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Abstract
This paper is devoted to presenting new error bounds of regularized gap functions
for polynomial variational inequalities with exponents explicitly determined by the
dimension of the underlying space and the number/degree of the involved polynomials.
The main techniques are based on semialgebraic geometry and variational analysis,
which allow us to establish a nonsmooth extension of the seminal Łojasiewicz gradient
inequality to regularized gap functions with explicitly calculated exponents.
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1 Introduction

In the finite-dimensional setting, suppose that a cost map and a constraint set are
given. We study the variational inequality problem in which a point in the constraint
set is sought such that the negative of the cost map at this point is a normal vector
to the constraint set at that point. It is well known that when the constraint set is
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the nonnegative orthant, the variational inequality problem reduces to the nonlinear
complementarity problem.

Variational inequalities and related problems have been widely studied in various
fields such as mathematical programming, game theory, and economics. There is a
large literature on all aspects of the theory and applications of variational inequalities;
for more details, we refer the reader to the survey by Harker and Pang [11] and the
comprehensive monograph by Facchinei and Pang [8] with the references therein for
the scalar variational inequalities and [3,12] for the vector variational inequalities.

Many fruitful approaches to both theoretical and numerical treatment of varia-
tional inequalities make use of merit (gap) functions. Among these merit functions,
regularized gap functions are particularly interesting because they cast variational
inequality problems as equivalent constrained optimization problems ( [1,8,9,29–31]).
Furthermore, regularized gap functions have remarkable properties, which are basic
for development of iterative algorithms for solving variational inequalities.

On the other hand, the theory of error bounds provides a useful aid for understanding
the connection between amerit function and the actual distance to its zero set and hence
plays an important role in convergence analysis and stopping criteria formany iterative
algorithms; for more details, see [8, Chapter 6] and references therein. Therefore,
it would be interesting and useful to investigate error bounds for regularized gap
functions associated with variational inequalities.

Assume that the cost mapping is strongly monotone and smooth and that the con-
straint set is closed convex. By virtue of the consideration of differentials, Wu et al.
[31], Yamashita and Fukushima [32], and Huang and Ng [15] showed that the regu-
larized gap function of the corresponding variational inequality problem has an error
bound with a certain non-unit exponent and thereby established convergence results
of sequences obtained by an algorithm of Armijo type. These results are extended by
Ng and Tan [26] to cover the case where the cost map is not necessarily smooth; see
also [17,18,29,33,34] for related works. As the reader can see, the monotonicity of
the cost map and the convexity of the constraint set play a crucial role in establishing
these results.

At this point, we would like to mention that error bound results with explicit expo-
nents are indeed important for both theory and applications since they can be used, e.g.,
to establish explicit convergence rates of iterative algorithms. On the other hand, as
explained by Luo et al. [23], exponents in error bound results are, in general, difficult
to determine.

In this paper, we study error bounds of regularized gap functions associated with
variational inequalities with polynomial data. Namely, assume that the cost map is
a polynomial map and the constraint set is a closed set defined by finitely many
polynomial equalities and inequalities, our contribution is as follows:

1. We establish a nonsmooth version of the seminal Łojasiewicz gradient inequality
to the regularized gap function with an explicitly calculated exponent (see Theo-
rem 3.1).

2. We propose new error bounds for the regularized gap function with explicitly
calculated exponents (see Theorems 4.1 and 4.2 ).
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In fact, the exponents in these results are determined by the dimension of the underlying
space and the number/degree of the involved polynomials.

Note thatwedonot require that the costmap is (strongly)monotone or the restriction
of the cost map on the constraint set satisfies regularity conditions at infinity or the
constraint set is convex.Amotivation for studying such aproblem is thatNash–Cournot
oligopolistic equilibrium models involving concave cost [25], in some cases, can be
reformulated in this form. On the other hand, our proof is similar in spirit to that of [27]
(see also [6,16,19–21] for related works); in particular, the techniques used here are
largely based on semialgebraic geometry and variational analysis. Furthermore, while
all results are stated for regularized gap functions, we believe analogous results can
be obtained for D-gap functions; for the definition and properties of these functions,
we refer to [8]. However, to lighten the exposition, we do not pursue this idea here.

The rest of the paper is organized as follows: In Sect. 2, we review some prelim-
inaries from variational analysis and semialgebraic geometry that will be used later.
Given a polynomial variational inequality, in Sect. 3, we provide a nonsmooth version
of the Łojasiewicz gradient inequality to the regularized gap function, and in Sect. 4,
we establish some error bounds for the regularized gap function.

2 Preliminaries

Throughout this work, we deal with the Euclidean space Rn equipped with the usual
scalar product 〈·, ·〉 and the corresponding Euclidean norm ‖ · ‖. The distance from a
point x ∈ R

n to a nonempty set A ⊂ R
n is defined by

dist(x, A) := inf
y∈A

‖x − y‖.

By convention, the distance to the empty set is equal to infinity. We write convA for
the convex hull of A. We denote by Br (x) the closed ball centered at x with radius
r; we also use the notations Br for Br (0) and B for the closed unit ball. For each real
number r , we put [r ]+ := max{r , 0}.

2.1 Some Subdifferentials

We first recall the notions of subdifferentials, which are crucial for our considerations.
For nonsmooth analysis, we refer the reader to the comprehensive texts [5,24,28].

Definition 2.1 Let f : Rn → R be a lower semicontinuous function and x ∈ R
n .

(i) The Fréchet subdifferential ∂̂ f (x) of f at x is given by

∂̂ f (x) :=
{
v ∈ R

n : lim inf‖h‖→0, h �=0

f (x + h) − f (x) − 〈v, h〉
‖h‖ ≥ 0

}
.

