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Abstract: This paper proposes a robust neural sliding mode control method for robot tracking problem to
overcome the noises and large uncertainties in robot dynamics. The Lyapunov direct method has been
used to prove the stability of the overall system. Simulation results are given to illustrate the applicability

of the proposed method
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1. INTRODUCTION

bot control is a domain that has been developed

continuously since the last 50 years [1] [13] [14]. The
dynamics of robot manipulator is a highly nonlinear system
with several uncertain factors. In many applications the robot
must move quickly from a position to the other or track
accurately a desired trajectory in a 3D space. Traditional
control methods like PID, computed torque or optimal
control [3] [13] do not always bring reasonable results
because these methods often require knowing accurately the
robot dynamics. Sliding mode control [12] is a robust control
method. However the main disadvantage of sliding mode
control is the self chattering around the sliding surface in
both amplitude and frequency. In order to reduce those bad
effects many authors has proposed different methods as
bringing the integral part into the sliding surface, using
saturated functions, or estimation of uncertain parts of robot
dynamics [5][7][8]. Neural networks have been used widely
in control because of advantages as parallel processing,
highly capable of self learning and self adaptation. Neural
networks can approximate nonlinear functions from practice
data without knowing exactly parameters and structure of the
functions [4] [6]. Many researches used this property of
neural networks to approximate unknown nonlinearities of
robot and presented the convergence through simulation
results [10] [11]. Anyway most of them did not show the
close theory to prove the stability of the whole robot control
system using neural networks.

This paper proposes a new trajectory tracking robot control
method with neural networks to approximate uncertainties
and compensate noises. The stability of the whole system is
proved by the Lyapunov direct method. The paper is divided
into 6 parts. The 1*" part deals with the problems of robot
control with many uncertainties. The 2™ part describes the
problem to solve. The 3™ part describes the proposed control
scheme consisting of a PD sliding mode control block, a
nonlinear feed forward block and a neural network block with
weights learning online. The system stability is also proved in
this part. The 4™ part shows some evaluations on the

accuracy and the convergence rate of the method. Computer
simulation results are demonstrated in the 5th part and finally
some summary and conclusions are given in the last part.

2. PROBLEMS OF ROBOT CONTROL WITH MANY
UNCERTAINTIES

The dynamic equation of a robot system with » joints can be
described by the following nonlinear MIMO equation:

M(q)i + B(q,9)d + &(q) + d(q,q) =T (1)

vectors  nx/

whereq =[q1,97 ... q,,,]T , q, q are
representing the position, velocity and acceleration of related
joints, T= [11,12, ..... rnr is a vector nx/ representing the
torques acting on the joints, M(q) is the nxn inertia matrix,
fi(q,(]) is the nxn matrix of Coriolis and centripetal effects,
g(q) is the nx! torque vector representing the gravity effect,
d(q,q) is the nx/ vector of friction and noises acting on the
joints.

The parameters M(q), ﬁ(q,(']) , 8(q) often can not be
identified exactly. We can describe them as follow:

M(q) = M(q) + AM(q) (2a)

B(q,4) = B(q,9) + AB(q, ) (2b)

2(q) =g(q) + Ag(q) (2¢)
Where M(q), B(q,q) , g(q) are  estimated values,

AM(q), AB(q,q), Ag(q) are unknown. However we can
[AM(@)] <mq, [AB(a,@)] < 2, [Ag@)] < g9,

where my, b,, g,are known. Equation (1) can be rewritten

assume

as:

M(q)q +B(q,9)q +g(q)+f(q,q) =7 (3a)
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T=1,+f(9q,q) (3b)
(3¢)

(Bd)

T, = M(q)q + B(q,9)q + g(q)
f(q,q) = AM(q) + AB(q,q) + Ag(q) + d(q,q)

Where f(q,q)e R” is the sum of uncertainties of the robot
dynamics, friction and noises that are acting on the robot. It is
limited by |f|<f;, with f, is estimable. We use

following properties of robot dynamics in finding control
algorithm in the paper:

Inertia matrix M(q) is symmetric positive definite.
Matrix (M(q)-2B(q,q)) is skewing symmetric, that is:
X" M(@)x = 2x" B(q,)x “)
withVx e R”

The goal of control is to choose torque [so the robot follows
the  desired trajectory dq that ~means  the
errore=(q—qd)—>0;é=(q—qd)—)0and

e= (q —qy )—) 0. Here, e,e,é are errors on position,
velocity and acceleration.

