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Well-posedness and regularity for solutions of caputo
stochastic fractional differential equations in Lp spaces

Phan Thi Huonga, P.E. Kloedenb, and Doan Thai Sonc

aLe Quy Don Technical University, Ha Noi, Viet Nam; bDepartment of Mathematics, Universit€at
T€ubingen, T€ubingen, Germany; cInstitute of Mathematics, Vietnam Academy of Science and Technology,
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ABSTRACT
In the first part of this paper, we establish the well-posedness for
solutions of Caputo stochastic fractional differential equations (for
short Caputo SFDE) of order a 2 1

2 , 1
� �

in Lp spaces with p � 2
whose coefficients satisfy a standard Lipschitz condition. More pre-
cisely, we first show a result on the existence and uniqueness of sol-
utions, next we show the continuous dependence of solutions on
the initial values and on the fractional exponent a. The second part
of this paper is devoted to studying the regularity in time for solu-
tions of Caputo SFDE. As a consequence, we obtain that a solution
of Caputo SFDE has a d-H€older continuous version for any d 2
0, a� 1

2

� �
: The main ingredient in the proof is to use a temporally

weighted norm and the Burkholder-Davis-Gundy inequality.

ARTICLE HISTORY
Received 1 December 2020
Accepted 22 September 2021

KEYWORD
Stochastic fractional
differential equations;
existence and uniqueness
of solutions; well-
posedness; regularity

1. Introduction

In this paper, we consider a Caputo stochastic fractional differential equation of order
a 2 1

2 , 1
� �

on the interval ½0,T� of the following form

CDa
0þXðtÞ ¼ bðt,XðtÞÞ þ rðt,XðtÞÞ dWt

dt
, (1)

where b : ½0,T� � R
d ! R

d, r : ½0,T� � R
d ! R

d are measurable and ðWtÞt2½0,1Þ is a
standard scalar Brownian motion on an underlying complete filtered probability
space ðX,F ,F :¼ ðF tÞt2½0,1Þ,PÞ:
The stochastic differential equations involving Caputo fractional time derivative oper-

ator as in (1) give good models to investigate the memory and hereditary properties of
various branches of physical and biological sciences more precisely (see [1–3]). The
main reason for this fact is that fractional derivatives provide an excellent instrument
for the description of memory and hereditary properties of various materials and proc-
esses. For more details we refer the reader to the monographs [2, 4, 5] and the referen-
ces therein.
According to the authors’ knowledge, the main achieved results for Equation (1) are

limited to problem of the existence and uniqueness of strong solutions [6–8] and mild
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solutions [9] in L2 spaces. A proof of coincidence of strong and mild solution of (1) in
L2 spaces under some natural assumptions on the coefficients has recently been proved
in [10]. An Euler-Maruyama type scheme for Caputo stochastic fractional differential
equations and the convergence rate of this scheme have been established in [11]. Very
recently, several results on well-posedness and continuity on fractional exponent a for
solutions of (1) in L2 spaces have been developed in [12]. However, the well-posedness
as well as the regularity of solutions of Equation (1) in Lp spaces with p � 2 were not
investigated systematically in any article. Thus, in this paper, we are trying to fill this
gap. Precisely, our first aim in this paper is to establish the well-posedness for the solu-
tions of Caputo stochastic fractional differential equations with generalized Lipschitz-
type coefficients driven by general multiplicative noise in Lp spaces. Secondly, we are
interested in the H€older continuity of the solutions for Equation (1) in Lp spaces.
The paper is organized as follows: In Section 2, we introduce briefly about Caputo

SFDE and state the main results of the paper. The first main result is about global exist-
ence and uniqueness of solutions (Theorem 1(i)), continuous dependence of solutions
on the initial values (Theorem 1(ii)) and on the fractional exponent (Theorem 1(iii)).
The second main result is about regularity in time of solutions (Theorem 2). The proof
of the first main result and the second main result are given in Sections 3 and 4,
respectively.