(ii) The limiting (known also as basic, Mordukhovich) subdifferential of f at x,

denoted by ∂ f (x), is the set of all cluster points of sequences {vk} such that
vk ∈ ∂̂ f (xk) and (xk, f (xk)) → (x, f (x)) as k → ∞.
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(iii) Assume that f is locally Lipschitz. By Rademacher’s theorem, f has at almost
all points x ∈ R

n a gradient, which we denote ∇ f (x). Then, the Clarke (or
convexified) subdifferential ∂◦ f (x) of f at x is defined by

∂◦ f (x) := conv{lim∇ f (xk) : xk → x}.

Remark 2.1 It is well known from variational analysis (see e.g., [5,28]) that

(i) ∂̂ f (x) (and a fortiori ∂ f (x)) is nonempty in a dense subset of the domain of f .

(ii) If f is locally Lipschitz, then ∂◦(− f )(x) = −∂◦ f (x) and

∂̂ f (x) ⊂ ∂ f (x) ⊂ ∂◦ f (x) = conv∂ f (x).

2.2 Semialgebraic Geometry

In this subsection, we recall some notions and results of semialgebraic geometry,
which can be found in [2] or [10, Chapter 1].

Definition 2.2 (i) A subset of Rn is called semialgebraic if it is a finite union of sets
of the form

{x ∈ R
n : fi (x) = 0, i = 1, . . . , k; fi (x) > 0, i = k + 1, . . . , p}

where all fi are polynomials.
(ii) Let A ⊂ R

n and B ⊂ R
p be semialgebraic sets. A map f : A → B is said to be

semialgebraic if its graph

{(x, y) ∈ A × B : y = f (x)}

is a semialgebraic subset of Rn × R
p.

The class of semialgebraic sets is closed under taking finite intersections, finite unions,
and complements; furthermore, a Cartesian product of semialgebraic sets is semialge-
braic. Amajor fact concerning the class of semialgebraic sets is given by the following
seminal result of semialgebraic geometry.

Theorem 2.1 (Tarski–Seidenberg theorem) Images of semialgebraic sets under semi-
algebraic maps are semialgebraic.

Remark 2.2 As an immediate consequence of Tarski–Seidenberg Theorem, we get
semialgebraicity of any set {x ∈ A : ∃y ∈ B, (x, y) ∈ C}, provided that A, B, and
C are semialgebraic sets in the corresponding spaces. It follows that also {x ∈ A :
∀y ∈ B, (x, y) ∈ C} is a semialgebraic set as its complement is the union of the
complement of A and the set {x ∈ A : ∃y ∈ B, (x, y) /∈ C}. Thus, if we have a finite
collection of semialgebraic sets, then any set obtained from them with the help of a
finite chain of quantifiers is also semialgebraic.
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Theorem 2.2 (the classical Łojasiewicz inequality) Let f : Rn → R be a continuous
semialgebraic function. For each compact subset K of Rn with K ∩ f −1(0) �= ∅,

there exist constants c > 0 and α > 0 satisfying the following inequality

c dist(x, f −1(0)) ≤ | f (x)|α for all x ∈ K .

We also need another fundamental result taken from [6, Theorem 4.2], which provides
an exponent estimate in the Łojasiewicz gradient inequality for polynomials.

Theorem 2.3 (the Łojasiewicz gradient inequality) Let f : Rn → R be a polynomial
of degree d ≥ 1 and let x̄ ∈ R

n . Then, there exist positive constants c and ε such that

‖∇ f (x)‖ ≥ c| f (x) − f (x̄)|1− 1
R(n,d) for all x ∈ Bε(x̄).

Here and in the following, we put

R(n, d) :=
{

d(3d − 3)n−1 if d ≥ 2,

1 if d = 1.
(1)

3 The Łojasiewicz Gradient Inequality for the Regularized Gap
Function

In this section, we establish a nonsmooth version of the Łojasiewicz gradient inequal-
ity with explicitly calculated exponents to regularized gap functions of polynomial
variational inequalities.

From now on, let F : Rn → R
n be a polynomial map of degree at most d ≥ 1.

Let gi , h j : Rn → R for i = 1, . . . , r and j = 1, . . . , s be polynomial functions of
degree at most d, and assume that the set

Ω := {x ∈ R
n : gi (x) ≤ 0, i = 1, . . . , r , h j (x) = 0, j = 1, . . . , s}

is (not necessarily convex or bounded) nonempty. Recall the variational inequality
formulated in the introduction section: find a point x ∈ Ω such that

〈F(x), y − x〉 ≥ 0 for all y ∈ Ω. (VI)

Fix a positive real number ρ and define the function φ : Rn × R
n → R, (x, y) �→

φ(x, y), by

φ(x, y) := 〈F(x), x − y〉 − ρ

2
‖x − y‖2.

By definition, φ is a polynomial in 2n variables of degree at most d + 1. Furthermore,
for each x ∈ R

n we have lim‖y‖→∞ φ(x, y) = −∞, and so the regularized gap
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function (see [9]) associated with the problem (VI):

ψ : Rn → R, x �→ sup
y∈Ω

φ(x, y),

is well defined. We will write

Ω(x) := {y ∈ Ω : ψ(x) = φ(x, y)} for x ∈ R
n .

Lemma 3.1 The following statements hold

(i) For each x ∈ R
n, Ω(x) is a nonempty compact set.

(ii) Let x̄ ∈ R
n . For any ε > 0, there exists a constant R > 0 such that

Ω(x) ⊂ {y ∈ R
n : ‖y‖ < R} for all x ∈ Bε(x̄).

Proof (i) This follows immediately from the fact that for each x ∈ R
n,

lim‖y‖→∞ φ(x, y) = −∞.

(ii) Let x̄ ∈ R
n and ε > 0.By contradiction, suppose that there exist sequences {xk} ⊂

Bε(x̄) and {yk} with yk ∈ Ω(xk) such that limk→∞ ‖yk‖ = +∞. Passing to a
subsequence if necessary, we can assume that xk converges to a point x∗ ∈ Bε(x̄)

(since Bε(x̄) is closed).
Take y∗ ∈ Ω(x∗). Then,

φ(xk, y∗) ≤ sup
y∈Ω

φ(xk, y) = φ(xk, yk).

