
  

 

Abstract— We present a simple yet  effective scheme of Trellis 

Coded Modulation (TCM) codes using partially overlapped signal 

subsets as a shaping technique. The optimum enlargement of the 

QAM signal constellation is reported. We show that 2-state TCM 

with 4 partially overlapped signal subsets has a coding gain of  2.5 

dB in comparison with uncoded transmission, which is about 0.5 dB 

higher than the Ungerboeck TCM code with the same number of 

states. The construction is then extended to any number of trellis 

states using 4-, 8-, 16-way partitions of the QAM constellation. 

Index Terms— TCM codes, shaping the constellation, overlapping 

I. INTRODUCTION 

rellis coded modulation (TCM) [1] has found wide applications in 

digital transmission due to its high utilization of the available 

bandwidth. To send n bits/sym conventional TCM schemes use a 

signal constellation of 12n+  signal points. When using the quadrature 

amplitude modulation (QAM), the constellation expansion ratio (CER) 

equals to 2,  meaning the loss of about 3 dB in signal energy [4]. This 

loss should be traded with the increase in the minimum squared 

distance (MSD) between signal sequences. 

      A problem in TCM design with QAM signals is the peak-to-average 

power ratio (PAR). The traditional approach to increase the total gain 

of the TCM scheme is to use a circular signal constellation, rather than 

a square one, and this also reduces the PAR. It is well known in the 

theory of digital transmission that  capacity of an additive white 

Gaussian noise (AWGN) channel is attained for the input with the 

Gaussian distribution. In fact, the input signal constellation realized  

by shaping techniques, like shell mapping and trellis shaping. 

Maximally, a gain of 1.5 dB can be obtained by shaping [3]. 

      Another approach is to use overlapped signal subsets, the idea first 

introduced by Soleymani et. al. [5]. They used an analytical 

representation of trellis codes [6] in which the output signal  for a state 

transition is calculated by  a non-linear function of the current and the 

past L source symbols. If  the non-linear function yields the same 

signal for different state transitions, then it is said that an overlapping 

occurs. The constellation in actual use now is reduced, meaning that 

the CER becomes less than 2. With a large number of signals, it is 

difficult  to construct/compute  non-linear mapping function. 

 In this paper, we propose a TCM scheme with re-mapping of a 

signal point of high energy to a point of low energy. In Sec. 2, we 

propose as an example a simple scheme of 2-state TCM code using 

partially overlapped signal subsets which shows about 0.5 dB coding 

gain better than the conventional Ungerboeck-type code with the 

same number of states. The performance analysis for TCM with 

partially overlapped signal subsets is given in Sec.3, where we show 

the existence of the optimum constellation expansion factor, which  is 

the best trade-off attained between saving of average signal energy, 

thanks to re-mapping, and degradation in the performance of the 

code, due to the partial overlap. In Sec.4, we generalize the 

construction of TCM with partially overlapped signal subsets to any 

number of trellis states, using 4- and 8-way geometrically uniform 

(GU) [2] partition of the QAM constellation. We tabulate the code 

search result and compare new codes with Ungerboeck-type codes in 

term of transfer function bound on the first event error probability.  

 

II.     CONSTRUCTION OF GU CODES FROM 4 PARTIALLLY OVERLAPPED 

SIGNAL SUBSETS 

We consider transmission at n bits/sym over the AWGN channel using 

QAM signals. The QAM signal constellation we design consists of 

( )1 2np+ signal points in the lattice 2
Z translated by (1/2, 1/2), where 

( )1 p+ for 0 1p< ≤  is the CER and 1p = corresponds to the case of 

conventional Ungerboeck-type TCM codes.  

A. Example of Ungerboeck's Code     

 Fig.1 shows an example the best 2-state TCM encoder  given in [1], 

together with the trellis diagram of the code. This code can be used to 

send at  5 bits/sym. The MSD of the code equals to 3 and  is 3 times as 

large as the MSD of 32-QAM constellation for uncoded transmission. 