3. NUEURAL SLIDING MODE CONTROL ALGORITHM

Sliding mode control is widely used in control of uncertain
MIMO nonlinear systems. For the robot system (1), a sliding
surface is chosen in PD form:

s(t)=€é+Ce %)
C is matrix
ands = [sl,sz, ...... sn]T . Equation (5) shows the close

often chosen as a positive diagonal

relation between (e é) and s. Therefore Equation (3b) could
be written as:

T=1,+1(s) 6)

The unknown f{(s) is the main reason to reduce the control
quality. If we can compensate this effect, the control quality
may improve. According to Stone-Weierstrass theorem [2]
we can choose an appropriate Artificial Neural Network
(ANN) with limited number of nodes that can approximate an
unknown nonlinear function with given accuracy. For
approximating function f(s) we choose the following simple

structure:

f(s)= Wo+¢ (7a)
or

f(s)=f+¢ (7b)
where the approximated part of  f(s) is
f= [f], /}2, ........ fn]l =Wo ; € is the approximation error.

With H f(s) || < fo» we can have a limitg, of € : H € || <&
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Let W, be the column vector i of matrix W, we will have:
. n
f=WG=[W1,W2, .......WH]GZZW,G, ®
i=1
We build a RBF (Radial Basic Function).neural network

having one hidden layer as shown in Figure 1.

This structure has been proved to satisfy the Stone-

Weierstrass  Theorem  [2].  Choosing the acting
function o, with Gaussian distribution we have:
2
e ) 9
0, =¢exp (9a)

/12

1

Where ¢; is the centre and 4, is the deviation parameter,
freely chosen. So we have

. n
fi= Z]w 46,  withi =1,2..n  (9b)
j=
w, ; is the weights of the approximating neural network.
The control problem is now to find the control torque T with

learning algorithm W, of neural network (8) so s — 0 and

the system will slide toward the co-ordinate origin e = 0
granting q(t) — qq -

11

; O O—i
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Figure 1: RBF Neural Network used to approximate
uncertainties of the robot

Theorem: The dynamic system (1) of n DOF robot with given
neural network (8) and sliding surface (5) will follow the
desired trajectory qq with error €= (q —qq ) — 0 if we apply
the control torque T and the learning algorithm Ww;as
follows:

s
T=Mq, +Bq, +g-MCé-BCe-Ks-y—+(1+7)Wo

[s]
(10)
an

W, =—1)80;

Where matrix K=KT >0 is a freely chosen symmetric
positive definite matrix, and 7,7 >0 .



The structure of the proposed control system is showed in the
diagram on Figure 2. Moment T comprises of three main
parts: a nonlinear feed-forward
compensator T4 = Mg, +Bq, +g-MCé-BCe, sliding part

= Ks- 7— and is a RBF neural network with online

learningf .
This theorem can be proved by the Lyapunov direct method
granting the asymptotical stability as follow:
Choose Lyapunov candidate function as:

1 n

V= E{STMS +2w?w} (12)
i=1

Because M is the inertia matrix of the robot that is symmetric
positive definite so we have V > 0 for all (ST,WT)i 0 and V

= 0 if and only if(sT WT): 0. Function V satisfies other
conditions of the Lyapunov stability method as V — o« when

s — o, W, —> . If we can identify the control torque t

granting ¥ <0 then according to the Lyapunov stability
method s — 0 or the system will approach and stay on the
sliding surface. The stability of the whole system will be
held.