It is clear that

φ(xk, yk) ≤ ‖F(xk)‖‖xk − yk‖ − ρ

2
‖xk − yk‖2

= −‖xk − yk‖
(ρ
2

‖xk − yk‖ − ‖F(xk)‖
)

.

Hence,

φ(xk, y∗) ≤ −‖xk − yk‖
(ρ
2

‖xk − yk‖ − ‖F(xk)‖
)

.

Since limk→∞ xk = x∗, limk→∞ F(xk) = F(x∗), and limk→∞ ‖yk‖ = +∞, taking
the limit on the both sides of the above inequality, we have

φ(x∗, y∗) = lim
k→∞ φ(xk , y∗) ≤ lim

k→∞

[
−‖xk − yk‖

(ρ
2

‖xk − yk‖ − ‖F(xk)‖
)]

= −∞.

This is a contradiction. ��
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By Lemma 3.1, we can write ψ(x) = maxy∈Ω φ(x, y). Furthermore, thanks to
Theorem 2.1 (see also Remark 2.2), it is not hard to check that the function ψ is
semialgebraic.

Lemma 3.2 The function ψ is locally Lipschitz and satisfies

∂◦ψ(x) = conv {∇xφ(x, y) : y ∈ Ω(x)} for all x ∈ R
n,

where ∇xφ is the derivative of φ with respect to x . In particular, ∂◦ψ(x) is a nonempty,
compact, and convex set.

Proof Let x̄ ∈ R
n and ε > 0. By Lemma 3.1, there exists R > 0 such that ‖y‖ < R

for all y ∈ Ω(x) and all x ∈ Bε(x̄). Hence, we can write

ψ(x) = max
y∈Ω,‖y‖≤R

φ(x, y) for all x ∈ Bε(x̄).

This implies easily that ψ is locally Lipschitz. Finally, the formula for ∂◦ψ follows
immediately from [4, Theorem 2.1]. ��

It is well known that (see, for example, [8]) if the constraint set Ω is convex, then
the regularized gap function ψ is continuously differentiable. On the other hand, as
shown in the next example, in the general case, the functionψ cannot be differentiable.

Example 3.1 Let n := 1, F(x) := x and Ω := {x ∈ R : |x | ≥ 1}. Take ρ := 2.
Then,

φ(x, y) = x(x − y) − (x − y)2 = xy − y2.

Hence

ψ(x) = sup
|y|≥1

(xy − y2) =

⎧⎪⎨
⎪⎩

−x − 1 if x ∈ [−2, 0],
x − 1 if x ∈ [0, 2],
x2
4 if |x | ≥ 2.

Clearly, ψ is not differentiable at x = 0.

We need the following qualification condition imposed on the constraint set Ω.

Definition 3.1 We say that the Mangasarian–Fromovitz constraint qualification
(MFCQ) holds on Ω if, for every x ∈ Ω, the gradient vectors ∇h j (x), j = 1, . . . , s,
are linearly independent and there exists a vector v ∈ R

n such that 〈∇gi (x), v〉 <

0, i ∈ {i : gi (x) = 0} and 〈∇h j (x), v〉 = 0, j = 1, . . . , s.

For each x ∈ Ω, we let

N (Ω, x)

:=
⎧⎨
⎩

r∑
i=1

μi ∇gi (x) +
s∑

j=1

κ j ∇h j (x) : μi , κ j ∈ R, μi ≥ 0, μi gi (x) = 0, i = 1, . . . , r

⎫⎬
⎭ .
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One can check that the set N (Ω, x) is a convex cone and if (MFCQ) holds, then
N (Ω, x) is a closed set.

We are ready to formulate a nonsmooth version of the Łojasiewicz gradient inequal-
ity with explicit exponent for the regularized gap function ψ, which plays a key role
in establishing our error bounds (see Theorems 4.1 and 4.2).

Theorem 3.1 Assume that (MFCQ) holds on Ω. For each x̄ ∈ Ω, there exist constants
c > 0 and ε > 0 such that for all x ∈ Ω ∩ Bε(x̄),

inf{‖w‖ : w ∈ ∂◦ψ(x) + N (Ω, x)} ≥ c|ψ(x) − ψ(x̄)|1−α, (2)

where α := 1
R(n(n+3)+r(n+2)+s(n+2),d+2) and the function R(·, ·) is defined in (1).

The proof of Theorem 3.1 will be divided into several steps, which are summarized
as follows:

(a) Prove the set-valued mapRn ⇒ R
n, x �→ Ω(x), and certain Lagrange multipliers

are upper Hölder continuous.
(b) Estimate from above the Clarke subdifferential ∂◦ψ(x).

(c) Construct explicitly a polynomial function P based on this estimate and the defi-
nition of the cone N (Ω, x).

(d) Prove the inequality (2) by applying Theorem 2.3 to P.

Wefirst show theupperHölder continuity of the set-valuedmapRn ⇒ R
n, x �→ Ω(x).

Lemma 3.3 Let x̄ ∈ R
n . For each ε > 0, there exist constants c > 0 and α > 0 such

that

Ω(x) ⊂ Ω(x̄) + c‖x − x̄‖α
B for all x ∈ Bε(x̄).

Proof Define the function Γ : Rn × R
n → R by

Γ (x, y) := [ψ(x) − φ(x, y)]+ +
r∑

i=1

[gi (y)]+ +
s∑

j=1

|h j (y)|.

It is easy to check thatΓ is locally Lipschitz and semialgebraic. Furthermore, we have

Ω(x) = {y ∈ Ω : ψ(x) − φ(x, y) = 0}
= {y ∈ R

n : Γ (x, y) = 0}.

