
  

 

Abstract— Given a signal set whose Geometrically Uniform (GU) 

partition allows binary isometric labelings, a GU code ( , )CgC  is 

determined by a binary label code C and a binary isometric labeling 

g. Two such codes are defined to be equivalent if they have the same 

transmission rate and the same transfer function ( )T D . It is then 

shown that all binary isometric labelings for the given GU partition 

are equally good so that it is enough to search for good codes using a 

single fixed isometric labeling. It is also shown that the set of codes 

with the same number of states is partitioned into subsets of 

equivalent codes. This allows a fast search algorithm which rejects 

all but one of codes that are equivalent to each other. New 128-, 256-, 

and 512-state codes using QAM  constellations are given to improve 

the performance/complexity tradeoff of 2D trellis codes. 

 

I. INTRODUCTION 

his work is focused on the search for good GU codes [1] with 

Quadrature Amplitude Modulation (QAM) for an Additive 

White Gaussian Noise (AWGN) channel. The work has been 

motivated initially as an effort to confirm a conclusion of Forney 

and Ungerboeck in [2]. They compared effective coding gains 

versus complexity for 1D, 2D Ungerboeck codes [3], and 

multidimensional Wei codes [4] accepted for V.32 and V.34 (Fig. 

6, p. 356, [2]) and made a conclusion that (up to that time) no one 

has improved on the performance vs. complexity tradeoff of the 

original 1D and 2D trellis codes of Ungerboeck. A familiar 

comparison is given in [5]. The performance/complexity curve 

for 2D Ungerboeck codes in [2] and [5] shows that the 128- and 

256-state codes may be not the best ones for those numbers of 

states since, intuitively, the curve must look smoother due to very 

nice symmetry properties of the QAM constellation, the 8-way 

GU partition, and the class of linear label codes. This stimulates a 

new search for codes that might give a better performance.  

To this end, however, we must solve two unsolved problems. 

The first problem is associated with the method we use to 

generate the subclass of codes that we have to search for good 

codes. Normally, if a GU signal set has a GU partition, which 

allows binary isometric labelings, then one isometric labeling that 

seems to be good for coding is chosen. This isometric labeling is, 

in general, constructed according to Ungerboeck's rules of 

"mapping by set partitioning" [3]. Since there are many binary 

isometric labelings for a given GU partition (we will show in this 

paper how many they are), then a question arises whether the 

selected isometric labeling is best.  

The second problem is associated with the performance 

measure we use to compare different codes in the search for good 

codes. So far, we compute the free distance freed  and the number 

of codewords at free distance freeN  for each code and choose the 

best code that has the smallest freeN  between the codes that have 

the largest 
free

d . However, codes with the largest freed  and 

smallest freeN  can be proved to be optimal only at large 

signal-to-noise power ratio (SNR). To search for really a good 

GU code, we have to compare codes in terms of relevant 

performance measures, like the first event error probability  or the 

bit error probability. Thus, to be sure that particular codes are the 

best ones, in terms 
eP  of and 

bP , for the given GU partition we 

have a) to do an exhaustive search over all possible label codes 

and all isometric labelings and b) to compare codes in terms of the 

given performance measure. However, such an exhaustive code 

search has been always proved to be time-consuming and 

impractical.  

In this paper we show that it is possible to carry out an 

exhaustive search for codes with a large state size. In Sec. II, we 

show that, for the given GU partition, all isometric labelings are 

generated from a fixed one by the action of the group of 

nonsingular matrices. This tells us the number of isometric 

labelings associated with the given GU partition. This also allows 

us to combine two linear transforms, one by the convolutional 

encoding and one by the isometric labeling as it is done in Section 

III. To this end we introduce a definition of equivalent codes and 

show that the code equivalence allows reducing the number of 

codes to be generated and to be evaluated in the search. We show 

that, given a GU partition, all isometric labelings are equally good 

for coding and, hence, this gives a proof of Ungerboeck's 

conjecture associated with his famous three rules of "mapping by 

set partitioning." In Sec. IV, we give a code search algorithm for 

good GU codes based on the numerical computation of 
eP . The 

new algorithm is more accurate and less time-consuming 

compared to code search algorithm reported so far. The result of 

an exhaustive search is new 128-, 256-, and 512 codes with QAM 

that have better performance than 2D Ungerboeck codes.  
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II. THE NUMBER OF  ISOMETRIC LABELINGS AND THE PROBLEM OF  

