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Abstract. The pulse with intra-pulse modulation plays
an important role in the design of radar systems. The
first class of the signals type is the linear frequency
modulation technique. The linear frequency modula-
tion is used to resolve range resolution problems. This
paper provides a new algorithm for detecting linear fre-
quency modulation signals at a low signal-to-noise ra-
tio. The core idea of the proposed method is firstly
to analyse the linear frequency modulation signals via
Fast Fourier Transform; and then to accumulate all en-
ergy to achieve signal detection using cross-correlation
methods. The proposed algorithm showed better results
in comparison with current algorithms, which are used
to estimate the parameters of the linear frequency mod-
ulation signals at a low signal-to-noise ratio.
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1. Introduction

Intentional intra-pulse phase or frequency modulation
is quite common in modern radar. Perhaps, most

radars of recent design use such modulation for com-
pression purposes. The most often used modulations
are Linear Frequency Modulation (LFM) and binary
phase reversals, sometimes in the form of Barker Code
[1] and [2]. For the Low Probability of Intercept radar
(LPI), it is important to recognise and estimate the
parameters of the LFM signals fast and precisely.

Many methods are used to detect and analyse LFM
signals, such as Radon-Wigner Transformation and
Radon-Ambiguity Transformation [3]. These methods
can give an accurate estimate of the LFM parameters,
but the amount of computation is quite large since it re-
quires a two-dimensional search. Other methods could
be also used to detect and estimate the parameters of
LFM signals, which are based on smoothed instanta-
neous energy such as using the Hamming, Rectangular,
Hanning and Blackman window functions. To achieve
up to 100 percent probability of correct parameters es-
timation, the value of SNR ≥ −4 dB [4] is required.
In [5], the maximum likelihood method has the best
estimation performance, but involves extensive calcu-
lation due to the two-dimensional search. Moreover,
it may converge to the local extreme. In [6], the de-
chirp parameter estimation method needs less calcu-
lation, but its estimation accuracy and resolution are
low, and its anti-jamming ability is insufficient. The
other method used for detection and parameter estima-
tion of LFM signals was proposed in [7]. This method
is based on Deep Convolutional Neural Network, where

222 © 2021 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING

https://orcid.org/0000-0002-8452-5044
https://orcid.org/0000-0002-2867-1354
https://orcid.org/0000-0002-4613-3453
https://orcid.org/0000-0002-5837-9557
https://orcid.org/0000-0003-2149-6378
https://creativecommons.org/licenses/by/4.0/


INFORMATION AND COMMUNICATION TECHNOLOGIES AND SERVICES VOLUME: 19 | NUMBER: 3 | 2021 | SEPTEMBER

the required value of SNR to obtain the perfect proba-
bility of correct parameter estimation is SNR ≥ −6 dB.
In [8], the Time Reversal and Fractional Fourier Trans-
form (TR-FrFT) method is extremely accurate for de-
tecting and estimating the parameters of the LFM sig-
nal. The lowest value of SNR to achieve up to 90 %
probability of detection is SNR ≥ −15 dB.

Although these methods can effectively be used to
detect and estimate the parameters of LFM signals,
they still require extensive searching, which signifi-
cantly reduces the estimation speed. To deal with the
above-mentioned disadvantages, this paper proposes
a new algorithm to obtain a fast and accurate param-
eter estimation of the LFM signal in low SNR. The
main idea of this algorithm is employed in a cross-
correlation function between two signals to find the
LFM signals at the lower SNR. The paper focuses only
on detecting LFM signal in mixture signals and noise
at SNR ≤ −15 dB. Firstly, the reference LFM signals
are generated in a wide frequency bandwidth. Then,
the cross-correlation function is calculated between an
unknown and reference LFM signal via Fast Fourier
Transform (FFT). Finally, the peak value of the cross-
correlation function is found to detect and estimate the
parameters of the unknown LFM signal and compute
the accuracy of this method.

A theoretical description of the LFM waveform is
presented in Sec. 2. In Sec. 3. , the algorithm
steps are proposed for estimating the LFM parame-
ters. In Sec. 4. , the simulation results are presented
- test results with different levels of SNR and different
chirp rates of the LFM signals to determine the min-
imum value of SNR at which the method is still able
to detect LFM signals and estimate their parameters.
And finally, in Sec. 5. , the main conclusions are
drawn from the summarised simulation results.