Let ε > 0. By Lemma 3.1, there exists a constant R > 0 such that Ω(x) ⊂ BR for
all x ∈ Bε(x̄). Since BR is a compact set, it follows from the classical Łojasiewicz
inequality (see Theorem 2.2) that there are constants c > 0 and α > 0 such that

c dist(y,Ω(x̄)) ≤ |Γ (x̄, y)|α for all y ∈ BR .
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On the other hand, since Γ is locally Lipschitz, it is globally Lipschitz on the compact
set Bε(x̄) × BR; in particular, there exists a constant L > 0 such that

|Γ (x, y) − Γ (x̄, y)| ≤ L‖x − x̄‖ for all (x, y) ∈ Bε(x̄) × BR .

Let x ∈ Bε(x̄), and take an arbitrary y ∈ Ω(x). Then, y ∈ BR and Γ (x, y) = 0.
Therefore,

c dist(y,Ω(x̄)) ≤ |Γ (x̄, y)|α = |Γ (x, y) − Γ (x̄, y)|α
≤ Lα‖x − x̄‖α.

This implies immediately the required statement. ��
The next three lemmas provide estimates for the Fréchet, limiting and Clarke subdif-
ferentials of the function ψ.

Lemma 3.4 Assume that (MFCQ) holds on Ω. Let x ∈ R
n . For each y ∈ Ω(x), it

holds that

∂̂(−ψ)(x) ⊂ {v : (v, 0) ∈ −∇φ(x, y) + {0} × N (Ω, y)} .

Proof It suffices to consider the case where the set ∂̂(−ψ)(x) is nonempty. Let y ∈
Ω(x). Take arbitrary v ∈ ∂̂(−ψ)(x) and ε > 0. By the definition of the Fréchet
subdifferential, there is a constant δ > 0 such that

−ψ(x ′) + ψ(x) − 〈v, x ′ − x〉 ≥ −ε‖x ′ − x‖ for all x ′ ∈ Bδ(x).

Then, for any (x ′, y′) ∈ Bδ(x) × Ω , we have

−φ(x ′, y′) − 〈v, x ′ − x〉 + ε‖x ′ − x‖ ≥ −ψ(x ′) − 〈v, x ′ − x〉 + ε‖x ′ − x‖
≥ −ψ(x) = −φ(x, y),

which yields that (x, y) is a minimizer of the (locally Lipschitz) function

Γ : Bδ(x) × Ω → R, (x ′, y′) �→ −φ(x ′, y′) − 〈v, x ′ − x〉 + ε‖x ′ − x‖.

By Lagrange’s multipliers theorem, then

(0, 0) ∈ ∂Γ (x, y) + {0} × N (Ω, y).

Applying the sum rule (see, for example, [24, Theorem 3.36]), we get

∂Γ (x, y) = −∇φ(x, y) − (v, 0) + ε(B × {0}).

Therefore,

(0, 0) ∈ −∇φ(x, y) − (v, 0) + ε(B × {0}) + {0} × N (Ω, y).
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Letting ε → 0 yields

(v, 0) ∈ −∇φ(x, y) + {0} × N (Ω, y),

which completes the proof. ��
Lemma 3.5 Assume that (MFCQ) holds on Ω. For all x ∈ R

n and all v ∈ ∂(−ψ)(x),

there exists y ∈ Ω(x) such that

v = −∇xφ(x, y) and ∇yφ(x, y) ∈ N (Ω, y),

where ∇xφ (resp., ∇yφ) is the derivative of φ with respect to x (resp., y).

Proof Observe that the function −ψ is locally Lipschitz, and so the set ∂(−ψ)(x) is
nonempty for all x ∈ R

n . Let v ∈ ∂(−ψ)(x). The definition of the limiting subdiffer-
ential gives us the existence of sequences {xk}k∈N ⊂ R

n and {vk}k∈N ⊂ ∂̂(−ψ)(xk)

with

lim
k→∞ xk = x and lim

k→∞ vk = v.

For each integer number k, take any yk ∈ Ω(xk). By Lemmas 3.1 and 3.3 (and by
choosing a subsequence, if necessary), wemay assume, without loss of generality, that
there exists y ∈ Ω(x) such that y = limk→∞ yk . On the other hand, by Lemma 3.4,
we have

(vk, 0) ∈ −∇φ(xk, yk) + {0} × N (Ω, yk).

Letting k tend to infinity, we get

(v, 0) ∈ −∇φ(x, y) + {0} × N (Ω, y),

and so the desired conclusion follows. ��
Lemma 3.6 Assume that (MFCQ) holds on Ω. For all x ∈ R

n, we have

∂◦ψ(x) ⊂ conv(∪y∈Ω(x){v : (v, 0) ∈ ∇φ(x, y) − {0} × N (Ω, y)}).

Proof Indeed, it follows from the definitions that

∂◦ψ(x) = −∂◦(−ψ)(x) = −conv(∂(−ψ)(x)).

This combined with Lemma 3.5 leads to the desired assertion. ��
Remark 3.1 It is well known that if Ω is convex then for each x , Ω(x) is singleton,
−∇xφ(x, y) (y ∈ Ω(x)) depends only on x and ψ would be differentiable (see,
for example, [8]). However, when the constraint set Ω is not convex, Ω(x) may not
be singleton, −∇xφ(x, y) may depend on the choice y ∈ Ω(x), and ψ may not
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be differentiable. For instance, let us consider the following polynomial variational
inequality VI(F,Ω) given by:

F(x) = x2, Ω = [−4,−2] ∪ [0, 1] ∪ [2,+∞). Take ρ = 1
2 .

φ(x, y) = x2(x − y) − 1

4
(y − x)2

= −1

4
y2 +
(
1

2
x − x2

)
y + x3 − 1

4
x2.

It is clear that ∇xφ(x, y) = ( 12 − 2x)y + 3x2 − 1
2 x .

