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Abstract— In this paper, a numerical method for antenna
array patfern synthesis is presented. By this method, the
designer can efficienily verify both mainlobe shaping, null
steering and sidelobe levels. When a large number of interfering
signals occurred at various angles threughout the sidelobe
region, the sidelobes are controlled by an iterative method
based on adaptive array theory. The values of the weighting
function in the [, norm, interpreted as imaginary jammers, and
are iterated to minimize exceedance of the desired sidelobe
levels and minimize the absolute difference between desired and
achieved mainlobe patterns. Simulation examples, including
both nonuniform linear and planar arrays, are shown to
illustrate the effective of this method.

I. INTRODUCTION

Due to the increasing pollution of the electromagnetic en-
vironment, pattern synthesis technique with nulls steered to
the interference directions become currently important.

The synthesis of equi-spaced linear array pattem with
shaped beams has been considered by several authors in the
specialized literature [1, 2, 3, 4, 6]. Particularly, the
Schelkunoff Polynomial Method is wvery suitable for
synthesizing linear arrays with a radiation pattern specified
by several nulls. In this iethod, the array factor is viewed as
a polynomial with roots located in the complex @ plane.

When the number of interfering sources is much less than
a half of the total number of elements in the linear array, it is
possible to optimize the pattern as well as to suppress
tuterfering signals. However, when a large number of closely
spaced interfering signals are assumned to be incident on the
array from the sidelobe region, so the array cannot easy
place a null on each interfering signal but a compromise
pattern that minimizes the sidelobe levels is instead.

A classic paper by Dolph [1] showed how to obtain the
weights for an uniform linear array (ULA) to achieve a
Chebyshev pattern, with optimal in the sense that it yields a
minimum uniforn sidelobe level for a given mainlobe width,

Olen and Compton [7] presented a numerical synthesis
algorithm that can be used for arbitrary arrays with arbitrary
element. This algorithm is very effective and generally
yields satisfactory array patterns. However, there is no
pattern control mechanisim in mainlobe region.

In this paper, we present a pattern synthesis algorithm for
arbitrary amrays based on adaptive array theory. The
imaginary jammer powers are varied depending on desired
sidelobe levels, and adjusted by an iterative procedure.

We establish the problem as finding the optimal array
weighting vector that minimizes the weighted L; norm of the
difference between synthesized pattern and desired pattern,
with null constraints, or using our algorithm for iterating the
value of the weighting function in order to minimize the
exceedance of the desired sidelobe levels and to minimize
the absolute difference between desired and achieved
patterns in the mainlobe region.
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II. THE ProOBLEM FORMULATION
The problem of array pattern synthesis can be stated as
follows. With a given number of array elements and their
positions, we have to find a set of complex weights W, so
that the array pattem Py (#) has a maximum at the desired
direction @, with & certain beamwidth and also the sidelobe

levels meet the specified values. First, we consider the sum
of a weighted pattemn errors E over the set of angles
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is the steering vector of the array, the superscript H denotes
the complex conjugate transpose; g (§) is the ith clement

patterr; P (8,) is the reference pattem; f(8,) is the
weighting functien; $(0)=kx, is the phase due to

propagation where & is wavenumber vector and X, is ith
element position; ¥ =[w,,w,,...,w, ]’ is weighting vector.

"I'hen the error £ can be rewritten as
M
E=Y @ @y -P@6) ©)
=1

We note that £ may be interpreted as average output power
of a “sidelobe canceler ” with a main channel response

P.(8) to a collection of jammers (Fig. 1), where the ith
jammer has the location &, and the power f(g,). The key to
this algorithm is that the jammer powers are adjusted to
emphasize selected parts of the achieved pattern, particularly
the mainlobe and sidelobe peaks.