EXHAUSTIVE CODE SEARCH 

 

A. Geometrical Uniformity (GU) and GU Partition  

A signal set S  is a set of discrete points in an N -dimensional 

Euclidean space NR . An isometry u  of  NR  is a mapping of NR  

onto itself that preserves the Euclidean distance as 
2 2|| ( ) ( ) || || || ,u u− = −x y x y  where ( )u x  denotes  the image of  x  under 

the transformation u . All isometries of  NR   can be derived from 

the three "primitive" transformations: translation (in a certain 

direction), rotation (about a certain line or axis), and reflection 

(relative to a certain hyperplane). For a given isometry  u  of  NR  

and a set  N
S ∈ R , ( ) { ( ) : }u S u S= ∈x x  denotes the image of  S  

under u . A symmetry of  S  is an isometry u  that leaves S  

invariant, that is ( )u S S= . All symmetries of  S  form a group 

( )SΓ , with respect to composition operation, called the symmetry 

group of  S . Then a signal set S  is geometrically uniform (GU) 

if, given any two points x  and y  in S , there exists a symmetry 

u  of S  such that ( )u =x y . We can also say that  S  is GU if  it is 

generated from a point S∈x  under the action of its symmetry 

group. The subgroup of ( )SΓ  that is minimally sufficient to 

generate S  from its arbitrary point is called the generating group 

of  S . 

Let G  be a generating group of S . We are interested in a 

smallest normal subgroup N  of G  such that a) the quotient 

group /G N  is isomorphic to 
2

kZ  for some integer k  and b) the 

minimum squared distance (MSD) of subsets in the partition of S  

induced by  /G N  is maximal. If we can find such an N , then 

/G N  induces a 2k -way GU partition 
0/S S  which allows a 

binary isometric labeling 
2 0

: /(km S S→Z , where 
0 0( )S N s= . 

Such a 2k -way GU partition  
0 0( )S N s=  then gives a binary 

partition chain of S  with symmetry  
ig G∈  characterizing the 

partition at level ,1i i k≤ ≤ . These symmetries are normally 

selected such that the MSD of subsets in the partition increases 

with the partition level (Ungerboeck's rules for set partitioning). 

An ordered subset 
1 2{ , , , }kg g g= …g  of G  represents the binary 

partition chain of  S  if any coset  X  of 
0S  in S  can be 

expressed as 1 2

1 2 0
( )kzz z

k
X g g g S= ⋯ , where 0

i
g e=  is the identity 

mapping, and  1

i i
g g= . The binary vector  

2 1( , , , )kz z z=z ⋯  is 

then called the binary isometric label of the coset  X . The 

symmetry 
ig  defines the partition at level i so that the subset  

1 1

1 1 0 1 2
{ ( ) : ( , , , ) }i i kz z z k i

k i i i k i i k
S g g g S z z z Z+ − +

− + + +
= ∈⋯ …  

is refined by 
ig  into two subsets 

k iS −
 and ( )i k ig S −

. Let 2

i
d  be the 

MSD of  the subset 
k iS −

. Then the partition chain 

1 2{ , , , }kg g g= …g  gives the distance chain  2 2 2

1 2
/ / /

k
d d d… .  

 

B. The number of binary isometric labelings 

Here 
1 2, , , ku u u< >…  denotes the group generated by 

1 2, , , ku u u… . We define a partition chain of { }/G N  as follows. 