By direct computation, we have

ψ(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x3 + 15
4 x2 − 2x − 4 if x ∈

(
−∞, 1−√

33
4

)
∪
(
1+√

33
4 ,+∞

)
x4 if x ∈

[
1−√

33
4 , 1−√

17
4

]
∪ [0, 1

2

] ∪ [ 1+√
17

4 , 1+√
33

4

]
x3 + 7

4 x2 − x − 1 if x ∈
(
1−√

17
4 ,− 1

2

)
∪
(
1, 1+√

17
4

)
x3 − 1

4 x2 if x ∈ (− 1
2 , 0
) ∪ ( 12 , 1].

For x = 1, we have

ψ(1) = sup
y∈Ω

φ(1, y) = sup
y∈Ω

{
−1

4
y2 − 1

2
y + 3

4

}
= 3

4
,

Ω(1) = {−2, 0}, and ∇xφ(1,−2) = 11
2 , ∇xφ(1, 0) = 5

2 .

Therefore, ∇xφ(1,−2) �= ∇xφ(1, 0); it means that ∇xφ(x, y) depend on y ∈
Ω(x). It is clear that ψ is not differentiable.

The following lemma is simple but useful.

Lemma 3.7 Assume that (MFCQ) holds on Ω. Let {xk}k∈N ⊂ Ω and {vk}k∈N ⊂
N (Ω, xk) be two bounded sequences such that

vk =
r∑

i=1

μk
i ∇gi (xk) +

s∑
j=1

κk
j ∇h j (xk),

0 = μk
i gi (xk), μk

i ≥ 0, for i = 1, . . . , r ,

for someμk := (μk
1, . . . , μ

k
r ) ∈ R

r andκk := (κk
1 , . . . , κk

s ) ∈ R
s .Then, the sequences

{μk}k∈N and {κk}k∈N are bounded.

Proof Arguing by contradiction, assume that

lim
k→∞ ‖(μk, κk)‖ = +∞.
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Passing to a subsequence if necessary we may assume that the following limits exist:

(μ̄, κ̄) := lim
k→∞

(μk, κk)

‖(μk, κk)‖ ∈ R
r × R

s,

x̄ := lim
k→∞ xk ∈ Ω.

Then, we have (μ̄, κ̄) �= (0, 0) and

0 =
r∑

i=1

μ̄i∇gi (x̄) +
s∑

j=1

κ̄ j∇h j (x̄),

0 = μ̄i gi (x̄), μ̄i ≥ 0, for i = 1, . . . , r .

Since (MFCQ) holds at x̄ ∈ Ω, the gradient vectors ∇h j (x̄), j = 1, . . . , s, are
linearly independent and there exists a vector v ∈ R

n such that 〈∇gi (x̄), v〉 < 0, i ∈
{i : gi (x̄) = 0} and 〈∇h j (x̄), v〉 = 0, j = 1, . . . , s. Therefore,

0 =
r∑

i=1

μ̄i 〈∇gi (x̄), v〉 +
s∑

j=1

κ̄ j 〈∇h j (x̄), v〉

=
r∑

i=1

μ̄i 〈∇gi (x̄), v〉.

Then, we deduce easily that (μ̄, κ̄) = (0, 0), which is a contradiction. ��

Clearly, we can write

N (Ω, x)

=
⎧⎨
⎩

r∑
i=1

μ2
i ∇gi (x) +

s∑
j=1

κ j ∇h j (x) : μ ∈ R
r , κ ∈ R

s , μi gi (x) = 0, i = 1, . . . , r

⎫⎬
⎭ .

Here, μ := (μ1, . . . , μr ) ∈ R
r and κ := (κ1, . . . , κs) ∈ R

s . For simplicity of
notation, we put

a := (y1, . . . , yn+1, μ1, . . . , μn+1, κ1, . . . , κn+1, λ) ∈ R
n(n+1) × R

r(n+1) × R
s(n+1) × R

n .

For each x ∈ R
n, let

A(x) :=
{

a : ∇yφ(x, yk) −
r∑

i=1

[μk
i ]2∇gi (yk) −

s∑
j=1

κk
j ∇h j (yk) = 0, k = 1, . . . , n + 1,

μk
i gi (yk) = 0, k = 1, . . . , n + 1, i = 1, . . . , r , y1, . . . , yn+1 ∈ Ω(x), λ ∈ P

}
,
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where we put

P :=
{

λ := (λ1, . . . , λn) ∈ R
n : λk ≥ 0 and

n∑
k=1

λk ≤ 1

}
.

The next two lemmas show the upper Hölder continuity of Lagrange multipliers.

Lemma 3.8 Let (MFCQ) hold on Ω. The following statements hold:

(i) For each x ∈ R
n, A(x) is a nonempty compact set.

(ii) Let x̄ ∈ R
n . For each ε > 0 there exist constants c > 0 and α > 0 such that

A(x) ⊂ A(x̄) + c‖x − x̄‖α
B for all x ∈ Bε(x̄).

Proof (i) The set A(x) is obviously closed and it is bounded because of Lemma 3.7.
Furthermore, by Lemma 3.6, it is not hard to see that A(x) is nonempty.

(ii) Take any ε > 0. Since (MFCQ) holds on Ω, we can find a constant R > 0 such
that A(x) ⊂ BR for all x ∈ Bε(x̄).

On the other hand, by definition, for each x ∈ R
n we have y ∈ Ω(x) if and only if

y ∈ Ω and ψ(x) = φ(x, y), or equivalently

gi (y) ≤ 0, i = 1, . . . , r , h j (y) = 0, j = 1, . . . , s, and ψ(x) = φ(x, y).

Therefore, we can write

A(x) = {a : Gi (x, a) ≤ 0, i = 1, . . . , r̃ , and Hj (x, a) = 0, j = 1, . . . , s̃}

for some locally Lipschitz and semialgebraic functions Gi and Hj . Let

Γ (x, a) :=
r̃∑

i=1

[Gi (x, a)]+ +
s̃∑

j=1

|Hj (x, a)|.

