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Abstract. This paper presents stress state analysis of composite cylindrical shells bonded 
piezoelectric layers in the top and bottom surfaces. The laminated smart shell is subjected to 
electric potential and mechanical loading. The mathematical model of electroelasticity 
behaviour is based on the refined theory and virtual work principle. The governing differential 
equations are reduced to ordinary differential equations by means of trigonometric function 
expansion for displacement and electric potential. Operative method is used to solution of 
boundary problem. Stress-strain state of smart cylinder for electromechanical loads with 
clamped support is provided. Numerical results are presented showing the effect of boundary 
layer at clamped edges and comparison between the obtained results to the classical theory of 
the Kirchhoff-Love type is accurate. 

1. Introduction 
Nowadays, piezomaterials are widely found in various fields of mechanical engineering, automation, 
computational technology, etc., due to its direct and inverse effects.  In the aerospace industry, 
piezoelectric materials are used as sensors and actuators on adaptive aircraft systems to improve the 
quality of aerodynamics and effective management of their deformations [1]. In addition, composite 
materials are commonly used to reduce the masses and increase the strength on aircraft. The 
combination of piezoelectric and composite materials allows improving the properties of next 
generation modern aircraft as controlled systems [2-3]. 

The main design diagrams of aircraft structural elements are thin plates and shells. The calculations 
of the stress-strain state of plates and shells are based on the assumptions of the classical deformation 
theory (CDT) of the Kirchhoff-Love [4] and Timoshenko-Gol’denveizer [5-6]. CDT is used to 
represent a three-dimensional equations of elasticity theory in two-dimensional form. Based on CDT, 
H S Tzou [7], Reddy [8] extended to piezoelectric plates and shells and presented electromechanical 
model by joining elasticity equations with Maxwell' equations. Mindlin [9], Reissner [10] provided 
first order shear deformation theory (FSDT) with hypothesis is the transverse normals do not remain 
perpendicular to the mid-surface after deformation. Reddy [8, 11] developed third order shear 
deformation theory (TSDT) and high order shear deformation theory by using the nonlinear 
polynomial function to describe the shear stress distribution for not only isotropic but also anisotropic 
and piezoelectric magnetic laminated composite materials. 
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In recent years, many studies have been conducted in the field of the electromechanical state of 
smart laminated shells. Based on FSDT Rajeev Kumar [12] and A. Benjeddou [13] introduced finite 
element formulation to 9 nodes to static and dynamic analysis of laminated composite shells subjected 
to electrical, mechanical and thermal loadings. Ehsan Arshid and Khorshidvand [14] used Hamilton's 
variational principle to derive the governing motion equations for a circular plate made up of a porous 
material integrated by piezoelectric actuator patches. Mitchell and Reddy [15] have published 
solutions for axisymmetric composite cylinder with embedded piezoelectric layers under axial load. 
Diego Amadeu, Paulo Mendonca [16] and Kant T [17] developed a formulation HSDT for solution of 
piezoelectric laminated plates and sandwich plates. By using differential quadrature method R. Akbari 
Alashti [18], Santosh Kapuria [19] provided three-dimensional elastic and thermoelastic analysis of a 
piezoelectric cylindrical shell with functionally graded layers under the effect of axisymmetric and 
asymmetric thermo-electro-mechanical loads. Aghalovyan [20] presented asymptotic method to 
solution of the electroelasticity problem for piezoceramic shell. 

However, in these works, the boundary condition only for fully simply-supported are studied and 
the stress-strain state in the clamped edges of piezoelectric laminated shells has not mentioned much. 
In the paper, the refined theory is presented to model the electromechanical state of smart cylindrical 
shells. The displacement and potential field, in this case, satisfied the energy compatibility conditions 
proposed by Lurie, Vasiliev [21]. The generalized Lagrange principle is utilized to derive the 
governing equations of composite shell bonded piezoelectric layers. The operative method is used to 
analyze the stress concentration state of piezolaminated cylindrical shells due to electric potential and 
mechanical loading applied at the top and the bottom with clamped edges. The comparison of results 
for cylindrical shell with classical theory is given. 

2. Materials and methods  

2.1. Shell model 
Consider a composite cylindrical shell in the orthogonal curvilinear coordinate systems with the 
geometrical parameters according to figure 1, is bonded piezoelectric layers on the top and bottom 
surfaces. For a piezoelectric laminated shell subject to a prescribed surface tractions 

3 3 ( , ), ( 1,2,3)i iq q i    and electric potentials ( , )i    at the upper and lower surfaces 

z h   of shell, respectively. 
 

 

Figure 1. Composite cylindrical shell bonded piezoelectric layers. 