2. Preliminaries and main results

2.1. Caputo fractional stochastic differential equations and standing assumptions

For p � 2, t 2 ½0,1Þ, let Xp
t :¼ LpðX,F t ,PÞ denote the space of all F t-measurable, pth

integrable functions f ¼ ðf1, f2, :::, fdÞT : X ! R
d with

kf kp :¼
Xd
i¼1

EðjfijpÞ
 !1

p

:

A measurable process X : ½0,T� ! LpðX,F ,PÞ is said to be F-adapted if XðtÞ 2 Xp
t

for all t � 0: For each g 2 Xp
0, a F-adapted process X is called a solution of (1) with

the initial condition Xð0Þ ¼ g if Xð0Þ ¼ g and the following equality holds on Xp
t for

t 2 ð0,T�

XðtÞ ¼ gþ 1
CðaÞ

ðt
0
ðt � sÞa�1bðs,XðsÞÞ dsþ

ðt
0
ðt � sÞa�1rðs,XðsÞÞ dWs

 !
, (2)

where CðaÞ :¼
Ð1
0 sa�1 exp ð�sÞ ds is the Gamma function, see [7, p. 209].

2.2. Well-posedness and regularity of solutions

In this article, we assume that the coefficients b and r of (1) satisfy the follow-
ing conditions:

(H1) Global Lipschitz continuity in R
d of the drift and diffusion term: For all x, y 2

R
d, t 2 ½0,T�, there exists L > 0 such that
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jbðt, xÞ � bðt, yÞjp þ jrðt, xÞ � rðt, yÞjp � Ljx� yjp:

(H2) Essential boundedness in time for drift and diffusion term: rð�, 0Þ is essentially
bounded, i.e.

esssup
s2 0,T½ �

jbðs, 0Þjp < M, esssup
s2 0,T½ �

jrðs, 0Þjp < M:

Note that the contents of assumptions (H1) and (H2) are independent on the choice of
the norm on R

d: However, for a convenience in several estimates below, we equip R
d

with the p norm, i.e. for any vector x ¼ ðx1, :::, xdÞT 2 R
d, the p norm jxjp of x is

defined by jxjp :¼ ð
Pd

i¼1 jxij
pÞ

1
p:

The first main result in this article is the well-posedness of solutions of
Caputo SFDE.

Theorem 1. (Well-posedness of solutions of Caputo SFDE). Suppose that (H1) and (H2)
hold. Then the following statements hold:

i. Existence and uniqueness for solutions of Caputo SFDE: for any g 2 Xp
0, the ini-

tial value problem (1) with the initial condition Xð0Þ ¼ g has a unique solution
on ½0,T� denoted by uað�, gÞ:

ii. Continuous dependence on the initial values for solutions of Caputo SFDE: for
any f, g 2 Xp

0, the solution uað�, gÞ depends Lipschitz continuously on g, i.e. there
exists L1 > 0 such that

kuaðt, fÞ � uaðt, gÞkp � L1kf� gkp for all t 2 0,T½ �:

iii. Continuous dependence on the fractional exponent a for solutions of Caputo
SFDE: The solution uað�, gÞ depends continuously on a, i.e.

lim
â!a

esssup
t2 0,T½ �

kuaðt, gÞ � uâðt, gÞkp ¼ 0:

The second main result in this article is the regularity of solutions of Caputo SFDE.

Theorem 2. (The regularity of solutions). Suppose that (H1) and (H2) hold. Then, there
exists D> 0 depending on a, p, L,M,T such that

kuaðt, gÞ � uaðs, gÞkp � D jt � sja�
1
2, for all s, t 2 0,T½ �: (3)

Corollary 3. For all d 2 0, a� 1
2

� �
, there exists a modification Y of X with d-H€older con-

tinuous paths, i.e.

PðXt ¼ YtÞ ¼ 1 for all t 2 0,T½ �:

STOCHASTIC ANALYSIS AND APPLICATIONS 3



Proof. Thanks to (3) and using Kolmogorov test, see e.g. [13, Theorem, p. 51], X(t) has
an d-H€older continuous modification for any d 2 0, a� 1

2

� �
: w

3. Well-posedness of solutions

3.1. Existence and uniqueness of solutions

Our aim in this subsection is to prove the result on existence and uniqueness of solu-
tions to the Equation (1). For this purpose, let Hpð½0,T�Þ be the space of all the proc-
esses X which are measurable, FT-adapted, where FT :¼ ðF tÞt2½0,T� and satisfies that

kXk
H

p :¼ esssup
t2 0,T½ �

kXðtÞkp < 1:

Obviously, ðHpð½0,T�Þ, k � k
H

pÞ is a Banach space. For any g 2 X
p
0, we define an oper-

ator T g : H
pð½0,T�Þ ! H

pð½0,T�Þ by T gnð0Þ :¼ g and the following equality holds for
t 2 ð0,T�

T gnðtÞ :¼ gþ 1
CðaÞ

ðt
0
ðt � sÞa�1bðs, nðsÞÞ dsþ

ðt
0
ðt � sÞa�1rðs, nðsÞÞ dWs

 !
: (4)

The following lemma is devoted to show the well-defined property of this operator.
In the proof of this result and also several results below, we use the following elemen-
tary inequality

jx þ yjpp � 2p�1ðjxjpp þ jyjppÞ for all x, y 2 R
d: (5)

Lemma 4. For any g 2 Xp
0, the operator T g is well-defined.

Proof. Let n 2 H
pð½0,T�Þ be arbitrary. From the definition of T gn as in (11) and the

inequality (13), we have that for all t 2 ½0,T�

kT gnðtÞkpp � 2p�1kgkpp þ
22p�2

CpðaÞ

����
ðt
0
t � sð Þa�1b s, nðsÞð Þds

����
p

p

þ 22p�2

CpðaÞ

����
ðt
0
t � sð Þa�1r s, nðsÞð ÞdWs

����
p

p

:

(6)
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By the H€older inequality, we obtain that����
ðt
0
t � sð Þa�1b s, nðsÞð Þds

����
p

p

�
Xd
i¼1

E

ðt
0
t � sð Þa�1jbi s, nðsÞð Þjds

 !p

�
Xd
i¼1

E

ðt
0
t � sð Þ

ða�1Þp
p�1 ds

 !p�1 ðt
0
bi s, nðsÞð Þj jpds

0
@

1
A

� Tðap�1Þðp� 1Þp�1

ðap� 1Þp�1

ðt
0
kb s, nðsÞð Þkppds:

(7)

From ðH1Þ, we derive

jbðs, nðsÞÞjpp � 2p�1 jbðs, nðsÞÞ � bðs, 0Þjpp þ jbðs, 0Þjpp
� �

� 2p�1LpjnðsÞjpp þ 2p�1jbðs, 0Þjpp:

Therefore,ðt
0
kb s, nðsÞð Þkppds � 2p�1Lp esssup

s2 0,T½ �
jjnðsÞjjp

� �p
ðt
0
1dsþ 2p�1

ðt
0
jbðs, 0Þjpp ds

� 2p�1LpTjjnjjp
H

p þ 2p�1
ðT
0
jbðs, 0Þjpp ds

which together with (7) implies that����
ðt
0
t � sð Þa�1b s, nðsÞð Þds

����
p

p

� Tðap�1Þð2p� 2Þp�1

ðap� 1Þp�1 LpTknkp
H

p þ
ðT
0
jbðs, 0Þjpp ds

 !
: (8)

Now, using the Burkholder-Davis-Gundy and the H€older inequalities, we obtain����
ðt
0
t � sð Þa�1r s, nðsÞð ÞdWs

����
p

p

�
Xd
i¼1

E

				
ðt
0
ðt � sÞa�1riðs, nðsÞÞdWs

				
p

�
Xd
i¼1

CpE

				
ðt
0
ðt � sÞ2a�2

				riðs, nðsÞÞj2dsjp2

�
Xd
i¼1

CpE

ðt
0
ðt � sÞ2a�2jriðs, nðsÞÞjpds

ðt
0
ðt � sÞ2a�2ds

 !p�2
2

� Cp
T2a�1

2a� 1

� �p�2
2 ðt

0
t � sð Þ2a�2kr s, nðsÞð Þkppds,

where Cp ¼ ppþ1

2ðp�1Þp�1

� �p
2
: From (H1) and (H2), we also have

STOCHASTIC ANALYSIS AND APPLICATIONS 5



jrðs, nðsÞÞjpp � 2p�1LpjnðsÞjpp þ 2p�1jrðs, 0Þjpp � 2p�1LpjnðsÞjpp þ 2p�1Mp:

Therefore, for all t 2 ½0,T� we haveðt
0
t � sð Þ2a�2kr s, nðsÞð Þkppds

� 2p�1Lp
ðt
0
t � sð Þ2a�2 esssup

s2 0,T½ �
knðsÞkp

� �p
dsþ 2p�1Mp

ðt
0
t � sð Þ2a�2 ds

� 2p�1T2a�1

2a� 1
Lpknkp

Hp
þMp

� �
:

This together with (6), (8) and (H2) implies that kT gnkHp < 1: Hence, the map T g

is well-defined.

