASED ON 
GRAM-SCHMIDT PROCEDURE 

In this section, the detailed procedure of the proposed 
GS-based LRA MMSE detection is explained. 

A. Forward and Backward LR Using LLL Algorithm 
(i) First we forward reduce the column vectors of 

1[ ,..., ]M=H h h  using Table I. Input 1[ ,..., ] :M= =H h h H  and 
T:=IM=[t1,…,tM] into Table I. Then we obtain the LLL-reduced 
channel matrix ( 1) ( 1)( 1)

11[ ,..., ] : [ ,..., ]j jj
MM

= ==′ ′ ′≡ =H h h h h  and 
the transform matrix ( 1) ( 1)( 1)

11[ ,..., ] : [ ,..., ]j jj
MM

= == ≡ =T t t t t . 
Next we backward reduce the column vectors of H  using 

Table I.  Input 1 1[ ,..., ] : [ ,..., ]M M= =H h h h h  and T=[t1,…,tM]   
:=[tM,…,t1]  into Table I.  Then we obtain the LLL-reduced 
channel matrix ( 2) ( 2)( 2)

11[ ,..., ] : [ ,..., ]j jj
MM

= ==′ ′ ′≡ =H h h h h  and 
the transform matrix ( 2) ( 2)( 2)

11[ ,..., ] : [ ,..., ].j jj
MM

= == ≡ =T t t t t  

(ii) If we want better BER, we further rearrange the order of the 
columns of H and of T such that 

1 2 1 1 2[ ,..., ] : [ ,..., , ,..., ]M M M M+= =H h h h h h h  
1 2 1 1 2[ ,..., ] : [ ,..., , ,..., ]M M M M+= =T t t t t t t  

for the forward LLL-reduction, and 
1 2 1 2 1[ ,..., ] : [ ,..., , ,..., ]M M M M += =H h h h h h h  

1 2 1 2 1[ ,..., ] : [ ,..., , ,..., ]M M M M += =T t t t t t t  
for the backward LLL-reduction. 

Input the above H’s and T’s into Table I. Then we obtain the 
LLL-reduced channel matrices and the transform matrices as 

( 3) ( 3)( 3)
2 1 1 21[ ,..., ] : [ ,..., , ,..., ]j jj

M M MM
= ==

+′ ′ ′≡ =H h h h h h h  
( 3) ( 3)( 3)

2 1 1 21[ ,..., ] : [ ,..., , ,..., ]j jj
M M MM

= ==
+≡ =T t t t t t t  

and 
( 4) ( 4)( 4)

2 1 2 11[ ,..., ] : [ ,..., , ,..., ]j jj
M M MM

= ==
+′ ′ ′≡ =H h h h h h h  

( 4) ( 4)( 4)
2 1 2 11[ ,..., ] : [ ,..., , ,..., ]j jj

M M MM
= ==

+≡ =T t t t t t t . 

In (i), the superscripts (j=1) and (j=2) denote the F-LR and 
the B-LR of the extended channel matrix H , respectively.  In 
(ii), the superscripts (j=3) and (j=4) denote the F-LR and the 
B-LR of the column-order rearranged H , respectively. 

B. Gram-Schmidt Orthogonalization 
We next create eight or 16 GS-reduced channel matrices 

Ĥ ’s and their corresponding transform matrices T̂ ’s by input- 
ting ( )j′H : j∈{1,2} or j∈[1,4], into Table II. 

Case 1 (k=1): Forward GS-reduction of ( )j′H : 
Input the LLL-reduced channel matrix 

( ) ( ) ( )
1 1[ ,..., ] : [ ,..., ]j j j

M M′ ′ ′ ′ ′ ′= = =H h h h h H  and 
1

ˆ [ ,..., ] : .M M= =T t t I  
Then we obtain the GS-reduced channel matrix 

( , 1) ( , 1)( , 1)
11

ˆ ˆ ˆ ˆ ˆ[ ,..., ] : [ ,..., ]j k j kj k
MM

= == ≡ =H h h h h  
and the transform matrix 

( , 1) ( , 1)( , 1)
11

ˆ ˆ ˆ ˆ ˆ[ ,..., ] : [ ,..., ]j k j kj k
MM

= == ≡ =T t t t t . 
Case 2 (k=2): Backward GS-reduction of ( )j′H : 
Input 

( ) ( )
1 1[ ,..., ] : [ ,..., ]j j

M M′ ′ ′ ′ ′= =H h h h h  and 
1 1

ˆ [ ,..., ] : [ ,..., ].M M= =T t t t t  

Then we obtain 
( , 2) ( , 2)( , 2)