2.2. Displacement field 
The displacement field and electric potentials of the shell in the orthogonal curvilinear coordinate 
systems ���� is analyzed [22-24] as follows  
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2.3. The strain and stress fields 
The strain components in above equations are related to the displacement components, which are 
determined by equations: 

1 1 1 1
,  ( ),  ,

1 1
,  ,  .z z z
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z R z R z z R z
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     
      

   (2) 

2.4. Piezoelectric layers   
Linear constitutive equations of piezoelectric layers [7-8] in the general coordinate system ���� is 
expressed as 

        

        

,

.

T

T

e E

D e E

С 

 

 

 
     (3) 

where  , , , , ,z z z            is the stress vector,  , , zD D D D   is the electric displacement 

vector,  , , zE E E E   is the electric field vector.  ( )1,6, 1,6
ij

C C i j    is the elastic stiffness 

matrix,  , , , , ,z z z             is the strain vector,  ( )1,3, 1,6
ij

e e i j    is the piezoelectric 

matrix,  ( )1,3, 1,3
ij

i j     is the dielectric matrix of material. 

According to the properties of piezoelectric materials, under the influence of mechanical and 

electrical loads, charges hQ  appear on the surface z h   of shell. 

At top and bottom surface z h   of shell, electric potentials are h    and h  . 

Combining the forth equation of Eq. (5), we have 

0
1 2 2 2

,     .
2 2h h h

   
 

    
        (4) 

Maxwell's equations for the electric field, neglecting magnetic effects, can be reduced to 
electrostatic equations 

1 2

, , .zE E E
A A z

 

  

 

  
  

  
    (5) 

where 1 2,  1 /A R A z R   - Lame’s parameters of cylindrical shell. 
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2.5. Composite layers   
The neutral plane is the mid-surface of the shell. The main direction of fiber reinforcement of each 
layer coincides with the direction of the local coordinate system O123, correspondingly. The angle 
between the direction of fiber reinforcement and the vertical axis Oz of the general coordinate system 
is β. The structure includes n layers, the total thickness 2h (figure 1). 

Hooke's law for the layer k in the local coordinate system O123 has the following form 

   ( ) ( ) ( )
123 123 .k k kC         (6) 

Eq. (6) is the relationship between the stress field and the strain field of layer k in the local 
coordinate system O123. So we need to perform the coordinate transfer to general coordinate system 

���� with matrix transformation ( )
2

kT of layer k. 

Then, the relationship between the stress field and the strain field of layer k in the general 
coordinate system now becomes 

   ( ) ( ) ( ) ( )
2 2 .

Tk k k k
z T C T                   (7) 

where  ( ) , , , , ,k
z z z z            - the stress vector of layer k in general coordinate system ����. 

Matrix transformation of layer k is determined by: 
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   (8) 

2.6. Governing equations and boundary conditions 
The Lagrange principle is used to establish the equilibrium equation, the total potential energy is the 
minimum value, it means: 

0.U A         (9) 

where U is the electroelastic potential energy, A is the work done by external forces 

3 3 ( , ), ( 1,2,3)i iq q i   and electric charges hQ at the upper and lower surfaces. The variation of the 

electroelastic potential energy is defined in the following formula: 

3( ) ( ( ) .i i i i hU A D E dV q u v w dS Q dS                     (10) 

Equilibrium equations are governed by integrating separately the expression (10) according to 
potential and displacement components, then taking independently the possible potential and 
displacement equal zero. From there, we get the following equilibrium equations system as follows 
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where 
  ( 1,3, 1,3, 0,3)
s

ijN i j s    - mechanical forces and moments,
  ( 1,3, 0,2)s

iND i s    - 

electrical forces and moments and the following designations are adopted: 
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The boundary conditions at the edges are: 

- for clamped supported: 0,  0,  0,3,  0,2.i i i ju v w i j        

- for simply supported: 0,  0,  0,3,  0,2.i
i i jv w i j         

- for free from supported: 0,  0,  0,3,  0,2.i i i
z j i j             
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2.7. Analytical solution 
In order to satisfy the cyclic boundary condition abided by the coordinate, the displacement, potential 
field and the loads according to the single trigonometric series are expanded as follows: 
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Substituting Eq. (13) into Eq. (11) then perform some mathematical transformations, we obtain 

differential equations to determine ( , ),  ( , ),  ( , ),  ( , ),  0,3,  0,2i i i ju v w i j            functions as 
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 (14) 

The coefficients K are the constants, which depend on geometric parameters, elastic and electrical 

constants of the shell material. Stresses ,       and z  are founded by integrating the equilibrium 

equation the 3D elasticity theory: 



19th International Conference "Aviation and Cosmonautics" (AviaSpace-2020)
Journal of Physics: Conference Series 1925 (2021) 012022

IOP Publishing
doi:10.1088/1742-6596/1925/1/012022

7

 
 
 
 
 
 

 
 

13

22

232 2

33

(1 )1 1 1
( ) ,

1 1

(1 )1 1 (1 )
( ) ,

(1 ) (1 )

(1 )1 1 1 1
( ) .