2. Theoretical Description of
LFM Signal

Frequency or phase modulated signals can be used to
achieve much wider operating bandwidths. The LFM
is commonly used where the frequency is swept linearly
across the pulse either upward (up-chirp) or downward
(down-chirp). The matched filter bandwidth is propor-
tional to the sweep bandwidth and independent of the
pulse width. Figure 1 shows a typical example of an
LFM signal. The pulse width is τ and the bandwidth
is B. The LFM up-chirp instantaneous phase can be
expressed by the following equation [2]:

ψ(t) = 2π
(
f0t+

µ

2
t2
)
, −τ

2
≤ t ≤ τ

2
, (1)

where f0 is centre frequency of LFM signal and
µ = 2πB

τ is the LFM coefficient. Thus, the instan-

taneous frequency is defined as follows:

f(t) =
1

2π

d

dt
ψ(t) = f0 + µt, −τ

2
≤ t ≤ τ

2
. (2)

Similarly, the down-chirp instantaneous phase and fre-
quency are given respectively by:

ψ(t) = 2π
(
f0t−

µ

2
t2
)
, −τ

2
≤ t ≤ τ

2
, (3)

f(t) =
1

2π

d

dt
ψ(t) = f0 − µt, −τ
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2
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Fig. 1: Time-frequency characteristics and amplitude spectrum
of chirp-up LFM signal.

A typical LFM signal can be expressed by a omplex
nation as follows:

s1(t) = rect

(
1

τ

)
exp

(
j2π

(
f0t+

µ

2
t2
))

, (5)

where rect
(
1
τ

)
denotes a rectangular pulse of width.

Then, Eq. (5) can be written as follows:

s1(t) = exp (j2πf0t) s(t), (6)

where s(t) is the complex envelop function of s1(t) and
defined by the following equation:

s(t) = rect

(
1

τ

)
exp

(
j
µ

2
t2
)
. (7)

The spectrum of signal s1(t) is determined from its
complex envelope s(t). The complex exponential term
in Eq. (6) introduces a frequency shift around the value
of the centre frequency f0. Taking the FFT of s(t)
yields, we get:

S(ω) =

τ/2∫
−τ/2

exp

(
j2πµt2

2

)
e−jωtdt. (8)

The time-frequency characteristic and spectrum of
the typical chirp-rate LFM signal are shown in Fig. 1.
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3. Proposed Method

In signal processing [3], the cross-correlation function
is a measure of similarity of two series as a function
of displacement of one relative to other. This method
is applied in pattern recognition, single particle anal-
ysis. Thus, the cross-correlation function between two
signals x(t) and g(t) is expressed by the equation:

Rxg(t) =

∞∫
−∞

x∗(τ)g(t+ τ)dτ, (9)

where Rxg(t) is the cross-correlation function between
two signals, x∗(τ) is the complex conjugate of x(t),
g(t + τ) is the second signal at t + τ and τ is the de-
lay time. The cross-correlation function measures the
similarity between two signals. Both, the peak value
of Rxg(τ) and the distribution around this peak are an
indication of how good this similarity is. The cross-
correlation function can be computed via FFT as fol-
lows:

Rxg(t) = F−1 {X∗(ω)G(ω)} , (10)

where X(ω) and G(ω) are the spectra of the signals
x(t) and g(t), X∗(ω) is the complex conjugate of X(ω)
and F−1 is the inverse FFT. When x(t) = g(t), we get
the autocorrelation of the signal, which is defined by
the equation:

Rx(t) =

∞∫
−∞

x∗(τ)x(t+ τ)dτ, (11)

where Rx(t) is the auto-correlation function of signal
x(t), x∗(τ) is the complex conjugate of x(t) at τ , and
x(t+τ) is the signal x(t) at t+τ . In an auto-correlation,
which is the cross-correlation between the signal and
itself, there will always be a peak at the lag of zero
and its value will be the signal energy.

In Fig. 2(a) and Fig. 2(b), the results of the cross-
correlation functions between two signals with the
same pulse width at different levels of SNR are shown.
The blue line is the Auto-Correlation Function (ACF)
and the red line is the Cross-Correlation Function
(CCF) between two signals that have different chirp
rates (i.e. frequencies). The simulated results suggest
that when two signals have the same frequency, their
CCFs have the highest value at the center of the pulse.
Figure 2(c) and Fig. 2(d) show the results of the CCF
between two signals at different levels of SNR, which
have the same frequency and different pulse widths.
The simulated results confirmed that when two sig-
nals have the same pulse width τ , their CCF have
their highest value at t = 0 s. From these results,
we propose a new algorithm to detect and estimate
the parameters of the LFM signal based on the theory
of the cross-correlation functions between two signals.