To prove existence and uniqueness of solutions, we will show that the operator T g

defined as above is contractive under a suitable weighted norm (cf. [14, Remark 2.1] for
the same method to prove the existence and uniqueness of solutions of stochastic differ-
ential equations). Here, the weight function is the Mittag-Leffler function E2a�1ð�Þ
defined as follows

E2a�1ðtÞ :¼
X1
k¼0

tk

Cðð2a� 1Þkþ 1Þ for all t 2 R:

For more details on the Mittag-Leffler functions we refer the reader to the book [2,
p. 16].
We are now in a position to prove Theorem 1(i).

Proof of Theorem 1 (i). Choose and fix a positive constant c such that

c > j2p�1Cð2a� 1Þ, (9)

where

j ¼ 2p�1Lp

CpðaÞ
ppþ1

2ðp� 1Þp�1

 !p
2 T2a�1

2a� 1

� �p�2
2

þ Tðp�2Þaþ1

ðp�2Þaþ1
p�1

� �p�1

0
B@

1
CA: (10)

On the space H
pð½0,T�Þ, we define a weighted norm k � kc as below

kXkc :¼ esssup
t2 0,T½ �

kXðtÞkpp
E2a�1ðct2a�1Þ

 !1
p

for all X 2 H
pð 0,T½ �Þ, (11)

Obviously, two norms k � k
H

p and k � kc are equivalent. Thus, ðHpð½0,T�Þ, k � kcÞ is
also a Banach space. Choose and fix g 2 Xp

0: By virtue of Lemma 4, the operator T g is
well-defined. Now, we will prove that the map T g is contractive with respect to the

norm k � kc: For this purpose, let n, n̂ 2 H
pð½0,T�Þ be arbitrary. From (4) and the

inequality (5), we derive the following inequality for all t 2 ½0,T� :

6 P. T. HUONG ET AL.



kT gnðtÞ � T gn̂ðtÞkpp �
2p�1

CpðaÞ

����
ðt
0
ðt � sÞa�1ðbðs, nðsÞÞ � bðs, n̂ðsÞÞÞds

����
p

p

þ 2p�1

CpðaÞ

����
ðt
0
ðt � sÞa�1ðrðs, nðsÞÞ � rðs, n̂ðsÞÞÞ dWs

����
p

p

:

Using the H€older inequality and ðH1Þ, we obtain����
ðt
0
ðt � sÞa�1ðbðs, nðsÞÞ � bðs, n̂ðsÞÞÞds

����
p

p

�
Xd
i¼1

E

ðt
0
ðt � sÞa�1jbiðs, nðsÞÞ � biðs, n̂ðsÞÞjds

 !p

�
Xd
i¼1

E

ðt
0
ðt � sÞ

ða�1Þðp�2Þ
p�1 ds

 !p�1 ðt
0
ðt � sÞ2a�2jbiðs, nðsÞÞ � biðs, n̂ðsÞÞjpds

 !0
@

1
A

� LpTðap�2aþ1Þðp� 1Þp�1

ðap� 2aþ 1Þp�1

ðt
0
ðt � sÞ2a�2knðsÞ � n̂ðsÞkppds:

On the other hand, by the Burkholder-Davis-Gundy inequality and ðH1Þ, we have����
ðt
0
ðt � sÞa�1ðrðs, nðsÞÞ � rðs, n̂ðsÞÞÞdWs

����
p

p

¼
Xd
i¼1

E

ðt
0
ðt � sÞa�1ðriðs, nðsÞÞ � riðs, n̂ðsÞÞÞdWs

				
				
p

�
Xd
i¼1

CpEj
ðt
0
ðt � sÞ2a�2jriðs, nðsÞÞ � ri s, n̂ðsÞ

� �
j2dsj

p
2

�
Xd
i¼1

CpE

ðt
0
ðt � sÞ2a�2jriðs, nðsÞÞ � ri s, n̂ðsÞ

� �
jpds

ðt
0
ðt � sÞ2a�2ds

 !p�2
2

� LpCp
T2a�1

2a� 1

� �p�2
2 ðt

0
ðt � sÞ2a�2knðsÞ � n̂ðsÞkppds:

Thus, for all t 2 ½0,T� we have

kT gnðtÞ � T gn̂ðtÞkpp

� j
ðt
0
ðt � sÞ2a�2knðsÞ � n̂ðsÞkppds,

where j is given as in (10). This estimate with the definition of k � kc as in (11) implies
that
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kT gnðtÞ � T gn̂ðtÞkpp
E2a�1ðct2a�1Þ

�
j
Ð t
0 ðt � sÞ2a�2 knðsÞ � n̂ðsÞkpp

E2a�1ðcs2a�1Þ E2a�1ðcs2a�1Þds

E2a�1ðct2a�1Þ

� j ess sup
s2 0,T½ �

knðsÞ � n̂ðsÞkpp
E2a�1ðcs2a�1Þ

 !1
p

0
@

1
A

p Ð t
0 ðt � sÞ2a�2E2a�1ðcs2a�1Þds

E2a�1ðct2a�1Þ

� jCð2a� 1Þ
c

kn� n̂kpc:

where in the final step, we used the inequality

c

C 2a� 1ð Þ

ðt
0
ðt � sÞ2a�2E2a�1ðcs2a�1Þds � E2a�1ðct2a�1Þ

see [6, Lemma 5]. Consequently,

kT gn� T gn̂kc �
jCð2a� 1Þ

c

� �1
p

kn� n̂kc:

By (9), we have jCð2a�1Þ
c < 1 and therefore the operator T g is a contractive map on

ðHpð½0,T�Þ, k � kcÞ: Using the Banach fixed point theorem, there exists a unique fixed
point of this map in H

pð½0,T�Þ: This fixed point is also the unique solution of (1) with
the initial condition Xð0Þ ¼ g: The proof of this theorem is complete. w

Remark 5. (i) Results about the existence and uniqueness of solutions of Caputo SFDE
in case p¼ 2 have been shown in [6].
(ii) In [8], the author considered the following form in Lp

XðtÞ ¼ Xð0Þ þ
ðt
0
ðt � sÞ�a1bðt, s,XðsÞÞ dsþ

ðt
0
ðt � sÞ�a2rðt, s,XðsÞÞ dWs, (12)

where Xð0Þ 2 R
d, r : Rþ � Rþ � R

d ! R
d � R

m, b : Rþ � Rþ � R
d ! R

d are Borel
measurable functions and a1 2 ð0, 1Þ, a2 2 0, 12

� �
: He obtained the existence and unique-

ness of solutions with non-Lipschitz coefficients in Lp with p > max 1
1�a1

, 2
1�2a2

� �
: In

this paper, we prove that the result still holds for all p> 2 and random initial condi-
tion Xð0Þ ¼ g 2 X

p
0:

3.2. The continuous dependence of the solutions on the initial values

Our next result is to evaluate the distance between two different solutions. As a conse-
quence, we obtain the Lipschitz continuity dependence of solutions on the initial values.

Proof of Theorem 1 (ii). Choose and fix f 2 X
p
0: Let g 2 X

p
0 arbitrarily. Since uað�, gÞ and

uað�, fÞ are solutions of (1) it follows that

8 P. T. HUONG ET AL.



uaðt, gÞ � uaðt, fÞ ¼ g� fþ 1
CðaÞ

ðt
0

bðs,uaðs, gÞÞ � bðs,uaðs, fÞÞ
ðt � sÞ1�a ds

þ 1
CðaÞ

ðt
0

rðs,uaðs, gÞÞ � rðs,uaðs, fÞÞ
ðt � sÞ1�a dWs:

Hence, using (5), the H€older and the Burkholder-Davis-Gundy inequalities and (H1)
(see proof of Theorem 1(i)), we obtain

jjuaðt, gÞ � uaðt, fÞjjpp � 2p�1j
ðt
0
ðt � sÞ2a�2jjuaðs, gÞ � uaðs, fÞjjpp ds

þ 2p�1jjg� fjjpp:

Applying the Gronwall inequality for fractional differential equations, see [15, Lemma
7.1.1] or [16, Corollary 2], we arrive at

kuaðt, gÞ � uaðt, fÞkpp � 2p�1 E2a�1 2p�1jCð2a� 1Þt2a�1
� �

kg� fkpp:

Hence,

lim
g!f

kuaðt, gÞ � uaðt, fÞkp ¼ 0:

The proof is complete. w

Remark 6. A result about the continuity dependence of solutions of SFDE on the ini-
tial values in case p¼ 2 has been shown in [6].