11
ˆ ˆ ˆ ˆ ˆ[ ,..., ] : [ ,..., ]j k j kj k

MM
= == ≡ =H h h h h  and 

( , 2) ( , 2)( , 2)
11

ˆ ˆ ˆ ˆ ˆ[ ,..., ] : [ ,..., ]j k j kj k
MM

= == ≡ =T t t t t . 
Case 3 (k=3): Forward GS-reduction of the column-order 
rearranged ( )j′H : 
Input 

( ) ( ) ( ) ( )
1 12 1 2[ ,..., ] : [ ,..., , ,..., ]j j j j

M MM M+′ ′ ′ ′ ′ ′ ′= =H h h h h h h  and 
1 / 2 1 1 / 2

ˆ [ ,..., ] : [ ,..., , ,..., ].M M M M+= =T t t t t t t  
Then we obtain 

( , 3) ( , 3)( , 3)
/2 1 1 /21

ˆ ˆ ˆ ˆ ˆ ˆ ˆ[ ,..., ] : [ ,..., , ,..., ]j k j kj k
M M MM

= ==
+≡ =H h h h h h h  

and 
( , 3) ( , 3)( , 3)

/2 1 1 /21
ˆ ˆ ˆ ˆ ˆ ˆ ˆ[ ,..., ] : [ ,..., , ,..., ]j k j kj k

M M MM
= ==

+≡ =T t t t t t t . 
Case 4 (k=4): Backward GS-reduction of the column-order 
rearranged ( )j′H : 
Input 

( ) ( ) ( ) ( )
1 12 2 1[ ,..., ] : [ ,..., , ,..., ]j j j j

M MM M +′ ′ ′ ′ ′ ′ ′= =H h h h h h h  and 
1 / 2 1 / 2 1

ˆ [ ,..., ] : [ ,..., , ,..., ]M M M M += =T t t t t t t . 
Then we obtain 

( , 4) ( , 4)( , 4)
/2 1 /2 11

ˆ ˆ ˆ ˆ ˆ ˆ ˆ[ ,..., ] : [ ,..., , ,..., ]j k j kj k
M M MM

= ==
+≡ =H h h h h h h  

and 
( , 4) ( , 4)( , 4)

/2 1 /2 11
ˆ ˆ ˆ ˆ ˆ ˆ ˆ[ ,..., ] : [ ,..., , ,..., ]j k j kj k

M M MM
= ==

+≡ =T t t t t t t . 
In the above Cases 1−4, the superscripts (k=1) and (k=2) 

denote the forward and the backward GS-reductions of ( )j′H , 
respectively, and the superscripts (k=3) and (k=4) denote the 
forward and the backward GS-reductions of the column-order 
rearranged ( )j′H , respectively. 

Finally, the extended receive signal vector y  is obtained as 
( ) ( ) 1 ( ) ( )

( ) ( , ) ( , ) 1 ( )

( , ) ( , ) 1 ( , ) ( , )

( )( )
ˆ ˆ( )( )

ˆˆ ˆ( )( )

j j j j

j j k j k j

j k j k j k j k

−

−

−

′= + = + ≡ +

′= +

≡ + ≡ +

y Hs z HT T s z H v z

H T T v z

HT T s z H u z

  (7) 

where (j∈{1,2} or j∈[1,4]), k∈[1,4], ( , ) ( ) ( , )ˆ ˆj k j j kT T T , 
( , ) ( ) ( , ) ( , )ˆ ˆ ˆj k j j k j k′= =H H T HT , and 

( ) ( ) ( , ) ( , )ˆj j j k j k= =s T v T u           (8) 
Note that the entries of ( , )ˆ j kT  and of ( , )j ku  are not integers, 
and ( , )ˆdet{ } 1j k = ±T . 

C. Estimation of Signal Vector u 
The transmitted signal s in (8) is first shifted and scaled as 

s:=S[s].  Then it is transformed to u(j,k) as 
( , ) ( , )( , ) T ( , ) 1
1

ˆ[ ,..., ]j k j kj k j k
Mu u −= =u T s        (9) 

where (j∈{1,2} or j∈[1,4]) and k∈[1,4].  Then we measure the 
distance between u(j,k) and the origin 0M as 

( , ) ( , ) ( , ) ( , ) 1ˆj k j k j k j k
M

−∆ = − = − = −u 0 u u T s    (10) 
The m-th entry of ∆u(j,k) is expressed as ( , ) ( , )j k j k

m mu u∆ = − .  After 
s  in (5) is shifted and scaled as : [ ]=s sS , the soft estimate of 
u(j,k) is derived from s  as 

  ( , ) ( , )( , ) T ( , ) 1
1

ˆ[ ,..., ]j k j kj k j k
Mu u −= =u T s      (11) 