However, the expansion from 32-QAM to 64-QAM means a loss of 

3.22 dB in signal energy. The net coding gain is then 1.55 dB. The 

4-way partition of the 64-QAM constellation is shown in Fig.3. We can 

refer to the subset A as the translate of the sub-lattice 22Z . The subset 

C is obtained by reflecting A about the axis Oy. Subsets B and D are 

results of reflecting of A and C, respectively, about the origin. These 

subsets correspond to the lattice partition 2 2 2/ / 2Z RZ Z  with MSD 

chain 1/ 2 / 4  [4], where the notation R  is expressed with a matrix 

1   1

1 1

 
 
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For the Ungerboeck-type code, all the signal points are used.                                                                    

B. Construction of  partially overlapped subsets  

    Let p be such that 0 1p< <  and 2
n

p  is an integer. The original 
12n+ -point signal constellation S now is divided into three 

sub-constellations: the inner subconstellation consisting of ( )1 2np−  

signal points of lowest energies; the outer subconstellation consisting 

of ( )1 2np− signal points of highest energies; the subconstellation of 

remaining signal points. The idea here is that outer signal points are, if 
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selected by Ungerboeck’s scheme, re-mapped to inner signal points. 

Then the signal points actually sent over the channel form a new 

constellation S ′  of ( )1 2np+
 
points. 

      For the QAM constellation discussed above, remapping can be 

carried out in the following manner. According to the above 

subdivision, each of the subsets ,  ,  A B C and D of S  is divided into 

inner part, outer part, and the rest,  respectively. We remap the outer 

A-points to inner B-points, and outer B-points to inner A-points. The 

similar remapping is applied to subsets C and D. Then we have four 

subsets of S ′  as follows. The subset A′  consists of A-points of S ′  

and inner B-points. The subset B′  consists of B-points of S ′  and 

inner A-points. In the same way we can define subsets C′  and D′ . 

Clearly, A B φ′ ′∩ ≠  and C D φ′ ′∩ ≠ . This construction reserves 

symmetries of the constellation and hence gives rise to GU codes. 

C. Coding with Overlapped Signal subsets and Decoding 

Fig.2 shows an example of the TCM coding with overlapped signal 

subsets constructed with the above remapping rule. We choose 

5n = bits/sym and 0.25p = . The constellation S ′ consists of 40 

signal points, with 24 inner points delimited by the solid line in Fig.3. 

      The TCM encoder using the overlapped signal subsets is 

constructed as follows. S  can be seen as a union of 12n−  shells each 

consisting of 4 equal-energy points a, b, c, and d belonging to 

,  ,  ,  and A B C D , respectively. Each point of S is labeled by a binary 

tuple ( )1 2 1, , , ,n nZ Z Z Z Z+= ⋯ . Two least significant bits 
2 1,  Z Z  

identify a subset between ,  ,  ,  or A B C D . Bits ( )1 3,  , ,  n nZ Z Z+ ⋯  

identify a shell. We use the following re-mapping rule. The outer most 

shell is remapped to the inner most shell, the outer shell of lower 

energy is remapped to the inner shell of higher energy, and so on. In 

each shell, an A-point is remapped to a B-point, a B-point is remapped 

to an A-point. The same remapping rule is applied to C- and D-points. 

      To ease to the remapping, we enumerate shells in the order of 

increasing energy using the shell number 1
0,  1, ,  2 1

n
m

−= −⋯ . The 
22n−  shells of the basic 2n -point constellation that could be used for 

uncoded transmission has 
1 0nZ + = . Remaining shells (in the 

expanded part) has 
1 1nZ + = . Bits ( )3, ,nZ Z⋯ are selected so that 

            ( ) ( ) 11 3

1

3

2 1 1 2
n

n
Zn i

n i

i

m = Z Z
+− −

+
=

− + − ∑            (1) 

      With this labeling, the remapping of an outer point to an inner 

point now is a simple inversion of bits 
1nZ +  and 

2Z . The block named 

“re-mapper” in Fig.2 takes in bits ( )1 3, , ,n nZ Z Z+ ⋯  from the 

conventional Ungerboeck-type encoder and computes the shell 

number m. For a given expansion ratio p, if ( )2 22 2 2n nm p− −≤ < − , 

then it means that the output of Ungerboeck-type encoder selects one 

of ( ) 21 2np −−  outer shell which should be remapped to a 

corresponding inner shell, simply by outing 1 which is added (modulo 

2) to bits 
2

Z  and 
1n

Z +  to obtain 
2

Z ′  and 
1n

Z +
′ . 

      Like the Ungerboeck-type TCM code, the decoding is carried out 

by the Viterbi algorithm (VA) and the underlying trellis of the 

encoder (Fig.3). For each symbol in the received sequence, the VA 

decoder computes MSDs from the symbol to subsets 

,  ,  ,  and A B C D′ ′ ′ ′ , stores the points in ,  ,  A B C′ ′ ′ , and D′  that 

are in the MSDs to the received symbol, and traces the path that 

accumulates the least squared distance. The last survived path is used 

together with binary labels of points in ,  ,  A B C′ ′ ′ , and D′ , stored at 

each decoding stage, to give the final decision on the information bit 

sequence. The decoder inverses bits 
2

Z ′  and 
1n

Z +
′  when it is needed 

to produces correct information bits 
2

Z  and 
1n

Z + .  