Suppose 8,,,6,,,...,6,, are the localized nulls, which have to

synthesize. We have

VE@, W =0 i=012...k “
(4) can be written by a matrix equation
CW=h (5

where
" r
C=r @ VI ). .V On)]
h=[o,0,.. 0f
The pattern synthesis problem may be outlined as follows,
We should find the weighting vector # to minimize the error
E, subject to the constraint (3). :
A
miny" f(6,)V,7 6,0 - P,(6,)
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Fig. 1. An sidelobe canceler interpretation

This constrained minimization can be accomplished by
fonning the Lagrangian [6].
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where A is a Lagrange multipliers vector.
Equation (6) can be written by
J=WHW - Y [FI07 W - P) e

FAh-CH+[h-CW]T A7
where [F' ] is a weighting matrix of the weighting function,
1t 1s a diagonal matrix

[Fl=[diag [0 Msrar &
PH = [V:” (9[)’[,-:1' @), .. .,V_,H (BM )]r &)

and
P=[R@)PO)... PG (10)

The minimization of (7) is obtained by setting the partial
derivatives of .J with respect to both the real and imaginary
parts of B equal to zero, or equivalently with respect to

17 # [6]. The solution for optimal weight vector is
W, =R'R;+R'CY (CR'C*Y'(h-CR”'Ry (1)
where R, is the covariance matrix and R " is the cross-
correlatlon vector detmed as
=VFre
R, =IFFIP
The error E is found to be [6]
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Fig.2. The reference pattern R, (2]

When constraints are not needed, the optimal weight
vector is !
Wapx = R;'Ra‘ (14)

The array response at each angular location depends on the
weighting function f(g,). Different values of f(6,) put

different emphasis on array responses at pertinent directions
and, therefore, result a relevant array pattern. By making
F(8,) large enough, it is possible to ensure sidelobe peaks

do not exceed a certain value.

III. THE PATTERN-SYNTHESIS ALGORITHM

The response of an array pattern to interfering signals
depends on the number of interfering signals in relation to
the number of freedom order in the array. An N-element
array has N—1 order of freedom in its pattern. One order of
freedom -is needed to form a pattem maximum on the desired
signal. The remaining N-2 order are available to null
interference signals, If N-2 or less of interference signals are
incident on the array, the array usually forms a null on each
interference signal. However, if more than N--2 interference
signals are incident, the array can not normally make null the
individual interference signals but instead, it will be found a
compromise pattern that minimizes the total interference
power at the array output.

The most common objective for pattern synthesis is to
obtain a pattern with sidelobe level lower than a specified
value over a certain regions while maintaining a certain gain
at looking angle ¢,. Here, we choose the reference pattern

P (8) as shown in Fig. 2, in which all the respenses in
sidelobe regions are zeros and the mainlobe peak response is
of a value A. The mainlobe shape is specified by the designer,
it may be a parabola, for example. While it is impractical to
have all zero sidelobe levels, we can make lower and lower
sidelobes by increasing the weighting function (@) in
selected areas. We use a realistic desired pattern P,(&) to
iteratively adjust f(£) until the sidelobe requirements in
Pa,(H) are met.

The weighting function is up dated through an

E=E  +(W- w) R -Ww,) iteration procedure similar to that of Olen and Compton 7],
where £__is the minimized error E which leads to a satisfactory array pattern. The iteration
i process is as in (15) and (16), shown on the bottom of the
_WHERW page, where # =1,2,,.. M index the points in angle over -
Euin opt” "5 opr which we are interested in controlling the pattern.
ho(9)), 8, in mainlobe region
Jen0,)= * ! . & as)
max{f, (@ )+K ’ [Py‘_ @,)-P,6,).03} 6, in sidelobe region
.fk(gn)' U,Ilp_yk(gn)_"Pd(Hn)lsg

h(6,)=
[ @)+ K, |Pe(8,)-Pot6,),
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The £ 8,) and P(6,) are weighting function and synthesized 10
pattern, respectively, at the th iteration and £ is a very sm-
all quantity for an error tolerance between the synthesized
pattern and the desired pattern in mainlobe region. The PA6,)
is desired pattern; K,, and K, are iteration gains. Usually, K,
is specified to be much smaller than X, for exa-mple, K, 3
and K,, 4000. We note that for &, in the main-lobe region,

amray amplitude pattern{(dB)
A
s

-50
£i(8,) has never decreased from its initial value. The desired

pattern P{&) is set up to facilitate the iteration process 80
whereas the reference pattern P{&) is used to define the -70
pattern errors that are to be minimized. In general, P& and I
P,(&) are the same in mainlobe regions but different in -100

sidelobe regions. The sidelobe part of, Pf&,) should be angle from broadside(deg)
chosen according to a realistic specification or a reasonable  Fig 4. Initial pattem.

estimation, for example, the uniform sidelobe level.