Now we have obtained the correct point ( , )j k
mu  in (9) and the 

soft estimate ( , )j k
mu  in (11).  Since ( , )j k

mu  is not an integer, 
( , )j k
mu  cannot be decided by quantization like the conventional 

LRA detector.  In order to decide of ( , )j k
mu , we shift both ( , )j k

mu  
and ( , )j k

mu  by ( , ) ( , )( )j k j k
m mu u∆ = −  such that ( , )j k

mu  should be 
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shifted to the origin.  Then the shifted ( , )j k
mu  and ( , )j k

mu  are 
expressed, respectively, as 
    ( , ) ( , ) ( , ) ( , ) ( , ) 0j k j k j k j k j k

m m m m mu u u u u′ = + ∆ = − =   (12) 
( , ) ( , ) ( , ) ( , ) ( , )j k j k j k j k j k

m m m m mu u u u u′ = + ∆ = −     (13) 
Since ( , )j k

mu′  is an integer (zero), ( , )j k
mu′  can be rounded as 

    ( , ) ( , ) ( , ) ( , )ˆ j k j k j k j k
m m m mu u u u⎡ ⎦ ⎡ ⎦′ ′= = −       (14) 

After that, shift back ( , )ˆ j k
mu′  by ( , ) ( , )( )j k j k

m mu u−∆ =  to create the 
decided estimate ( , )ˆ j k

mu  as 
( , ) ( , ) ( , ) ( , ) ( , ) ( , )ˆ ˆj k j k j k j k j k j k
m m m m m mu u u u u u⎡ ⎦′= − ∆ = − +  (15) 

Using (9), eq. (15) is expressed in the vector form as 
( , ) ( , ) ( , ) ( , ) ( , ) 1 ( , ) 1ˆ ˆˆ ˆ ˆj k j k j k j k j k j k− −

⎡ ⎦′= − ∆ = − +u u u u T s T s  (16) 
We here pre-estimate the transmitted signal s in (16) using 

the conventional LRA MMSE detection.  First, derive the soft 
estimate s  in (5).  Then let : [ ]=s sS .  Next, transform s  to 

( ) ( ) 1j j −=v T s  in the v-domain.  Then, round the entries of  
( )jv  as ( ) ( )ˆ j j

⎡ ⎦=v v .  Finally, transform ( )ˆ jv  to ( )ˆ j′s  in the 
s-domain as 

( ) ( ) ( )ˆ ˆj j j′ =s T v           (17) 
Substitute  ( )ˆ j′s  into s in (16) to revise ( , )ˆ j ku . 

Note that the cross-correlation of T(j=1) and T(j=2) and that of 
T(j=3) and T(j=4) are weak as shown in [9].  Hence it is unlikely 
that all ( )ˆ j′s : j∈[1,4], in (17) are in error at the same time.  
Similarly, the cross-correlation of ( , )ˆ j kT  and ( , )ˆ j k′ ′T  is weak, 
where j' ≠j and/or k' ≠k. Hence it is unlikely that all ( , )ˆ j ks  

( , ) ( , )ˆ ˆ( )j k j k= T u : {j|k}∈[1,4], are in error at the same time.  As a 
result, good BER should be expected by selecting the most 
reliable estimate ( , )ˆ j ks . 

D. List of û  and Estimation of s 

We here derive the estimate of the transmitted signal s using 
the proposed GS-based LRA MMSE detection.  Replacing s in 
(16) by ( )ˆ j′s  in (17), we express the revised ( , )ˆ j ku  as ( 0, , )ˆ p j k=u , 
which is first listed.  Since ( , ) ( , )j k j k≈u u  in the high Eb/N0 
region, we further create ( , , )ˆ p j ku : p∈[1,M], by replacing the 
p-th entry of (0, , )ˆ j ku  by ( , )j k

pu  in (11).  And add them to the list.  
By adding ( , , )ˆ p j ku : p∈[1,M], to the list, more reliable estimate 
of the transmitted signal s is expected.  Calculating 

( , , ) ( , ) ( , , )ˆˆ ˆp j k j k p j k=s T u : p∈[0,M], and then letting 
( , , ) 1 ( , , )ˆ ˆ: [ ]p j k p j k−=s sS  and ( , , ) ( , , )ˆ ˆ: [ ]p j k p j k=s sC , select the 

most reliable signal among all ( , , )ˆ p j ks : p∈[0,M], (j∈{1,2} or 
j∈[1,4]), k∈[1,4].  The above procedure is summarized in 
Table III, where the notations S[⋅] and S−1[⋅] for ( , , )ˆ p j ks , [ , , ]ˆ i j ks , 

( )ˆ j′s  and { }ˆ i′s  are omitted. 
In Table III, we obtain the estimate ŝ  at step (28).  We here 

call the ŝ  the GS-estimate.  We also call this detection proce- 
dure the Gram-Schmidt based combined forward and back- 
ward LRA (GS-F&B-LRA) MMSE list detection.  In order to 
achieve more reliable GS-estimate ŝ , we replace { }ˆ i′s  at step 
(6) by the updated estimate ( , , )ˆ p M j k=s  at step (15) for each j 
and k iteratively, where i is the iteration number and I is the 
number of iterations.  Note that the “combined forward and 
backward (F&B) LRA detection scheme” is explained in [9]. 