III.  PERFORMANCE ANALYSIS 

It is well known that the performance of a TCM code can be 

evaluated by the first event error probability of the code, 
e

P . When 

the code is GU, we can assume without any loss of generality that a 

sequence of signal points corresponding to the all zero state sequence 

is sent. Then it is convenient to compare different codes by using their 

transfer function upper bounds on 
e

P , 

         
0exp( / 4 )( ) |

se D E NP T D = −<         (2) 

where 
s

E  is the average signal, 
0N  is the one-side spectral density of 

the Gaussian noise, and ( )T D  is the transfer function of the code 

which is computed from the error state diagram [2]. 

     Fig.4 shows the error state diagram of the 2-state Ungerboeck's 

code. Let us denote by 
ij

S  the signal subset assigned to the trellis 

transition from the state i to the state j, with , 0,1i j = . For a state pair 

( , ) (0,0)i j ≠ , the transition from a state i to a state j in the error state 

diagram is labeled by the branch metric 
2

( ) ijd

ijN d D , where 2

ijd  is the 

MSD between ijS  and 
00S , and ( )ijN d  denotes the average number 

of  signal points in ijS  that are at 2

ijd  to a point in 
00S . When 

( , ) (0,0)i j = , we have 2

00
d  as the MSD of 

00S , and 
00( )N d  as the 

average number of  signal points in 
00S  that are at the MSD to a point 

in 
00S . Using the technique described in [2], we have, for the 2-state 

Ungerboeck's code, 

                       
3

4 8
( ) 4

1 2

D
T D D

D
= +

−
              (3) 

For the new 2-state code with overlapped signal subsets (see Fig.4 for 

the trellis diagram), the label of a transition depends on whether the 

signal point of 
00S , selected randomly by the uncoded input bits, 

belongs to the overlapped part or not. From the construction of 

overlapped signal subsets described on Sec. 2 we know that 
00S A′=  

consists of 12n−  different signal points, among which 1
(1 )2

n
p

−−  

inner points are overlapped with 
11S B′= . If an inner point is selected 

(with probability (1 )p− ), then 2

00
2d = , 

00( ) 4N d = , and 2

11
0d = , 

11( ) 1N d = . If the selected point is not an inner point (with probability 

p), we have 2

00
4d = , 

00( ) 4N d =  and 2

11
2d = , 

11
( ) 4N d = . Since 

00S A′=  does not overlap with 
01S D′=  and 

10S C= , the selection 

of a point in 
00S A′=  does not affect the interset distance, but it does 

change the number of points at that distance. We have 2 2

01 10
1d d= =  

and 
01 10( ) ( ) 4(1 ) 2 2(2 ).N d N d p p p= = − + = −  The error state 

diagram of the 2-state code with overlapped  signal subsets is shown 

in Fig.4. The corresponding transfer function is 

      
2 2

2 4

2

4(2 )
( ) 4(1 ) 4

(1 4 )

p D
T D p D pD

p D

−
= − + +

−
      (4) 

Obviously, when p is small the probability of choosing an inner point  

is large, meaning the distance property of the code is worsened. 

However, the small expansion factor gives rise to smaller average 

energy of  the signals actually used in transmission.  

      Lemma 1: Let S be a QAM constellation with circular boundary 

that consists of M signal points with the average energy E. Then the 

constellation with overlapped signal subsets constructed on a circular 

QAM signal constellation with (1 )p M+  signal points, 0 1p≤ ≤ , has 

approximately (for large M) an average energy  2
(1 )p E+ . 

      By scaling the average signal energy actually transmitted over 

the channel to the average signal energy in uncoded transmission 

we have { }2

0exp /(4(1 ) )sD E p N= − + , with p=1 for the 

Ungerboeck type code, and 0 1p< <  for the code using overlapped 

subsets. Fig.5 shows the behavior of  the transfer function upper 
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bounds for both cases, as the function of p, given 
0/ 14sE N =  dB. It 

can be seen that at this value of the SNR the new code outperforms 

the Ungerboeck-type code for 0 0.5p< < . To keep the symmetries 

of the constructed overlapped constellation, we choose p = 0.25. 