Then, Γ is a locally Lipschitz and semialgebraic function and A(x) = {a : Γ (x, a) =
0}. Since BR is a compact set, it follows from the classical Łojasiewicz inequality (see
Theorem 2.2) that there are constants c > 0 and α > 0 such that

c dist(a, A(x̄)) ≤ |Γ (x̄, a)|α for all a ∈ BR .

On the other hand, since Γ is locally Lipschitz, it is globally Lipschitz on the compact
set Bε(x̄) × BR; in particular, there exists a constant L > 0 such that

|Γ (x, a) − Γ (x̄, a)| ≤ L‖x − x̄‖ for all (x, a) ∈ Bε(x̄) × BR .
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Let x ∈ Bε(x̄) and take an arbitrary a ∈ A(x). Then A(x) ⊂ BR and Γ (x, a) = 0.
Therefore,

c dist(a, A(x̄)) ≤ |Γ (x̄, a)|α = |Γ (x, a) − Γ (x̄, a)|α
≤ Lα‖x − x̄‖α.

This implies immediately the required statement. ��
For simplicity of notation, we write b := (μ0

1, . . . , μ
0
r , κ

0
1 , . . . , κ0

s ) ∈ R
r × R

s . For
each x ∈ Ω and R > 0, let

BR(x) := {b : there exists v ∈ ∂◦ψ(x) such that

v +
r∑

i=1

[μ0
i ]2∇gi (x) +

s∑
j=1

κ0
j ∇h j (x) ∈ BR,

μ0
i gi (x) = 0, i = 1, . . . , r}.

Lemma 3.9 Let (MFCQ) hold on Ω and let x̄ ∈ Ω. For each ε > 0, there exist
constants R > 0, c > 0 and α > 0 such that for all x ∈ Ω ∩ Bε(x̄), the set BR(x) is
nonempty compact and satisfies

BR(x) ⊂ BR(x̄) + c‖x − x̄‖α
B.

Proof By Lemmas 3.1 and 3.2 , there exists a constant R > 0 such that for all x ∈
Bε(x̄),we have ∂◦ψ(x) is a nonempty compact subset ofBR; in particular, 0 ∈ BR(x).

Furthermore, in light of Lemma 3.7, it is easy to see that the set BR(x) is compact.
On the other hand, it follows from Lemma 3.2 and the Carathéodory theorem that

for each x ∈ R
n we have v ∈ ∂◦ψ(x) if and only if there are (λ1, . . . , λn) ∈ P and

y1, . . . , yn+1 ∈ Ω(x), which depend on x, such that

v =
n∑

k=1

λk∇xφ(x, yk) +
(
1 −

n∑
k=1

λk

)
∇xφ(x, yn+1).

Recall that y ∈ Ω(x) if and only if y ∈ Ω and ψ(x) = φ(x, y), or equivalently

gi (y) ≤ 0, i = 1, . . . , r , h j (y) = 0, j = 1, . . . , s, and ψ(x) = φ(x, y).

Therefore, by definition, we can write

BR(x) = {b : ∃z ∈ R
m, Gi (x, z, b) ≤ 0, i = 1, . . . , r̃ , and Hj (x, z, b)

= 0, j = 1, . . . , s̃}

for some locally Lipschitz and semialgebraic functionsGi and Hj . In particular, BR(x)

is the image of the set

C(x) = {(z, b) : Gi (x, z, b) ≤ 0, i = 1, . . . , r̃ , and Hj (x, z, b) = 0, j = 1, . . . , s̃}
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under the map R
m × R

r+s → R
r+s, (z, b) �→ b. As in the proof of Lemma 3.8(ii),

we can find constants c > 0 and α > 0 such that

C(x) ⊂ C(x̄) + c‖x − x̄‖α
B for all x ∈ Bε(x̄).

Take any b ∈ BR(x). Then, there exists z ∈ R
m such that (z, b) ∈ C(x). Therefore,

dist(b, BR(x̄)) ≤ dist((z, b), C(x̄)) ≤ c‖x − x̄‖α,

from which the desired conclusion follows. ��
We can now finish the proof of Theorem 3.1.

Proof of Theorem 3.1 Let x̄ ∈ Ω and fix a positive real number ε1.ByLemmas 3.1, 3.2,
and 3.9 , there exists a constant R > 0 such that for all x ∈ Bε1(x̄),we have ∂◦ψ(x) ⊂
BR and BR(x) is nonempty compact. In particular, it holds that

inf{‖w‖ : w ∈ ∂◦ψ(x) + N (Ω, x)} = inf{‖w‖ : w ∈ (∂◦ψ(x) + N (Ω, x)
) ∩ BR}.

Therefore, in order to prove the inequality (2), it suffices to consider vectors w ∈
∂◦ψ(x) + N (Ω, x) with ‖w‖ ≤ R.

Recall that we write

λ := (λ1, . . . , λn) ∈ R
n,

a := (y1, . . . , yn+1, μ1, . . . , μn+1, κ1, . . . , κn+1, λ) ∈ R
n(n+1) × R

r(n+1) × R
s(n+1) × R

n,

b := (μ0, κ0) ∈ R
r × R

s .

Define the function P by

P(x, a, b) :=
n∑

k=1

λk

⎡
⎣φ(x, yk) −

r∑
i=1

[μk
i ]2gi (yk) −

s∑
j=1

κk
j h j (yk)

⎤
⎦

+
(
1 −

n∑
k=1

λk

)⎡
⎣φ(x, yn+1) −

r∑
i=1

[μn+1
i ]2gi (yn+1) −

s∑
j=1

κn+1
j h j (yn+1)

⎤
⎦

+
r∑

i=1

[μ0
i ]2gi (x) +

s∑
j=1

κ0
j h j (x).