In this section, the transmitted signal s is estimated in the 
following manner.  First the extended channel matrix H  is 
forward and backward reduced using the LLL algorithm in 
Table I to create two or four reduced matrices ′H ’s.  After that, 
eight or 16 Ĥ ’s are created by forward and backward reducing 
the column vectors of ′H ’s using the weakly reducing GS 
algorithm in Table II, followed by the estimation of the 
transmitted signal s.  With this procedure, all the columns of Ĥ  
become purely orthogonal to one another and almost of equal 
length.  Hence good BER is expected. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

V. SIMULATION RESULTS AND DISCUSSIONS 
Computer simulations were carried out for QPSK, 16QAM 

and 64QAM in the 4×4 and the 8×8 MIMO systems.  We esti- 
mated the transmitted signals using the proposed GS-F&B- 
LRA MMSE list detection. 

Before calculating BERs for the proposed detection, we first 
determine the suitable value of δ in Table I and the suitable 
number of iterations I in Table III.  After that, we analyze the 
BER performances and the computational complexity. 

A. Suitable Values of Factor δ and of  Number of Iterations I 
We here determine the suitable values of δ and the suitable 

number of I for both the conventional and the proposed detec- 
tions in the 4×4 and the 8×8 MIMO systems.  Although the 

(1) Begin  Input y, ( , ) ( , )( , ) T ( , ) ( , ) 1 ( )
1

ˆ ˆ ˆ[ ,..., ] , , ,j k j kj k j k j k j
Mu u − ′=u T T s , H.

(2)  for j:=1 to (2 or 4) 
(3)    for k:=1 to 4 
(4)      Let { 0} ( )ˆ ˆ:i j=′ ′=s s . 
(5)      for i:=0 to I  (I: the number of iterations) 
(6)        ( 0, , ) ( , ) ( , ) 1 { } ( , ) 1 { }ˆ ˆˆ ˆˆ p j k j k j k i j k i

⎡
= − −⎦′ ′= − +u u T s T s    

(7)        ( 0, , ) ( . ) (0, , )ˆˆ ˆp j k j k j k= =s T u , and let (0, , ) (0, , )ˆ ˆ: [ ]j k j k=s sC . 
(8)        for p:=1 to M 
(9)      ( , , ) ( , ) ( , ) Tˆ ˆ[..., ,..., ,...]p j k j k j k

p qu u=u : (q≠p)∩(q∈[1,M]) 
(10)      ( , , ) ( . ) ( , , )ˆˆ ˆp j k j k p j k=s T u , and let ( , , ) ( , , )ˆ ˆ: [ ]p j k p j k=s sC . 
(11)     If ( , , ) ( 1, , )ˆ ˆp j k p j k−=s s , go to (13). 
(12)     Else, ( , , ) ( , , )

 { 1, }
ˆ ˆarg min [|| || ]p j k p j k

p p p

′

′∈ −
= −s y Hs . 

(13)     end (p-loop) 
(14)        Let [ , , ] ( , , )ˆ ˆ:i j k p M j k==s s . 
(15)        Let { } ( , , )ˆ ˆ:i p M j k=′ =s s . 
(16)        If i=0, go to (19). 
(17)        If { } { }ˆ ˆi i′′ ′=s s  for any one of i' : i'∈[0,i−1], 
 then let [ , , ] [ , , ]ˆ ˆ:I j k i j k=s s , and go to (20). 
(18)        Else, let [ , , ] [ , , ]

{ 1, }
ˆ ˆ: arg min[|| || ]i j k i j k

i i i

′

′∈ −
= −s y Hs . 

(19)      end (i-loop) 
(20)      If k=1, go to (23). 
(21)      If [ , , ] [ , , 1]ˆ ˆi I j k i I j k= = −=s s , go to (23). 
(22)      Else, [ , , ] [ , , ]

{ 1, }
ˆ ˆ: arg min [|| || ]i I j k i I j k

k k k

′= =

′∈ −
= −s y Hs . 

(23)    end (k-loop) 
(24)    If j=1, go to (27). 
(25)    If [ , , 4] [ , 1, 4]ˆ ˆi I j k i I j k= = = − ==s s , go to (27). 
(26)    Else, [ , , 4] [ , , 4]

{ 1, }
ˆ ˆ: arg min [|| || ]i I j k i I j k

j j j

′= = = =

′∈ −
= −s y Hs . 