Take derivation of V in time and using (4) we have:

: A N % .
V=s"Ms+—s"Ms+ Zw,Tw =
2 i=1

) (13)
=s"Ms+s"Bs+ Z wiw
i=l1

Taking into account that:
Ms+Bs=M(-qq4 +Cé)+B(—qq +Ce)+Bq+Mq (14)

and from Equations (1), (3a) we can conclude

Bq +Mgq =7-g(q)-f(s) (15)
Replace (14), (15), (7b) into (14) we have:

po S{—M(jd +MCé-Bq, 1

n
T.
+ E W, W 16
+BCe+71-g—Wo-¢ P (16)

i=1

Apply T chosen from (10) into equation (16) we get:

V= {Ks ;/” ”+77W0'-£}+Zn:w,rv'v, am

i=1

With learning algorithm (11) the last part of (17) could be
rewritten in:

n n n
ZW,TV'V,- = —772 w'so, = —nsTZw,ai =—ns"Wo
i=1 i=1 i=1

(18)

Replace (18) into (17) finally we get:

Vz—sTKs—ysTi—sTs (19)

[s]

L.

Mij, +Bq, +g-MCé-BCe  f—
q
da s
.. T
q e+Ce -Ks-7 S —»(+| Robot
‘ ]
P f

(l+77y¢s [

Figure 2: Structure of proposed robust neural sliding
mode control for robot manipulators with many
uncertainties

With differentiable s (5), let’s examine in Equations

S
Is]
(10) and (19).

In a »n dimensional space, estimating lim —:, where
s—>0 HS

s,]' and |s|=y/sf +s3+. .. +s; ., means

T
that —{ ; s2 . .;SL} s SO
Ish 1

s
lim — lim —1' lim
s—)O“S“ 5]

s= [sl,sz,. o

51

s_2 ..; lim S—n =0
o S ol

is finite. Therefore t and ¥V in Equations (10) and (19) are

continuous whens — 0 .

Chosen y=0+¢&, with § >0
P =—s"Ks—0|s| (e s +s"e)< 0 20)

Because H € ||$80 so that ¥ <0 foralls# 0 and ¥V =0 if
and only if s = 0. According to the Lyapunov direct stability
theorem, we haves — 0, and from Equation (5) we get e —
0,6 > 0, in other words robot asymptotically follows the
desired trajectory with error e — 0. So the theorem as well as
the stability of the overall sliding mode control system using
neural network described in Figure 2 has been proved.

4. ABOUT THE ACCURACYAND CONVERGENCE

The AM(q),AB(q,q),Ag(q) in robot dynamics, are unknown
changing quantities, causing errors and reducing the
convergence of the control algorithm. However we can
estimate the varying range of them from robot dynamic
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parameters and their effect can be compensated by a properly
chosen neural network. The neural network chosen here has
the number of neurons in the hidden layer equal to the
number of DOF of the robot. The hidden neurons use acting
function with Gaussian distribution. The signals on the nodes
of the output layer of the neural network are the linear sum of
output functions of the neurons in the hidden layer. The
accuracy of the neural approximation depends on chosen
parameters c;, 4, of the Gaussian distribution functions. The
neural network has to cover the whole varying range of the
uncertainties. The convergence rate of the neural network
depends on the on-line learning rule (11) with the
participation of the sliding surface s and learning factor7y . If
we choose a large slope sliding surface (large C, K) and large
factor7) the convergence rate is faster. However, these may
cause overshoot and reduce the control quality. Optimally
chosen parametersc;, 4,, 77 will bring best approximation
results and optimal convergence rate. Simulation method or
Genetic Algorithms (GA) may be used to identify these
optimal parameters.

The control algorithm (11) when using functionsHs”_1 will

create a continuous control signal and therefore can eliminate
chattering.