Fig.5 also shows the comparison of  transfer function upper bounds 

on 
e

P  of the 2-state Ungerboeck’s code and  new code  for p = 

0.25. At high SNR the new coding scheme gives a larger coding 

gain in comparison with Ungerboeck's code, by about 0.55 dB. 
 

IV.  GENERALIZATION TO THE CONSTRUCTION OF GU CODES WITH 8 

PARTIALLY OVERLAPPED SIGNAL SUBSETS 

 It is well known that the performance of a TCM code is mainly 

determined by its free distance, especially at high SNRs. The free 

distance of the TCM code is, in turn, limited by the minimum 

intraset distance of the signal subset  assigned to a trellis transition. 

In other words, the minimum distance between signals assigned to 

parallel transitions (forming the error event of length 1) upper 

bounds the free distance. Obviously, to attain a larger coding gain 

than the 2-state scheme described in Sec. II, we need a finer 

partition  of the QAM constellation such that the MSD of the subset 

at the highest partition level becomes as large as possible. 

A. GU Partially Overlapped Signal Subsets  

 Let S  be a GU signal set with a generating group G and let 
0s  be 

an arbitrary point of S . If we can find a normal subgroup N of G such 

that the quotient group /G N  is isomorphic to 
2

( )kZ  for some 

integer k, then 
0( )S G s=  and /G N  induces a GU partition 

0 0( ) / ( )G s N s  which allows a binary isometric labeling 

2 0 0
: ( ) ( ) / ( )km G s N s→Z  for 

2 1 2
( , , , ) ( )k

k
z z z= ∈z Z⋯ . Let 

0( )N s  

be the subset generated by the normal subgroup N from an arbitrary, 

but fixed, point of S . An ordered set 
1 2{ , , , }kg g g g= …  with 

ig G∈  

for 1 i k≤ ≤  represents the binary partition chain of S  if any coset X 

of 
0( )N s  in S  can be expressed as 1 2

1 2 0
( ( ))kzz z

k
X g g g N s= ⋯ , 

where iz

i
g e= , the identity map, if 0iz = and iz

i i
g g=  if 1iz = . The 

vector 
2 1( , , , )kz z z=z ⋯  is the binary isometric label of the coset  X. 

     To construct 2k  GU partially overlapped signal subsets for 2k ≥ , 

we consider again the QAM signal constellation S  with 12n+  signal 

points. Then we can divide S  into 12n k+ −  shells so that each consists 

of 2k  signal points of roughly equal energy each belonging to one of 

subsets in the 2k -way partition of  S . Each point of S  is labeled by 

a tuple ( )1 2 1, , , ,n nZ Z Z Z Z+= ⋯ , among which k less significant bits  

identify one of  2k  signal subsets and the remaining bits  identify a 

shell. For a given p, we remap (1 )2
n k

p
−−  outer shells to (1 )2

n k
p

−−  

inner shells as follows. We remap the outer most shell to the inner 

most shell, the outer shell of lower energy  to the inner shell of higher 

energy, and so on.  In each shell, the point of the subset X in the 

2k -way  partition of  S  is remapped to a point of  ( )kg X , where 
k

g  

is the isometry used at the partition level k. 

     For 2k =  and 5n =  we partition the 64-point QAM constellation 

S  into 4 subsets , ,A B C , and D by using 1 yg v= , the reflection in 

axis Oy , and 2 y xg v v= , the reflection in the origin of the coordinate 

system (see Example of Ungerboeck code, Sec.2). For 0.25p = , 

there are 6 outer most shells which should be remapped to 6 inner 

most shells (the 24 signal points delimited by the solid line in Fig.4a).   

      For 3k = , the 8-way partition of the QAM constellation is 

induced by the group partition chain 2 2 2

2
(2 ) /{ , } (2 )G V Tr e g Tr= Z Z  

2 2

(2,2)/ (2 ) /{ , } (4 )Tr e t Tr N=Z Z , where (2,2) (2,0) (0,2)t t t=  is defined as 

a translation of a point s = (x, y) to a point ( 2, 2)x y+ + . Then we 

have (2,0){ , , }x x yv v v t  representing the 8-way partition chain with the 

distance chain 1/2/4/8. With the 8-way partition of the QAM 

constellation, it is impossible to allocate a shell of 8 points 

, , , , , , ,a b c d e f g h of equal energy which, at the same time, 

represent 8 subsets A, B, C, D, E, F, G, H respectively, in the 8-way 

partition. The requirement of equality of signal energy is then 

relaxed in forming 8 shells each consisting of all representatives of 

8 subsets. For 3k =  (Fig.4b), the dashed line shows the boundary 

of the 40-point constellation with 8 partially overlapped subsets. 