(27)  end (j-loop) 
(28)  Let [ ,( 2 or 4), 4]ˆ ˆ i I j k= = ==s s  and let ˆ ˆ: [ ]=s sC . (GS-estimate) 
(29) End

TABLE III 
THE PROPOSED DETECTION ALGORITHM
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optimum value of δ in terms of achieving low BER is depend- 
ent on Eb/N0, we look for suitable value of δ that should achieve 
BER of 10−4−10−5 at the lowest Eb/N0.  Then δ becomes 
optimum at BER≈10−4−10−5. 

Figs. 1 (a), (b) and (c) show the δ  vs. BER characteristics for 
various values of I, and the δ  vs. the number of swapping times 
characteristics for QPSK, 16QAM and 64QAM at Eb/N0 of 
15dB, 20dB and 25dB over the 4×4 MIMO channel, respective- 
ly.  Figs. 1 (d), (e) and (f) show those two characteristics for 
QPSK, 16QAM and 64QAM at Eb/N0 of 11dB, 16dB and 21dB 
over the 8×8 MIMO channel, respectively. 

Figs. 2 (a), (b) and (c) show the number of iterations I vs. 
BER characteristics for the proposed detection for QPSK, 
16QAM and 64QAM at Eb/N0 of 15dB, 20dB and 25dB over 
the 4×4 MIMO channel, respectively.  Figs. 2 (d), (e) and (f) 
show those characteristics for the proposed detection for QPSK, 
16QAM and 64QAM at Eb/N0 of 11dB, 16dB and 21dB over 
the 8×8 MIMO channel, respectively.  Table IV summarizes the 
suitable values of δ and those of I for the three modulation 
types in both the 4×4 and the 8×8 MIMO systems. 

Remark that the parameter j∈{1,2} achieves good BERs for 
the 4×4 MIMO system, while the parameter j∈[1,4] is neces- 
sary to achieve good BERs for the 8×8 MIMO system. 
 
 
 
 
 
 
 
 
 
 

B. BER Performances 
Figs. 3 (a)−(f) show the Eb/N0 vs. BER characteristics for 

QPSK, 16QAM and 64QAM in the 4×4 and the 8×8 MIMO 
systems, setting δ shown in Table IV.  In each figure, BER 
curves with legends (1) and (2) are derived using the conven- 
tional and the proposed detections, respectively. 

Figs. 3 (a), (b) and (c) show the BER characteristics for 
QPSK, 16QAM and 64QAM in the 4×4 MIMO system, res- 
pectively.  BER curve (2) for QPSK agreed and those for 
16QAM and 64QAM almost agreed with the BER curves for 
the ML detection.  As seen in Figs. 3 (b) and (c), the BER 
slopes are as steep as those for the ML detection.  Hence we can 
obtain the same BER as that for the ML detection in the high 
Eb/N0 region by increasing the transmit signal energy by 0.1dB 
and 0.3dB for 16QAM and 64QAM, respectively. 

Figs. 3 (d), (e) and (f) show the BER characteristics for 
QPSK, 16QAM and 64QAM in the 8×8 MIMO system, 
respectively.  BER curve (2) for QPSK agreed and those for 
16QAM and 64QAM almost agreed with the BER curves for 
the ML detection.  As seen in Figs. 3 (e) and (f), the BER slopes 
are as steep as those for the ML detection.  Hence we can obtain 
the same BER as that for the ML detection in the high Eb/N0 
region by increasing the transmit signal energy by 0.1dB and 
0.4dB for 16QAM and 64QAM, respectively. 

As a consequence, the proposed detection dramatically 
improves the BER performances, which achieves near-ML 
BER performances, in particular, for the 8×8 MIMO system. 

C. Computational Complexity Analysis 
We count up the number of calculations of the multiplication 

of two complex values in Tables I−III and the number of those 
calculations of eqs. (5), (11) and (17) and their related 
calculations, since those calculations dominantly contribute to 
the computational complexity. 

In Table I, the number of calculations of Hˆ
q ph h  in step (4) 

and of Hˆ ˆ
q ph h  in step (9) at p with q∈[1, p−1] is a total of 2(p−1).  