Then P is a polynomial in n(n + 3) + r(n + 2) + s(n + 2) variables of degree at
most d + 2. By Theorem 2.3, for each (ā, b̄), there exist constants c(ā, b̄) > 0 and
ε(ā, b̄) > 0 such that for all ‖(x, a, b) − (x̄, ā, b̄)‖ ≤ ε(ā, b̄),

‖∇ P(x, a, b)‖ ≥ c(ā, b̄)|P(x, a, b) − P(x̄, ā, b̄)|1−α,

where α := 1
R(n(n+3)+r(n+2)+s(n+2),d+2) .
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We have

A(x̄) × BR(x̄) ⊂
⋃{

(a, b) : ‖(a, b) − (ā, b̄)‖ <
ε(ā, b̄)

4

}
,

where the union is taken over all (ā, b̄) in A(x̄) × BR(x̄). By Lemmas 3.8 and 3.9 ,
A(x̄) × BR(x̄) is nonempty compact, and so there exist (āl , b̄l) ∈ A(x̄) × BR(x̄) for
l = 1, . . . , N , such that

A(x̄) × BR(x̄) ⊂
N⋃

l=1

{
(a, b) : ‖(a, b) − (āl , b̄l)‖ <

ε(āl , b̄l)

4

}
.

Let ε2 := minl=1,...,N ε(āl , b̄l) > 0 and c := minl=1,...,N c(āl , b̄l) > 0. By Lem-
mas 3.8 and 3.9 again, there exists a positive constant ε ≤ min{ε1, ε2

2 } such that for
all x ∈ Ω ∩ Bε(x̄),

dist((a, b), A(x̄) × BR(x̄)) ≤ ε2

4
for all (a, b) ∈ A(x) × BR(x).

Take any x ∈ Ω ∩ Bε(x̄) and any w ∈ ∂◦ψ(x) + N (Ω, x) with ‖w‖ ≤ R. It
follows from Lemma 3.6 and the Carathéodory theorem that there exist v ∈ ∂◦ψ(x)

and (a, b) ∈ A(x) × BR(x) satisfying the following conditions

w = v +
r∑

i=1

[μ0
i ]2∇gi (x) +

s∑
j=1

κ0
j ∇h j (x),

v =
n∑

k=1

λk∇xφ(x, yk) +
(
1 −

n∑
k=1

λk

)
∇xφ(x, yn+1)

0 = ∇yφ(x, yk) −
r∑

i=1

[μk
i ]2∇gi (yk) −

s∑
j=1

κk
j ∇h j (yk), k = 1, . . . , n + 1,

0 = μ0
i gi (x), i = 1, . . . , r ,

0 = μk
i gi (yk), k = 1, . . . , n + 1, i = 1, . . . , r ,

y1, . . . , yn+1 ∈ Ω(x), λ ∈ P.

A direct computation shows that

P(x, a, b) = ψ(x) and ∇ P(x, a, b) = (w, 0, 0).

On the other hand, since the set A(x̄) × BR(x̄) is nonempty compact, there is
(ā, b̄) ∈ A(x̄) × BR(x̄) such that

‖(a, b) − (ā, b̄)‖ = dist((a, b), A(x̄) × BR(x̄)).
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There exists an index l ∈ {1, . . . , N } such that

‖(ā, b̄) − (āl , b̄l)‖ <
ε(āl , b̄l)

4
.

We have

‖(a, b) − (āl , b̄l)‖ ≤ ‖(a, b) − (ā, b̄)‖ + ‖(ā, b̄) − (āl , b̄l)‖
= dist((a, b), A(x̄) × BR(x̄)) + ‖(ā, b̄) − (āl , b̄l)‖
≤ ε2

4
+ ε(āl , b̄l)

4
≤ ε(āl , b̄l)

2
.

This implies that

‖(x, a, b) − (x̄, āl , b̄l)‖ ≤ ‖x − x̄‖ + ‖(a, b) − āl , b̄l)‖
≤ ε + ε(āl , b̄l)

2
≤ ε2

2
+ ε(āl , b̄l)

2
≤ ε(āl , b̄l).

Note that P(x̄, āl , b̄l) = ψ(x̄). Therefore,

‖w‖ = ‖∇ P(x, a, b)‖ ≥ c(āl , b̄l)|P(x, a, b) − P(x̄, āl , b̄l)|1−α

= c(āl , b̄l)|ψ(x) − ψ(x̄)|1−α

≥ c|ψ(x) − ψ(x̄)|1−α,

which completes the proof. ��
Remark 3.2 When the constraint set Ω is convex, a close look at the proof of Theo-
rem 3.1 reveals that the exponent α in (2) can sharpen to α = 1

R(2n+2r+2s,d+2) . This is
due to the fact that in this caseΩ(x) is a singleton for all x ∈ R

n, and so we can reduce
variables in the set A(x) and the polynomial P. The details are left to the reader.

4 Error Bounds for the Regularized Gap Function

In this section, we establish an error bound result for the regularized gap function ψ

associated with the variational inequality (VI).
Note by definition that ψ is nonnegative on Ω. Assume that the set

{x ∈ Ω : ψ(x) = 0}

is nonempty.

Theorem 4.1 Let (MFCQ) hold on Ω. For any compact set K ⊂ R
n, there exists a

constant c > 0 satisfying the following error bound

c dist(x, [x ∈ Ω : ψ(x) = 0]) ≤ [ψ(x)]α for all x ∈ Ω ∩ K ,
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where α := 1
R(n(n+3)+r(n+2)+s(n+2),d+2) and the function R(·, ·) is defined in (1).

Proof (cf. [27, Theorem 1.1]). Define for notational convenience Z := {x ∈ Ω :
ψ(x) = 0}. By using standard compactness arguments, it suffices to show, for each
x̄ ∈ Ω, that there exist constants c(x̄) > 0 and ε(x̄) > 0 such that

c(x̄) dist(x,Z) ≤ [ψ(x)]α whenever x ∈ Ω ∩ Bε(x̄)(x̄).