The resulted 40-point constellation used in TCM with 8 overlapped 

signal subsets is composed of 5 inner most shells and differs slightly 

from the 40-point constellation in the case of  4 subsets.   

B. Code Search 

 Since the construction of  partially overlapped subsets in the 

above reserves the geometrical uniformity, we can apply the fast 

code search algorithm by computing the transfer function  upper 

bound on the first event error probability [4].  

    The results of code search are given in Tables 1 and2 for the 

Ungerboeck-type codes and for codes with partially overlapped sets, 

with 4- and 8-way partition, respectively. The generators of the 

encoder are given in octal. To compare found codes with the 

Ungerboeck-type codes we draw curves of the transfer function upper 

bounds on the first event error probability of codes in Fig.6 and 7 for 

4- and 8-way partition of the QAM constellation, respectively.  

     First, we note on the Ungerboeck-type codes codes found in our 

search which include all codes reported previously [1]. This 

confirms that the search algorithm based on the minimization of the 

upper bound on the first event error probability can give best codes. 

For codes of  Table 1 (Fig.6) the error probability decreases slowly 

with the increase of the number of trellis states. This is explained  

by the small  MSD of the subsets in the 4-way partition that limits 

the free distance of these codes. When the number of subsets in the 

partition is larger (Table 2 and Fig.7), the error probability 

decreases  with the increasing in the number of trellis states. 

     The same tendency of error probability curves is observed for 

codes with partially overlapped subsets. However, we should note 

that, for a small number of trellis states, new codes give a better 

performance than the Ungerboeck-type codes. At low SNRs, codes 

with partially overlapped subsets perform better than the 

Ungerboeck-type codes of the same number of states. When the 

number of trellis states is small, error events have short lengths and it 

is difficult for them to accumulate distances. At this point, thus, saving 

in signal energy is more effective than increasing signal distance, and 

this is the advantage of the codes using overlapped signal sets.  

 

V.  CONCLUSIONS 

 We have presented a new technique for the construction of 

TCM codes with small constellation expansion ratio, based on 

partially overlapped signal subsets drawn from an original 

QAM constellation. Constellation shaping by re-mapping 

high-energy signal points to low-energy signal points gives rise 

to some TCM codes that have better performance in comparison 

with conventional Ungerboeck-type TCM codes of the same 

coding and decoding complexity.  
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Fig. 1  Ungerboeck's 2-state TCM scheme:  the trellis diagram and  the encoder 

 

 
Fig. 2  Two-state TCM scheme with 4 partially overlapped signal sets 
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Fig. 3  Error state diagrams a) of Ungerboeck's code  and b) of new code  

   

 
      a)             b) 

Fig. 4a.  The 4-way partition: A - circle, C - triangle - down, B - square, 

D -  triangle-up;  Black-inner,  White-outer; Dash line - 40-point signal set 

Fig. 4b.  The 8-way partition: A - circle, B - star, C - square, D - diamond, 

E - triangle-down, F - triangle-right, G - triangle-left, H - triangle-up; 

Black - inner,  White - outer; Dash line - 40-point signal set 

 

Table 1. Codes with 4-way partition of 64-QAM 

Ungerboeck, 64-QAM, 

4-way partition 

Overlapped, 40-QAM, 

4-way partition # states 

h1 h0 h1 h0 

2 001 003 003 001 

4 002 005 007 005 

8 002 015 015 013 

16 016 023 031 027 

32 026 053 073 051 

64 042 117 147 101 

128 136 255 261 217 

Table  2.  Codes with 8-way partition of 64-QAM 

Ungerboeck, 64-QAM, 4-way 

partition 

Overlapped, 40-QAM, 4-way 

partition # states 

h2 h1 h0 h2 h1 h0 

4 002 001 005 007 003 001 

8 002 004 011 013 004 011 

16 016 004 023 031 014 027 

32 034 016 047 073 014 045 

64 036 052 115 147 006 133 

 

 
Fig. 5  Optimum value of the design parameter p and comparison of  2-state 

TCM codes with 64-QAM and 40-QAM 

 
Fig. 6  TCM codes with the 4-way partition of the QAM constellation 

 
Fig. 7  TCM codes with the 8-way partition of the QAM constellation 
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