Hence, with weak reduction, the total number of those calcu- 
lations over p∈[2,M] is 2 2( 1) ( 1)M

p p M M= − = −∑ .  Since both 
ˆ

ph  and ph  have 2M entries each, we have 2M⋅M(M−1) 
(=2M2(M−1)) multiplications for the above calculations.  The 
number of divisions in both steps (4) and (9) is M(M−1).  For 
the squared norms 2ˆ|| ||qh ’s in steps (4) and (9) at p with 
q∈[1, p−1], we need to calculate only 2

1
ˆ|| ||p−h  at p, since the 

other 2ˆ|| ||qh ’s for q∈[1, p−2] have already been calculated 
before p in the for-loop of p.  Hence the total number of 
multiplications for 2

1
ˆ|| ||p−h  at p is 2M.  With weak reduction, 

we have a total of 2M(M−1) multiplications for 2
1

ˆ|| ||p−h  over 
p∈[2,M].  The number of calculations in both steps (5) and 
(10) at p with q∈[1, p−1] is a total of 3(p−1).  With weak 
reduction, we have a total of 2

22 3( 1)( 3 ( 1))M
pM p M M= − = −∑  

multiplications in steps (5) and (10) over  p∈[2,M]. 
If a column-swapping occurs at p, then p goes back to (p−1).  

The number of calculations of both Hˆ
q ph h  in step (4) and 

Hˆ ˆ
q ph h  in step (9) at p and the number of divisions of them by 

2ˆ|| ||qh  at p are 2(p−1) each, and those at (p−1) are 2(p−2) each.  
Hence we have 2M⋅{2(p−1)+2(p−2)}(=4M(2p−3)) multipli- 
cations and {2(p−1)+2(p−2)}(=2(2p−3)) divisions due to the 
column-swapping at p.  The number of multiplications in both 
steps (5) and (10) at both p and (p−1) is a total of 
2M{3(p−1)+3(p−2)}=6M(2p−3).  Similarly, the number of 
multiplications for 2

1
ˆ|| ||p−h  at p and for 2

2
ˆ|| ||p−h  at (p−1) in 

both steps (4) and (9) is a total of 2M⋅2=4M.  Let a be the 
average column-swapping times.  Assuming that the column- 
swapping occurs uniformly with respect to p, the total number 
of multiplications in Table I is 

2 2
I

21
2

( , ) 4 ( 1 2 ) ( 1)(2 2 3 )

{(4 2 6 )(2 3) 4 }

( 1)(5 7) 2 (5 2 1)

Ma
pM

A M a M M a M M M M M

M M p M

M M M a M M

=−

= − + + − + + +

+ + + − +∑

= − + + + −

 

on average.  Here the term 4M(M−1+2a) is the number of mul- 
tiplications for the squared norm of the right hand side of the 
inequality in step (12).  Note that the left hand side 2

1
ˆ|| ||p−h at 

step (12) has already been calculated at step (4).  Also note that 
the column-swapping practically more often occurs at the 
smaller p than at the larger p.  Therefore the actual number of 
multiplications in Table I should be smaller than AI(M,a). 

In Table II, the column vectors of H' are weakly reduced.  
Hence the total number of multiplications for Hˆ ˆ

q ph h  and that 
for 2ˆ|| ||qh  at step (4) over p∈[2,M] are M2(M−1) and 
2M(M−1), respectively.  The number of divisions in step (4) is 

  QPSK 16QAM 64QAM
Conventional 

detection 
4×4 MIMO δ=0.75 δ=0.75 δ=0.75
8×8 MIMO δ=0.75 δ=0.75 δ=0.75

 
Proposed 
detection 

4×4 MIMO: 
j∈{1,2} 

δ=0 
I=0 

δ=0.4 
I=1 

δ=0.4 
I=1 

8×8 MIMO: 
j∈[1,4] 

δ=0 
I=1 

δ=0.75 
I=4 

δ=0.75
I=6 

TABLE IV 
SUITABLE VALUES OF δ AND I 
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Fig. 2- The number of iterations I vs. BER characteristics for the proposed detection;  (a)−(c) 4×4 MIMO, (d)−(f) 8×8 MIMO; 
(a) QPSK at Eb/N0=15dB with δ=0, (b) 16QAM at Eb/N0=20dB with δ=0.4. (c) 64QAM at Eb/N0=25dB with δ=0.4, (d) QPSK 
at Eb/N0=11dB with δ=0, (e) 16QAM at Eb/N0=16dB with δ=0.75. (f) 64QAM at Eb/N0=21dB with δ=0.75. 