Definition 2.1   We call an ordered subset 
1 2{ , , , }kg g g= …g  of G  

a partition chain of { }/G N  if it is a minimal subset of G  such 

that { }2 1,...., , /kg g g N G N< > = . Each partition chain g  of 

{ }/G N  determines a binary isometric labeling 2 0: /k

gm S S→Z  

with 1

1 0 0( ) ..... ( ) ( )kz z

g km g g S S=
z

z g≜  for each 
2

k∈z Z . 

Lemma 1. If g  and f  are two different partition chains of 

{ }/G N , then fm  is a linear transform of gm . Namely, there is a 

non-singular k k×  matrix fK  defined in (2)GF  such that, for 

each  
2

k∈x Z , fK
N N=

xxg f . 

Let us denote by 
kK  the set of all nonsingular k k×  matrices 

defined over (2)GF  and let us fix a partition chain g . By  

Lemma 1, for each f , there is f kK ∈ K  that transforms gm  into 

fm . Let F  be the set of all partition chains of { }/G N .  

Lemma 2: There is a one-to-one correspondence of F  and 
kK .  

Definition 2.1 and Lemma 2 imply that the number of isometric 

labelings is equal to the cardinality of 
kK , denoted by | |kK . 

Lemma 3: 1

1| | 2 (2 1)k k

k k

−

−= −K K  with 0 1=K , for 1k ≥ .  

The number of binary isometric labelings (the number of 

mappings) grows very fast when k  increases. This makes it 

impossible to do an exhaustive search for good GU codes when 

one considers all possible mappings.  

We notice that, if we fix a point 
0s S∈  and a partition chain g  

of { }/G N , then a subset X  in the partition 
0 0( ) / ( )G s N s  has a 

label x if 0( ) ( )gm S X= =
x

x g . The same subset has another fKx  on 

the basis of another partition chain f  (Lemma 1). Thus, we can 

define a binary isometric labeling fα  associated with f as 

2 2: k k

fα →Z Z  where ( )f fKα =x x  for each 
2

k∈x Z . Let 

{ }fα α=  denotes the set of all binary isometric labelings.  

   Theorem 1: Given a 2k -way GU partition { }/G N , α  forms a 

group which is isomorphic to 
kK . 

Theorem 1 says that all isometric labelings can be generated 

from an initial isometric labeling. Moreover, the set of all 

isometric labelings has an algebraic structure.  

III. LINEAR COMBINATION AND THE PROOF OF UNGERBOECK'S 

CONJECTURE THAT "MAPPING BY SET PARTITIONING" GIVES RISE 

TO BEST TCM CODES 

The original encoder scheme of Ungerboeck signal space codes 

consists of a binary convolutional encoder and a memoryless 

linear mapper, which is essentially a binary  isometric labeling 

[1]. In this section we show that the combination of two linear 

transformations, one as a convolutional encoder and one as a 

non-singular matrix fK , forms a new encoder which gives rise to 

the same class of signal space codes. 

 

A. Description of the encoder  

Codewords of a signal space GU code ( , )CgC  are elements of 

the signal sequence set { }( ),g C∈ ∈s m c c , where C  is a subgroup 

of the label space 
2

ZZ  and 2 0: ( / )Z Z

g S S→m Z  is the sequence 

extension of the isometric labeling gm  [1]. Each pair of a binary 

label code C  and a binary isometric labeling gm  determines a 

binary signal space code ( , )CgC , which is a generalized coset 

code and, hence, is GU [1].  

In this paper, we use the structure of the encoder in Fig. 1. Let 

( , )γ σ=a x  be a combination of convolutional encoder’s state σ  

and input 
1 2( , ,...., )mx x x=x . The encoder’s output label 

1( ,......, )kb b=b  then is determined by a and the encoder’s 

coefficient matrix { }[ ], 0,1 ,1 ,1ij ijH h h i m j kν= ∈ ≤ ≤ + ≤ ≤ . The 

label b  is transformed to a label c  which specifies a subset 

according to labeling of α . By Theorem 1, α  is generated from 

an arbitrary but fixed gα  by the action of the group 
kK .   