We next use fz; (6,) to compute new weights. Let & and &
be the boundary points for mainlobe region, ie. §<6,£6;

0

4
o

defines the mainlobe. Since the reference pattern is zero @ E : i : i
outside of this region, the cross-correlation vector and the € ;
covariance matrix become %
R, (k+1)=VF(k+1)P .?,'
¢ 2
DI RCHIACH AN |
n==8; g
R (k+D=c* T +VEk + 17 {18) @
(]

where F(k¥) is the weighting matrix (8) at the Ath iteration,
and a small quantity o is added to each diagonal element of
the covariance matrix to prevent it from being ill conditioned

{8], for example, 0.0001. Then the next weight vector is angle from broadside(deg)
Ww,(k+l) =R:l(k+1)R‘,(f\'+l) (19)  Fig 5. Intermediate pattern,

The iteration stops when the errors between P,(8) and P46 o
are small enough in the mainlobe region and the sidelobe 0

levels of P& are equal to or lower than P 8). o
: TABLE 1 Z

A nonuniform linear array of 21-element %

£

Element Nos. Position Element Nos. Position ] %
1,21 +5.04 6,16 +231 Lo

2,20 +4.64 7.15 11.94 £
3,19 £3.92 8,14 +1.54 £
4,18 +3.34 9,13 1074 260
517 +2.94 10,12 +0.34 g 0

: 11 04
-80
-100

angle from broadside(deg)
Fig. 6. The synthesized pattern.
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IV. SIMULATION EXAMPLES

Ay
=

_______________ o ___v_______/| In this section, we will show a few pattern synthesis
examples using our algorithm. The array elements used in
the examples are assumed to be isotropic although such an
assumption is not necessary in our algorithm.,

Example 1: We consider a pattern synthesis for a non-
uniform linear array of 21 elements with element positions
shown in the Table I. The seclected reference pattern is
P(&=cos(76) in the main lobe. We used 1° spacing from
-90° to 90° for placing values of the weighting function.

&
=3

A
o

array amplitude pattern(dB)

4
=]
T

-80
-100
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Fig. 3. The synthesized pattern the localized

nulls at —65°, —-60” |, 25° 30 912
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Fig. 8. Synthesized pattern

Fig. 3 shows the resulting synthesized pattern with the
localized nulls at —-65°, -60° , 25°, and 30°.

The second case is using an iterative method for array
.pattern synthesis with the uniform sidelobe levels. Fig. 4
shows the initial pattern, Fig. 5 shows an intermediate
pattern and Fig. 6 is the final synthesized patiern which has a
sidelobe level lower than ~40dB. Here we selected K, =5
and K, S00.

Example 2: The problem is to synthesize a 2-D

Chebyshev pattern for a 5X S rectangular uniform planar
array of 25 elements with haft-wavelength spacing. In this
case 4, is replaced with (8,,¢,,).
The initial 2-D pattern is plotted in Fig. 7(a) as a function of
x=sinfosg and y=sintksing. A side view of the initial pattem
is plotted in Fig. 7(b) and a top-down view is plotted in Fig,
7(c). Figs. 8(a), (b), and (c) show three views of the final
synthesized pattem with a single null located at angle
(45°0%. The null is indicated by the white regions at the
specified direction.

V. CONCLUSION

In this paper a numerical pattern synthesis algorithm for
arbitrary arrays has been presented. The optimal weighting
veetor 1s obtained by minimizing the sum of weighted squar-
ed errors between synthesized and desired patterns, with or
without null constraints. The weighting functions are adjust-
ed iteratively in both mainlobe and sidelobe regions to insure
a desired mainlobe shape as well as desired sidelobe levels.
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