(a) QPSK: 4×4 MIMO 

(b) 16QAM: 4×4 MIMO 

(c) 64QAM: 4×4 MIMO 

Eb/N0=15dB, δ=0 

Eb/N0=20dB, δ=0.4

Eb/N0=25dB, δ=0.4 (f) 64QAM: 8×8 MIMO 

(e) 16QAM: 8×8 MIMO 

(d) QPSK: 8×8 MIMO Eb/N0=11dB, δ=0 

Eb/N0=16dB, δ=0.75 

Eb/N0=21dB, δ=0.75

Fig. 1- The δ  vs. BER characteristics and the δ  vs. the number of swapping times characteristics;  (a)−(c) 4×4 MIMO, (d)−(f) 8×8 MIMO; 
(a) QPSK at Eb/N0=15dB, (b) 16QAM at Eb/N0=20dB, (c) 64QAM at Eb/N0=25dB, (d) QPSK at Eb/N0=11dB, (e) 16QAM at Eb/N0=16dB, 
(f) 64QAM at Eb/N0=21dB;  Curves (1) and (2) are BERs for the conventional and the proposed detections, respectively.  Curves (3) are 
the number of swapping times. 

(d) QPSK: 8×8 MIMO 

(1) Conventional 

(2) Proposed, 
From top: I=0 to 2

(3) Swapping 

BER 
Eb/N0=11dB

(e) 16QAM: 8×8 MIMO 
(1) Conventional

(2) Proposed, 
From top: I=0 to 5 

(3) Swapping 

BER 

Eb/N0=16dB 

Eb/N0=21dB 

(f) 64QAM: 8×8 MIMO 
(1) Conventional 

(2) Proposed, 
From top: I=0 to 6 

(3) Swapping 

BER 

(a) QPSK: 4×4 MIMO

(b) 16QAM: 4×4 MIMO 

(1) Conven- 
 tional 

(2) Proposed, 
From top: I=0 to 1 

(3) Swapping 

BER 

Eb/N0=15dB

(1) Conventional 

(2) Proposed, 
From top:  
I=0 to 2 

(3) Swapping 
BER 

Eb/N0=20dB

(b) 16QAM: 4×4 MIMO

(c) 64QAM: 4×4 MIMO 
(1) Conventional 

(2) Proposed, 
From top: I=0 to 2 

(3) Swapping 
BER 

Eb/N0=25dB 

6



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
M(M−1)/2.  The total number of multiplications in step (5) is 
2M2(M−1).  As a result, the total number of multiplications in 
Table II is 2 21

II 2( ) ( 1)( 2 2 )A M M M M M M= − + + + . 
To derive the inverse of an M×M matrix, we used the LU 

decomposition method, which requires 4M3/3 multiplications 
[11].  Hence, the calculation of (HHH+ρ IM)−1HHy in (5) 
requires the number of multiplications of 21

2( ) ( 1)= +S M M M  
3 24

3 2+ +M M .  Both ( ) ( ) ( )ˆ ˆj j j′ =s T v  in (17) and ( ) ( ) 1j j −=v T s  
require the total number of multiplications of 

2 34
3( ) 2T M M M= +  for each j.  Both ( , ) ( ) ( , )ˆ ˆj k j j k=T T T  and 

( , ) ( , ) 1ˆj k j k −=u T s  in (11) require the total number of multip- 
lications of 2 3 21 4

2 3( ) ( 1) ( )U M M M M M= + + +  for each j and k. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In the proposed detection algorithm of Table III, the 
equations in steps (11), (21) and (25) hold in high probabilities 
of more than 80, 95 and 99 percent at BER≈10−5, respectively.  
The equation in step (17) holds in high probabilities of more 
than 97 and 98 percent for i=1 and i≥2, respectively.  Hence the 
steps (12), (18), (22) and (26) are seldom needed to calculate.  
This fact implies that they negligibly contribute to the 
computational complexity. 

Since ( , ) 1ˆ j k −T  has already been derived, the calculation for 
( , ) 1 { }ˆ ˆj k i− ′T s  in step (6) requires M2 multiplications for each j, k 

and i.  For the 4×4 MIMO system with j∈{1,2}, k∈[1,4], the 
( , ) 1 { }ˆ ˆj k i− ′T s  should be calculated 8(=2M) times for each i.  For 

(1) 

(1)

(1)

(a) QPSK: 4×4 MIMO 

(b) 16QAM: 4×4 MIMO 

(c) 64QAM: 4×4 MIMO 

(2) 

(2) 

(2) 

(1) Conventional (δ=0.75) 
(2) Proposed (δ=0, I=0) 

ML 

(1) Conventional (δ=0.75) 
(2) Proposed (δ=0.4, I=1) 

(1) Conventional (δ=0.75) 
(2) Proposed (δ=0.4, I=1) 

ML 

ML 

(1)

(1)

(1)

(d) QPSK: 8×8 MIMO 

(e) 16QAM: 8×8 MIMO 

(f) 64QAM: 8×8 MIMO 

(2) 

(2) 

(2) ML

(1) Conventional (δ=0.75) 
(2) Proposed (δ=0.75, I=6) 

(1) Conventional (δ=0.75) 
(2) Proposed (δ=0.75, I=4) 

(1) Conventional (δ=0.75) 
(2) Proposed (δ=0, I=1) 

ML 

ML 

Fig. 3- The Eb/N0  vs. BER characteristics;  (a)−(c) 4×4 MIMO, (d)−(f) 8×8 MIMO;  (a) QPSK, (b) 16QAM, (c) 64QAM, (d) QPSK, 
(e) 16QAM, (f) 64QAM;  BER curves (1) and (2) are derived using the conventional and the proposed detections, respectively. 