Two first blocks form an encoder for the label code C . Two 

last blocks form a mapper using an arbitrary partition chain f. We 

assume that the 2k -way partition of the signal set S  provides us 

with a required MSD between signal points in each subset. We 
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require that H  is a full-rank matrix so that the MSD between 

signals in a subset determines the MSD of parallel transitions. 

For a fixed ν , a class of 2ν -state codes then is generated by using 

all possible H  and all f. An exhaustive search for good GU codes 

is generally impossible since the number of codes to generate and 

to analyze is very large. Next, we show that the totality of codes is 

partitioned into equivalent codes and the search space is reduced. 

  

B. Equivalent codes 

It is known from the theory of signal space codes that the 

transfer function ( )T D  of a code gives distance spectra of the 

totality of paths, which start from the state 0 and return to it. 

Important parameters freed  and  freeN  and upper bound on 
eP  can 

be derived from ( )T D  [7].  

Definition 3.1: Two signal space GU codes of the same 

transmission rate are equivalent if they have the same transfer 

function. 

The transfer function of a signal space GU code is obtained by 

using the error-state diagram [7]. Due to the one-to-one 

correspondence between labels c and signal subsets 
0

( )Scg , we 

assign to the branch connecting two states the corresponding label 

c through a function of the form 
2
min ( , )

( , )
d

Mult D
g c

g c , where 
2

min
( , )d g c  is the MSD between the subset 

0
( )Scg  and 

0S , and 

( , )Mult g c  is the number of points in 
0

( )Scg  that are in the 

distance 
min ( , )d g c  from a point in 

0S . Computation of ( )T D  thus 

requires the knowledge of distance profile (DP) of the employed 

GU partition which is defined as follows.   

Definition 3.2 For a partition chain g  and a signal point 

0s S∈ , the distance profile of the GU partition of S  induced by  

/G N  is  
2
min

2

( , )

0

( )

( , ) ( , )
k

d
DP s Mult D

∈

= ∑ g x

x Z

g g x     

The geometrical uniformity of S  implies that the choice of the 

initial signal point 
0s S∈  as well as the partition chain g  can be 

arbitrary [1]. Since all the binary isometric labelings of the same 

GU partition give rise to the same DP, it is reasonable to introduce 

the following definition. 

Definition 3.3: Binary isometric labelings gm  and fm  are 

equivalent if 2 2

min min
( , ) ( , )d d=g z f z  and ( , ) ( , )Mult Mult=g z f z  for 

all 
2

k∈z Z . 

Theorem 2: If gm  and fm  are equivalent, then ( , )CgC  is 

equivalent to ( , )CfC . 

That is we need not to do search for fm  if fm  is equivalent to 

gm . We can further reduce the search space by exploiting the 

encoder structure of Fig. 2. Two linear transforms in Fig. 2 can be 

combined in one, since 1' fH HK −=  is also a full-rank matrix.  

Theorem 3: Let g  and f  be two different partition chains. For 

any given ( , )CfC  there exists an equivalent code ( , ')CgC .  

Thus all isometric labelings are equally good for coding. The 

Ungerboeck's conjecture now is proved. The Ungerboeck's 

"mapping by set partitioning" rules give rise to a binary isometric 

labeling of the GU partition of the GU signal set [1]. Codes found 

in exhaustive search over all label codes C  using this fixed 

isometric labeling are at least as good as codes using other 

isometric labelings.  

Although Theorem 2 becomes  weak now at the presence of 

Theorem 3, the code equivalence allows us to further reduce the 

number of C  to be generated. We have the following theorem. 

Theorem 4: If fm  is equivalent to gm , then ( , )CgC  is 

equivalent to ( , ')CgC  where 'C  has the same memory part as C  

has but with another linear combiner 1' fH HK −= . 

Finally we note on the reversibility of the encoder for the label 

code. Obviously, ( )T D  does not change if we reverse all 

branches in the flow graph. Consequently, if 'C  is a label code 

whose error-state diagram is an reversed version of the error-state 

diagram of C , then ( , ')CgC  is equivalent to ( , )CgC . In the 

literature, the convolutional code 'C  appears to have 'H  as a 

bit-reversed version of the generator matrix H  for code C . 