1 1

z

z h
z

h

z

z h
z

h

z
z z z h

z

h

rzrz
dz q

rz R R rz

rzrz rz
dz q

rz R R rz

rzrz
dz q

rz R R R rz

 





 


 


 




 

 
 

 













  
   

   

  
   

   

  
    

   







   (15) 

3. Numerical results and discussion 
Let us consider a fully clamped support piezoelectric laminated circular cylinder shell. The 
piezoelectric layers are assumed to be made of polyvinylidene fluoride (PVDF). The laminated shell 
includes 3 layers and are made by Graphite-Epoxy (AS/3501) with the angles of fiber reinforcement 
β= [-900/0/900]. Elasticity and piezoelectricity properties of materials [19, 25] is given in table 1 and 
table 2. 

Table 1. Elasticity properties of materials. 

Property (GPa) ��� ��� ��� ��� ��� ��� ��� ��� ��� 

PVDF 3.0 1.5 1.5 3.0 1.5 3.0 0.75 0.75 0.75 

Graphite-Epoxy 12.0 2.5 2.5 9.6 -3.3 9.6 4.5 5.4 5.4 

 

Table 2. Piezoelectricity properties of materials. 

Property* ��� ��� ��� ��� ��� ��� ��� ��� 

PVDF 0 0 -30.0 23.0 3.0 3.14 3.08 3.08 

Graphite-Epoxy  0 0 0 0 0 0 0 0 

* The unit of matrix e is Cm-2 and for the matrix � is Fm-1. 
 

Geometrical parameters of shell are used: radius R = 1.0 m, length L = 4R, relative length
/ 1/100h R  . Two cases of circular laminated cylinder shell are considered:  
- The shell is under the action of mechanical load on its outer surface of circular shell. 
- The shell is under the action of electric potential on its outer surface of circular shell. 
Here, the abbreviation ‘Clas’ corresponds to the results of calculation according to classical theory 

and ‘HSDT’ corresponds to results of calculation according to refined theory. 

In the first case, mechanical loads are presented sinusoidal function 33 0( , ) cos( )q Q m    , 

13 23 33( 0)q q q      with 0 .Q const  Stress state of piezoelectric laminated shell is showed in 

figures 2-3. See figure 2 we can notice that, at the rigidly fixed position for clamped support show 
additional stress of “boundary layer”. The normal stress z , negligible in the classical theory, 

according to presented theory, account for about 23% of the maximum normal stress  .  
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Figure 2. Stress distribution at boundary position by the thickness in case 1. 
 

  

Figure 3. Comparison of stress the distribution   and   at position 5h  by the thickness 

with classical theory in case 1. 
 

In the second case, electric potentials are considered sinusoidal function 0( , ) cos( )V m     , 

( ( , ) 0)     with 0 .V const  Similarly as in the first case, we can see the boundary effect at clamped 

edges of shell. The normal stress z , negligible in the classical theory, according to the revised theory, 

account for about 33% (figure 4) of the maximum normal stress  . 
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Figure 4. Stress distribution at boundary position by the thickness in case 2. 
 
Comparison with classical theory of Kirchhoff-Love at distance away from edge zone, the 

distribution of the main stresses   and   of the shell (figure 3 and figure 5) in this work for both 

cases meet a very good agreement and practically coincides, which confirms the reliability of the 
results obtained. 
 

  

Figure 5. Comparison of stress the distribution   and   at position 5h  by the thickness 

with classical theory in case 2. 
 
Table 3 shows results of maximum stresses in two cases for calculating by refined theory in this 

paper and CDT of Kirchhoff-Love. 
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Table 3. Comparison of maximum stresses to CDT. 

Maximum stresses in case 1 

Stress �� �� �� 

CDT 645.8 146.5 0 

Present 641.5 143.6 145.3 

Maximum stresses in case 2 

Stress �� �� �� 

CDT 8.3 2.0 0 

Present 7.8 2.7 2.6 

4. Conclusions 
Based on the proposed theory and computed results presented in this work, we have some highlight 
conclusions as follows: 

- The equations for state analyzing the laminated cylindrical shell bonded piezoelectric layers based 
on refined theory have been derived. The formulae given here can be used to obtain the governing 
equations for other piezoelectric composite structures and structures mounted piezoelectric layers such 
as beams and plates.  

- Stress state of circular cylindrical laminated shell with piezoelectric layers on the top and bottom 
surfaces for fully clamped support is studied. 

- The results obtained in this work showed there are transverse normal and tangential stresses near 
clamped edges of laminated shell, which are neglected in classical theory. This additional stresses 
must be calculated for calculating the strength of elements in various joint designs. 
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