7



 

the 8×8 MIMO system with {j|k}∈[1,4], it should be calculated 
16(=2M) times for each i.  Hence, the total number of multip- 
lications for ( , ) 1 { }ˆ ˆj k i− ′T s  is M2⋅2M(I+1)=2M3(I+1).  Similarly, 

( , ) (0, , )ˆ ˆj k j kT u  in step (7) and ( , ) ( , , )ˆ ˆj k p j kT u  in step (10) require 
2M3(I+1) and 2M4(I+1) multiplications, respectively.  As a 
result, the total number of multiplications in Table III is 

3 4
III ( , ) (4 2 )( 1)A M I M M I= + + .  It should be noted that all 

the calculations in steps (6), (7) and (10) are not done since the 
process skips out of the for-loop of i at i<I in step (17).  This 
process decreases the iteration times.  Hence the actual number 
of multiplications in Table III is smaller than AIII(M,I ). 

We first count up the number of calculations for 64QAM in 
the 4×4 MIMO system, where M=4.  As we set δ=0.75 for the 
conventional detection in Table IV, the average swapping times 
are a=3.6 at Eb/N0=25dB from Fig. 1 (c).  Hence the total 
number of multiplications is Nc≡AI(4,3.6)+S(4)+T(4)=1225 for 
the conventional detection. 

For the proposed detection, we set δ=0.4 and I=1 for 64QAM 
in Table IV.  From Fig. 1 (c), the average swapping times are 
a=1.1 at Eb/N0=25dB.  As we chose j∈{1,2} for the 4×4 MIMO 
system, the LLL algorithm is used twice.  Hence the total 
number of multiplications in Table I is 2AI(4,1.1).  We further 
reduced the columns of ( , )j k′H : j∈{1,2}, k∈[1,4], eight times 
using Table II.  Hence the number of multiplications in Table II 
is 8AII(4).  The number of multiplications in Table III is AIII(4,1), 
where the skipping-out process at step (17) in the for-loop of i 
is not taken into consideration.  The number of multiplications 
of (5), (11), (17), ( ) ( , )ˆj j kT T  and ( ) 1j −T s  is a total of 
S(4)+2T(4)+8U(4).  As a result, the total number of 
multiplications for the proposed detection is 
Np≡2AI(4,1.1)+8AII(4)+AIII(4,1)+S(4)+2T(4)+8U(4)=5481.  
Since Np/Nc=4.5, the proposed detection has 4.5 times larger 
number of calculations than the conventional detection. 

In the similar manner, we counted up the number of multipli- 
cations for the 8×8 MIMO system, where a=11.4 for δ=0.75 at 
Eb/N0=21dB from Fig. 1 (f) with setting I=6 in Table IV.  And it 
was found that the proposed detection has 12.9 times larger 
number of calculations than the conventional detection. 

As a result, the computational complexity for the proposed 
detection is around 4.5 times and around 12.9 times larger than 
the conventional LRA MMSE detection in the 4×4 and the 8×8 
MIMO systems, respectively. 

VI. CONCLUSIONS 
In this paper, we proposed an improved lattice-reduction 

aided MMSE list detector by combining the LLL algorithm and 
the Gram-Schmidt procedure.  First we forward and backward 
reduced the column vectors of the extended channel matrix 
using the LLL algorithm to create two reduced channel 
matrices.  In order to achieve more reliable estimate, we further 
created two more LLL-reduced channel matrices by rearrang- 
ing the order of the columns of the extended channel matrix.  
Those LLL-reduced column vectors are forward and backward 
reduced using the GS procedure to create the column vectors 
purely orthogonal to one another.  After that, we created eight 
or 16 estimates of the transmitted signal. Among them, we 
selected the most reliable estimate. 

The proposed detector dramatically improved the BER 
performances for QPSK, 16QAM and 64QAM in both the 4×4 
and 8×8 MIMO systems.  It achieved near-ML BER per- 
formances.  This is because the GS procedure creates the 
column vectors of the reduced channel matrix to be mutually 
purely orthogonal.  Hence the decision boundary became the 
same as that of the ML detection. 

As a consequence, the proposed detector is worthy for apply- 
ing to both the 4×4 MIMO and the 8×8 MIMO systems. 
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