Indeed, the statement is rather straightforward provided that x̄ /∈ Z (because of
ψ(x̄) > 0 and the function ψ is continuous). Let us consider the case x̄ ∈ Z, i.e.,
ψ(x̄) = 0. In view of Theorem 3.1, there are constants c > 0 and ε > 0 such that

inf{‖w‖ : w ∈ ∂◦ψ(x) + N (Ω, x)} ≥ c|ψ(x)|1−α for x ∈ Ω ∩ Bε(x̄).

We will show that

cα

4
dist(x,Z) ≤ [ψ(x)]α for x ∈ Ω ∩ B ε

2
(x̄).

Arguing by contradiction, suppose that there exists ȳ ∈ Ω ∩ B ε
2
(x̄) such that

cα

4
dist(ȳ,Z) > [ψ(ȳ)]α.

Then, ȳ /∈ Z and soψ(ȳ) > 0.Let us consider the continuous (semialgebraic) function

θ : Ω → R, x �→ [ψ(x)]α.

Clearly, the function θ is locally Lipschitz on {x ∈ Ω : ψ(x) > 0}. Furthermore, we
have

inf
x∈Ω∩Bε (x̄)

θ(x) = 0 < θ(ȳ) = [ψ(ȳ)]α <
cα

4
dist(ȳ,Z).

Thanks to the Ekeland variational principle [7], there exists a point z̄ ∈ Ω ∩ Bε(x̄)

such that

θ(z̄) ≤ θ(ȳ), ‖ȳ − z̄‖ <
dist(ȳ,Z)

2
,

and z̄ is a minimizer of the function

Ω ∩ Bε(x̄) → R, x �→ θ(x) + cα

2
‖x − z̄‖.

By construction, then

dist(z̄,Z) ≥ dist(ȳ,Z) − ‖ȳ − z̄‖ >
dist(ȳ,Z)

2
> 0,
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which implies that z̄ /∈ Z and ψ(z̄) > 0. Furthermore, we have

‖z̄ − x̄‖ ≤ ‖ȳ − z̄‖ + ‖ȳ − x̄‖
<

dist(ȳ,Z)

2
+ ‖ȳ − x̄‖

≤ ‖ȳ − x̄‖
2

+ ‖ȳ − x̄‖
≤ ε

4
+ ε

2
< ε,

and so z̄ is an interior point of the closed ball Bε(x̄).

We therefore deduce from Lagrange’s multipliers theorem that

0 ∈ ∂θ(z̄) + cα

2
B + N (Ω, z̄).

Note that

∂θ(z̄) = α[ψ(z̄)]α−1∂ψ(z̄).

Hence,

0 ∈ ∂ψ(z̄) + c

2
[ψ(z̄)]1−α

B + N (Ω, z̄)

⊂ ∂◦ψ(z̄) + c

2
[ψ(z̄)]1−α

B + N (Ω, z̄).

This implies that

inf{‖w‖ : w ∈ ∂◦ψ(z̄) + N (Ω, z̄)} ≤ c

2
[ψ(z̄)]1−α < c [ψ(z̄)]1−α,

which is a contradiction. ��

The following example indicates that in general the error bound result in Theo-
rem 4.1 cannot hold globally for all x ∈ R

n .

Example 4.1 Consider the variational inequality (VI) with data

F(x1, x2) := (x2 − 1, x1x2 − 1) and Ω := R
2.

Take any ρ > 0. Then, it is easily seen that

ψ(x) = 1

2ρ
‖F(x)‖2 = 1

2ρ

[
(x2 − 1)2 + (x1x2 − 1)2

]
,
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and so ψ−1(0) = {(1, 1)}. Consider the sequence xk := (k, 1
k ) for k ≥ 1. As k →

+∞, we have

ψ(xk) = 1

2ρ

(
1

k
− 1

)2
→ 1

2ρ
,

dist(xk, ψ−1(0)) =
√

(k − 1)2 +
(
1

k
− 1

)2
→ +∞.

It turns out that there cannot exist any positive scalars c and α such that

c dist(xk, ψ−1(0)) ≤ [ψ(xk)]α

for all k sufficiently large. Thus, a global error bound with the regularized gap function
ψ, even raised to any positive power, cannot hold in this case.

We now assume that Ω is convex and let SOL be the solution set of the variational
inequality (VI). In view of [8, Theorem 10.2.3], x ∈ SOL if and only if x ∈ Ω ∩
ψ−1(0). Finally, recalling Remark 3.2, the argument in the proof of Theorem 4.1
actually proves the following result.

Theorem 4.2 Let (MFCQ) hold on Ω. If the constraint set Ω is convex, then for any
compact set K ⊂ R

n there exists a constant c > 0 satisfying the following error
bound

c dist(x,SOL) ≤ [ψ(x)]α for all x ∈ Ω ∩ K ,

where α := 1
R(2n+2r+2s,d+2) and the function R(·, ·) is defined in (1).

Remark 4.1 As usual, the generality may exclude simple cases: the exponents in The-
orems 4.1 and 4.2 are not “sharp” because in the case F is strongly monotone and Ω

is closed convex, α = 1
R(2n+2r+2s,d+2) , while it is well known that (see [15,26,30–

32]) the exponent equals 1
2 in such a case. Thus, although our exponent estimate

works for the general case, it may not be tight in particular settings. This calls for
further improvements in the exponents obtained in the general polynomial variational
inequalities.

5 Conclusions

In this paper, we have established a nonsmooth extension of the Łojasiewicz gradient
inequality to the regularized gap function associated with a polynomial variational
inequality with exponent explicitly determined by the dimension of the underlying
space and the number/degree of the involved polynomials. Using this result, we have
obtained some error bounds for the regularized gap function with explicitly calculated
exponents. It should be noted that we do not require the monotonicity of the cost map
or the convexity of the constraint set.
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Nevertheless, many significant issues in these directions still need further inves-
tigation. Some of them are indicated in the text; see, e.g., Remark 4.1. It would be
also important to identify remarkable classes of variational inequalities for which the
general local and global error bounds can be sharpened.
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