 

IV. FAST CODE SEARCH ALGORITHM 

 

A. Computation of Transfer Function Upper Bounds 

The code equivalence has been defined in the term of transfer 

function ( )T D  of the codes. To employ the code equivalence in 

the code search in order to reduce the search space, in comparing 

different codes we can use the transfer function upper bound on 

the first event error probability [7] 

2

( ) ( )
free

d

e

d d

P n d D T D
=

≤ =∑        (1) 

where ( )n d  is the number of paths diverging from the all-zero 

path at Euclidean distance 2d  over the unmerged segment and 

0exp( 1/ 4 )D N= − . The average signal energy is set to 1. 

Given a GU partition of the signal constellation induced by a 

binary partition chain by g , we use the DP defined above to form 

a 2 2ν ν×  transition matrix [ ]ijA a=  as follows. If there is a state 

transition ( 1) ( 1)i j− → − , we let 
2
min ( , )

( , ) ijd

ij ija Mult D=
g c

g c  for 

exp( / 4 )sD SNR E= −  with 
sE  being the average energy of the 

given signal set and 
0/sSNR E N=  being the given SNR. 

Otherwise, let 0ija = . Since the contribution to 
eP  of the parallel 

transitions (error events of length 1L = ) can be evaluated 

separately, using the knowledge on the subset 
0S , we let 

11 0a =  

so that, for a while,  we consider only error events of length 

2L ≥ . Define by (1)a  the first row of A . Let ( ) ( 1) A−=ℓ ℓa a  for 

2≥ℓ . Denote by ( )

ja ℓ  the j-th element of ( )ℓa . It is easy to see that 

while ( )

1
0a =ℓ  all potential error paths that depart from the state 0 

and come to the state ( 1)j −  for 2 2j
ν

≤ ≤  exactly after ℓ  

discrete time epochs accumulate an amount ( )

ja ℓ  to  contribute to 

eP . Suppose at 
1 2= ≥ℓ ℓ  we have ( )

1
0a >ℓ  for the first time, 

meaning that there are some paths that remerge back to the state 0 

to form error events of length 
1ℓ . It is easy to be seen that 1( )

1
a ℓ  

equals to the sum of all PEP of error events of length 
1ℓ . Let 

1

1 1
( )

e
P a= ℓ
ℓ  to store this sum. The computation then proceeds by 

setting 1( )

1
0a =ℓ  and recursively ( ) ( 1) A−=ℓ ℓa a , with 

1≥ℓ ℓ , for the 

next 
2 1= ≥ℓ ℓ ℓ  to obtain 2

2 1
( ) 0

e
P a= >ℓ
ℓ . The algorithm then is 

composed of two loops. 

1. Inner loop: Set 2=ℓ . While 1

1
0a − =ℓ , do ( ) ( 1) A−=ℓ ℓa a  and 

increase ℓ  by one. Update 
1

( ) ( )P e P e a= + ℓ . 

2. Outer loop: While 
maxL≤ℓ , repeat the inner loop after 

setting 
1

0a =ℓ . 

If we initially set 
eP  to the value of the contribution of parallel 

transitions and carry out the computation up to a large enough 

maxL , the final value of 
eP  should be a good approximation of the 

transfer function at the given SNR.  
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B. Fast Search for GU Codes with QAM  

For the linear combiner we utilize the rate- ( 1) /k k−  binary 

systematic convolutional encoder with feedback [3] . The output 

bits j

i
z , 1, ,j k= … , of the encoder are computed  from input bits 

, 1,2, , 1j

i
x j k= −… , as 

1 1
1 1 0 1

11

1 1 2

, 2 ;

k
j j j j

i t i ti i i i t

j t t

z x j k z h x h z

ν ν− +
−

− +− +

= = =

= ≤ ≤ = +∑∑ ∑      (2) 

where i  is the time index and ν  is the memory length of the 

encoder. Following Ungerboeck and many authors, we use 

encoders with the following property 
0 0

1 1 1 11, 0 1,2, , 1j j
h h h h j kν ν+ += = = = = −…         (3) 