5. SIMULATIONS

To demonstrate the proposed control algorithm we
simulated the motion of a robot following a line trajectory in
the Cartesian space. The chosen robot has 2 DOF [13]
described in Figure 3 with technical parameters from Table 1.
The task of the robot is to move its hand following a line
from point A to point B in the Cartesian plane (Oxy), in time
T with trapezoidal speed. That means the speed increases
from zero at point A to a section with constant speed and
later decreases to zero at the point B.

yl

>
Figure 3: 2 DOF Robot

Let m; = m,,; + my; the dynamic equation of this robot has

the form M(q)q +B(q,9)q +&(q) +d(q,q) =7

with:
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2
mlg + 1, +1,+ my (I + 114 cosqy)+ 1,

Mg =| T (I +12,+201,, cosqy)
mz(lg2 +lllg2 €0sq,)+1,
8() = (myl gy +myl ) g cos(qy) +myl gr g cos(qy + ;)
Myl 28 €0s(q) +4;)

2
mylgy +1,

-24, _%j .
sin g,
qi 0

We choose control parameters for moment T and correction
algorithm for the weights in the neural network as follow:

IA‘(‘la q)= m2]llg2[

S

T=Mij, +Bd, +§—MCé—f3Ce—Ks—ym
S

+(1+7n)Wo

W, =-nso;; i=12
WithK{75 0}; y=10;n=0.1;
0 75
The initial state of the robot is q;, = 0.4, g, =1.85.

Gaussian function parameters of the neural
network: 4, = 4, =10; ¢ =017 ¢, =03;

Table 1: Technical parameters of the 2 DOF robot

First Second

Joint Joint
Mass of link m; [kg] 50.0 50.0
Mass of the motor in joint m,,; [kg] 5.0 5.0
Inertia moment of link I, [kg.m?] 10.0 10.0
Length of the joint /; [m] 1.0 1.0
Distance from centre point of gravity to 0.5 0.5
joint /,; [m]

The uncertainty of the robot dynamics is up to 20% of real
value.

AM = 20%M; AB = 20%B; Ag = 20%g
Assumed unknown friction and noises:
10sin(20¢) +1+ 44, j

d(q,q) =d(t) = [ .
10cos(20¢) + 44,

3 0
Matrix C of the sliding surface is chosen as: C = {0 3}.

Point A has co-ordinates (1; 0.5) and Point B (0.5; 1) m.
Time T is chosen 10 s. The desired trajectory is designed
by parametric method described in [13]. With acceleration
a = 0.05m/s’ we get the constant speed starting at 7, =
1.705s.

Simulation results: Simulation results are shown on
Figures 4, 5, 6, 7,8 and 9.
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Figure 6a: Angle error of joint 1,
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Angle error of joint 2

0.05
ol
0.05 - 9
g 0.1 9
=
2 0as |
=3
0.2 B
0.25 4
03 i H H i H
a 2 4 3 El 10 12
Time (s)
Figure 6b: Angle error of joint 2,
. -4
at T =10s is 5x10™ rad.
Trajectory deviation in Cartesian space in x direction
0.0 T

Angle (rad)

02 i H i i H

=]
Time (s)

Figure 7a: Trajectory deviation in Cartesian
space in x direction
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Figure 8a: Torque of joint 2
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Figure 9: Sliding surface s

The simulation shows that the robot has tracked very close
to the desired trajectory while the model uncertainty is up
to 20% and unknown friction as well as noises acting on its
joints. We have run the simulation several times with
different uncertainties, frictions, noises, initial states and

freely chosenc;, ﬂ,, , 7, C, K parameters. The simulation

results are very robust. These demonstrate the correctness
and applicability of the proposed method.

6. SUMARY AND CONCLUSIONS

This paper has proposed a robust sliding mode control model
using a neural network to compensate for uncertainties of the
robot and proved the stability of the whole system by
Lyapunov stability theorem. The neural network allows the
further reduction of error caused by the uncertainties, friction
and noises acting on the robot. Simulation on a 2 DOF robot
following a desired trajectory in a Cartesian space brought
good results corresponded to the theory of the proposed
method. During the simulation with different levels of
uncertainties and noises as well as different chosen
parameters in sliding surface and in on-line learning
algorithm we always got convergence results that
demonstrated the stability and robustness of the method. The
optimal parameters for fast convergence and good transient
quality may be found using Genetic Algorithms.
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