3.3. The continuous dependence of the solutions on the fractional exponent a

In this part, we shall prove the continuous dependence on a of the solution.

Proof of Theorem 1 (iii). Let a, â 2 1
2 , 1
� �

be arbitrarily but fixed. Choose and fix g 2
X
p
0: Since uað�, gÞ and uâð�, gÞ are solutions of (1) it follows that

uaðt, gÞ � uâðt, gÞ

¼ 1
CðaÞ

ðt
0
ðt � sÞa�1ðbðs,uaðs, gÞÞ � bðs,uâðs, gÞÞÞ ds

þ
ðt
0

�
ðt � sÞa�1

CðaÞ � ðt � sÞâ�1

CðâÞ

�
bðs,uâðs, gÞÞ ds

þ 1
CðaÞ

ðt
0
ðt � sÞa�1ðrðs,uaðs, gÞÞ � rðs,uâðs, gÞÞÞ dWs

þ
ðt
0

�
ðt � sÞa�1

CðaÞ � ðt � sÞâ�1

CðâÞ

�
rðs,uâðs, gÞÞ dWs:

Using the inequality (5), the H€older and the Burkholder-Davis-Gundy inequalities
and (H1) (see proof of Theorem 1(i)), we obtain
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kuaðt, gÞ � uâðt, gÞkpp

� 2p�1j
ðt
0
ðt � sÞ2a�2kuaðs, gÞ � uâðs, gÞkpp ds

þ 22p�2

����
ðt
0

�
ðt � sÞa�1

CðaÞ � ðt � sÞâ�1

CðâÞ

�
bðs,uâðs, gÞÞ ds

����
p

p

þ 22p�2

����
ðt
0

�
ðt � sÞa�1

CðaÞ � ðt � sÞâ�1

CðâÞ

�
rðs,uâðs, gÞÞ dWs

����
p

p

:

Now, let

gðt, s, a, âÞ :¼
				 ðt � sÞa�1

CðaÞ � ðt � sÞâ�1

CðâÞ

				:
Applying the H€older inequality, (5), (H1) and (H2), we obtain that����

ðt
0

�
ðt � sÞa�1

CðaÞ � ðt � sÞâ�1

CðâÞ

�
bðs,uâðs, gÞÞ ds

����
p

p

�
Xd
i¼1

E

ðt
0
gðt, s, a, âÞjbiðs,uâðs, gÞÞjds

 !p

�
Xd
i¼1

E

ðt
0
ðgðt, s, a, âÞÞ

p
p�1ds

 !p�1 ðt
0
jbiðs,uâðs, gÞÞjp ds

0
@

1
A

�
ðt
0
ðgðt, s, a, âÞÞ2ds

 !p
2 ðt

0
1 ds

 !p�2
2 ðt

0
kbðs,uâðs, gÞÞkpp ds

�
ðt
0
ðgðt, s, a, âÞÞ2ds

 !p
2

T
p�2
2

ðt
0
2p�1 Lpkuâðs, gÞkpp þ kbðs, 0Þkpp

� �
ds

�
ðt
0
ðgðt, s, a, âÞÞ2ds

 !p
2

T
p
2 2p�1ðLp esssup

s2 0,T½ �
kuâðs, gÞkpp þMpÞ:

On the other hand, using the Burkholder-Davis-Gundy inequality, (H1) and (H2), we
have
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����
ðt
0

�
ðt � sÞa�1

CðaÞ � ðt � sÞâ�1

CðâÞ

�
rðs,uâðs, gÞÞ dWs

����
p

p

�
Xd
i¼1

E

ðt
0
gðt, s, a, âÞjriðs,uâðs, gÞÞj dWs

				
				
p

�
Xd
i¼1

Cp E

ðt
0
ðgðt, s, a, âÞÞ2jriðs,uâðs, gÞÞj2 ds

				
				
p
2

�
Xd
i¼1

Cp E

�ðt
0
ðgðt, s, a, âÞÞ2jriðs,uâðs, gÞÞjp ds

�2
p
�ðt

0
ðgðt, s, a, âÞÞ2 ds

�p�2
p

" #p
2

¼ Cp

ðt
0
ðgðt, s, a, âÞÞ2krðs,uâðs, gÞÞkpp ds

�ðt
0
ðgðt, s, a, âÞÞ2 ds

�p�2
2

� Cp

ðt
0
ðgðt, s, a, âÞÞ2 ds

 !p
2

2p�1ðLp esssup
s2 0,T½ �

kuâðs, gÞkpp þMpÞ:

Combining the above calculations and by the definition of k � kc yields the estimate

kuaðt, gÞ � uâðt, gÞkpp
E2a�1ðct2a�1Þ

�
j2p�1

Ð t
0 ðt � sÞ2a�2 kuaðs, gÞ � uâðs, gÞkpp

E2a�1ðcs2a�1Þ E2a�1ðcs2a�1Þds

E2a�1ðct2a�1Þ

þ 23p�3ðLp esssup
s2 0,T½ �

kuâðs, gÞkpp þMpÞ
ðt
0
ðgðt, s, a, âÞÞ2ds

 !p
2

T
p
2

þ 23p�3ðLp esssup
s2 0,T½ �

kuâðs, gÞkpp þMpÞCp

ðt
0
ðgðt, s, a, âÞÞ2 ds

 !p
2

� j2p�1Cð2a� 1Þ
c

kuað�, gÞ � uâð�, gÞkpc

þ 23p�3ðLp esssup
s2 0,T½ �

kuâðs, gÞkpp þMpÞ
ðt
0
ðgðt, s, a, âÞÞ2ds

 !p
2

T
p
2

þ 23p�3ðLp esssup
s2 0,T½ �

kuâðs, gÞkpp þMpÞCp

ðt
0
ðgðt, s, a, âÞÞ2 ds

 !p
2

,

where in the finall step, we have used Lemma 5 in [6]. Thus, we have
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�
1� j2p�1Cð2a� 1Þ

c

�
kuað�, gÞ � uâð�, gÞkpc

� 23p�3ðLp esssup
s2 0,T½ �

kuâðs, gÞkpp þMpÞ
ðt
0
ðgðt, s, a, âÞÞ2ds

 !p
2

T
p
2

þ 23p�3ðLp esssup
s2 0,T½ �

kuâðs, gÞkpp þMpÞCp

ðt
0
ðgðt, s, a, âÞÞ2 ds

 !p
2

:

By (9) and p � 2, therefore to complete the proof it is sufficient to show that

lim
â!a

sup
t2 0,T½ �

ðt
0
ðgðt, s, a, âÞÞ2 ds ¼ 0:

Indeed, we have

ðt
0
ðgðt, s, a, âÞÞ2 ds ¼

ðt
0

ðt � sÞ2a�2

C2ðaÞ
dsþ

ðt
0

ðt � sÞ2â�2

C2ðâÞ
ds� 2

ðt
0

ðt � sÞaþâ�2

CðaÞCðâÞ ds

¼ t2a�1

ð2a� 1ÞC2ðaÞ
þ t2â�1

ð2â � 1ÞC2ðâÞ
� 2taþâ�1

ðaþ â � 1ÞCðaÞCðâÞ :

Thus, we conclude that

lim
â!a

sup
t2 0,T½ �

ðt
0
ðgðt, s, a, âÞÞ2 ds ¼ 0:

The proof is complete. w

Remark 7. To prove Theorem 1(i) and Theorem 1(ii), we only require the assumption
(H1) and the following assumption (weaker than (H2)):

(H3) Lp-integrable in time for drift term and essential boundedness in time for diffu-
sion term:

ðT
0
jbðs, 0Þjpp ds < 1, esssup

s2 0,T½ �
jrðs, 0Þjp < M:

4. Regularity of solutions

This section is devoted to proving the regularity of solutions to Caputo SFDE.