This ensures that 0

i
c  is the same for transitions that diverge from a 

state (or remerge to the same state). Then adjacent transitions are 

assigned with  signals  taken from subset of a large MSD. In 

consequence, a large free distance can be obtained. Moreover, 

with condition (3) it is easy to show that one can apply all results 

of previous sections to the code search.  

Since the rate-2/3 encoder for the label code C  is fully 

described by the matrix 
2 1 0[ , , ]H = h h h , hereafter we use the 

notation ( , )HgC  for the signal space code, where g  defines, for 

the 8-way GU partition 2 2/ 2RZ Z ,  the binary GU partition  chain 
2 2 2 2/ / 2 / 2R RZ Z Z Z  with the distance chain 1/2/4/8 and, hence, 

defines the binary isometric labeling. Let { }0 1 7, ,....,K K K  be a set 

of elements of 
kK  associated with 8 equivalent isometric 

labelings and given below. Then we have ( , )HgC  equivalent to 
1( , )pHK −gC  for 1 7p≤ ≤ . If ( , )HgC  has been generated and the 

transfer function upper bound has been evaluated for its ( )P e , we 

need not to generate 1( , )pHK −gC . The code search algorithm then 

consists of the following steps. 

1. Generate a  matrix H , go to the next step if H  satisfies all 

conditions, that H  is full rank, that, for 1 7p≤ ≤ , the 

matrix p pH HK=  has not been ever generated and 

checked, and that the reversed version of  H  has not been 

ever generated and checked. Otherwise, generate a new H  

until all possible code space has been searched. 

2. Generate and evaluate ( , )HgC . Compare with the 

previously generated codes to find the one with the 

minimum bound (1). 

 

0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

K

 
 
 =
 
 
 

   

1

1 0 0 0

0 1 0 0

0 1 1 0

0 0 0 1

K

 
 
 =
 
 
 

    

2

1 0 0 0

0 1 0 0

1 0 1 0

1 1 0 1

K

 
 
 =
 
 
 

 

3

1 0 0 0

0 1 0 0

1 1 1 0

1 1 0 1

K

 
 
 =
 
 
 

 

4

1 0 0 0

1 1 0 0

0 0 1 0

0 0 1 1

K

 
 
 =
 
 
 

   

5

1 0 0 0

1 1 0 0

1 1 1 0

0 0 1 1

K

 
 
 =
 
 
 

    

6

1 0 0 0

1 1 0 0

0 1 1 0

0 1 1 1

K

 
 
 =
 
 
 

  

7

1 0 0 0

1 1 0 0

1 0 1 0

0 1 1 1

K

 
 
 =
 
 
 

 

Table 1 gives result of the new code search for 128, 256, and 512 

states. Fig. 2 compares the upper bounds on first event error 

probability of newly found codes with Ungerboeck codes. It can 

be seen that newly found codes outperform Ungerboeck codes. 

Thus they improve the performance versus complexity tradeoff of 

2D trellis codes with 128, 256, and 512 states. 

 

V. CONCLUSIONS 

 In this work, the concept of equivalent isometric labelings and 

equivalent codes allowed us to reduce  the search space. The 

exhaustive search using the transfer function upper bound on first 

event error probability yielded new 128-, 256-, and 512-state 

codes that improved the performance/complexity tradeoff of 2D 

trellis codes.   
Table 1. New 2D GU codes with QAM 

Generators # states 

2h  
1

h  
0

h  

128 056 106 223 

256 064 306 527 

512 0070 0516 1015 

 

 
Fig.1 GU signal space encoder with a linear combiner 

 

 
Fig. 2 Comparison of new codes with Ungerboeck codes, 64-QAM, 8-way 

partition 
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