Proof of Theorem 2. Choose and fix t, s 2 ½0,T� with t> s.
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Using (5), we derive that

CpðaÞ
22p�2 kuaðt, gÞ � uaðs, gÞkpp

�
����
ðt
s

bðs,uaðs, gÞÞ
ðt � sÞ1�a ds

����
p

p

þ
����
ðt
s

rðs,uaðs, gÞÞ
ðt � sÞ1�a dWs

����
p

p

þ
����
ðs
0

				 1

ðt � sÞ1�a �
1

ðs� sÞ1�a

				bðs,uaðs, gÞÞ ds
����
p

p

þ
����
ðs
0

				 1

ðt � sÞ1�a �
1

ðs� sÞ1�a

				rðs,uaðs, gÞÞ dWs

����
p

p

:

Now, applying the H€older and the Burkholder-Davis-Gundy inequalities, we arrive at

CpðaÞ
22p�2 kuaðt, gÞ � uaðs, gÞkpp

� ðt � sÞap�1ðp� 1Þp�1

ðap� 1Þp�1

ðt
s
kbðs,uaðs, gÞÞkppds

þ Cp

ðt
s

krðs,uaðs, gÞÞkpp
ðt � sÞ2�2a ds

ðt
s

1

ðt � sÞ2�2a ds

 !p�2
2

þ T
p�2
2

ðs
0
kbðs,uaðs, gÞÞkpp ds

ðs
0

				 1

ðt � sÞ1�a �
1

ðs� sÞ1�a

				
2

ds

 !p
2

þ Cp

ðs
0

�
1

ðt � sÞ1�a �
1

ðs� sÞ1�a

�2

krðs,uaðs, gÞÞkpp ds

�
ðs
0

1

ðt � sÞ1�a �
1

ðs� sÞ1�a

� �2

ds

" #p�2
2

:

On the other hand, since uað�, gÞ 2 H
pð½0,T�Þ, there exists M1 > 0 such that

ess supt2½0;T� kuaðt, gÞkpp � M1: This together with (H1) and (H2) implies that

kbðs,uaðs, gÞÞkpp � 2p�1ðLpkuaðs, gÞkpp þ kbðs, 0ÞkppÞ � 2p�1ðLpM1 þMpÞ,
krðs,uaðs, gÞÞkpp � 2p�1ðLpkuaðs, gÞkpp þ krðs, 0ÞkppÞ � 2p�1ðLpM1 þMpÞ:

Moreover, we haveðs
0

�
1

ðt � sÞ1�a �
1

ðs� sÞ1�a

�2

ds �
ðs
0

1

ðs� sÞ2�2a �
1

ðt � sÞ2�2a

� �
ds

¼ s2a�1 � t2a�1

2a� 1
þ ðt � sÞ2a�1

2a� 1

� ðt � sÞ2a�1

2a� 1
:
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Combining the above calculations yields the following estimate

CpðaÞ
22p�2 kuaðt, gÞ � uaðs, gÞkpp

� ð2p� 2Þp�1ðLpM1 þMpÞT
p
2

ðap� 1Þp�1 ðt � sÞ
ð2a�1Þp

2 þ
Cp2p�1ðLpM1 þMpÞ

ð2a� 1Þ
p
2

ðt � sÞ
ð2a�1Þp

2

þ 2p�1ðTÞ
p
2ðLpM1 þMpÞ

ð2a� 1Þ
p
2

ðt � sÞ
ð2a�1Þp

2 þ
Cp2p�1ðLpM1 þMpÞ

ð2a� 1Þ
p
2

ðt � sÞ
ð2a�1Þp

2 :

Thus, we have

kuaðt, gÞ � uaðs, gÞkp � D ðt � sÞa�
1
2,

where

Dp :¼ 22p�2

CpðaÞ
ð2p� 2Þp�1ðLpM1 þMpÞT

p
2

ðap� 1Þp�1 þ
Cp2p�1ðLpM1 þMpÞ

ð2a� 1Þ
p
2

 !

þ 22p�2

CpðaÞ
2p�1ðTÞ

p
2ðLpM1 þMpÞ

ð2a� 1Þ
p
2

þ
Cp2p�1ðLpM1 þMpÞ

ð2a� 1Þ
p
2

0
@

1
A,

which together the fact that a 2 1
2 , 1
� �

and p � 2 implies that

lim
s!t

kuaðt, gÞ � uaðs, gÞkp ¼ 0:

The proof is complete. w

Remark 8. When p¼ 2, then result of Theorem 2 coincides with the result in [17] in
the special case that bðt,XðtÞÞ :¼ AXðtÞ þ gðtÞ and rðt,XðtÞÞ :¼ f ðtÞ:
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