The algorithm divides into two estimators. The first
one is used for detecting and measuring the chirp rate
µ and the center of pulse width tc of the LFM signal.
The second one is used for estimating the pulse width
τ and the Time Of Arrival (TOA) of the LFM signal.
The basic idea behind the algorithm procedure is writ-
ten below and the simulation parameters are given in
Tab. 1.

• Step 1 : Generating reference LFM signals s(t) on
wide frequency bandwidth B and the same pulse
width τ . The reference LFM signal is expressed
by the equation:

s(t) = [s1(t), s2(t), s3(t), . . . , sn−1(t), sn(t)] ,
(12)

where n is the number of LFM signals.

• Step 2 : Calculating spectrum Su(ω) and S(ω) of
the unknown su(t) and reference LFM signal s(t).

• Step 3 : Calculating cross-correlation function be-
tween the unknown and reference signals via FFT
using Eq. (11).

• Step 4 : Finding out the peak value of the cross-
correlation function to detect and estimate chirp-
rate µ and center of pulse width tc of the unknown
LFM signals.

• Step 5 : Generating new reference LFM signals
sn(t) at known chirp-rate with an expanding pulse
width around tc, which are calculated in step 4.

• Step 6 : Calculating FFT of sn(t). Then calculat-
ing CCF between unknown su(t) and sn(t).

• Step 7 : Finding out the peak value of the CCF to
estimate pulse width τ of su(t). Finally, calculat-
ing TOA of su(t).

Figure 3 shows a plot of the time-frequency charac-
teristics of the unknown (red line) and reference LFM
signals (blue line). In order to estimate the chirp-rate µ
of the unknown LFM signal, it is only necessary to de-
termine the index of reference signal, which has a max-
imum value of CCF with the unknown LFM signal.
The same case with estimating tc it is needed to deter-
mine the maximum value of CCF in the time domain.

The CCF of the unknown and first reference LFM
signals is shown in Fig. 4(a). The maximum value of
CCF versus the index (i.e., the chirp-rates of reference
LFM signals) are shown in Fig. 4(b). It shows that
the highest value of the CCF is R(t) = 36.61 dB at
chirp-rate µ = 6 GHz·s−1. It means that the unknown
LFM signal is close to a reference signal which have the
chirp-rate µ = 6 GHz·s−1. In Fig. 4(c) it seen that the
maximum of CCF is at time t = 300 µs. It means that
the center of pulse with of the unknown LFM signal is
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Fig. 2: CCF of between two signals at different levels of SNR: (a) SNR = 0 (dB), (b) SNR = −10 (dB) with different chirp-rate,
(c) SNR = 0 (dB), (d) SNR = −10 (dB) with different pulse widths.

Tab. 1: Simulation parameters.

Parameters Value

Unknown
LFM signal

SNR (dB) −10
Pulse width τ (µs) 200

Time Of Arrival TOA (µs) 200

Chirp-rate µ (MHz·s−1) 6000
First

reference
LFM signals

Pulse width τ (µs) 300

Chirp-rate µ (MHz·s−1) 1000÷ 12,000
Number of the LFM signals n 100

Second
reference

LFM signals

Pulse width τ (µs) 0÷ 600

Chirp-rate µ (MHz·s−1) 6000
Number of the LFM signals n 100

tc = 300 µs. In other words, the chirp-rate µ and cen-
ter of pulse width tc of the unknown LFM signal was
estimated by using the first estimator (µ = 6 GHz·s−1,
tc = 300 µs). The next step of this paper is to generate
a new reference LFM signals at the estimated chirp-

rate with expanding pulse width around tc = 300 µs
then to calculate the new CCF between the unknown
and these reference signals. As was the case above
with estimating chirp-rate µ and tc of the unknown
LFM signal, only the index of reference signal needs to
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Tab. 2: Estimated parameters of LFM signal at SNR = −10 dB by running the system for 200 loops.

Parameters Simulation values Estimated values Relative error (%) RMSE (-)
µ (MHz·s−1) 6000 6011.52 0.368 0.022

τ (µs) 200 200.364 0.149 0.448
tc (µs) 300 299.818 0.061 0.382

TOA (µs) 200 199.636 0.182 0.588
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Fig. 3: Time-frequency characteristics of the unknown and ref-
erence LFM signals.

be determined with the highest value of CCF with the
unknown signal. The CCF between the unknown and
second reference signals in 3D as shown in Fig. 5(a).
Figure 5(b) shows the peak values of the CCF ver-
sus the index (i.e., pulse widths of reference LFM sig-
nals). It shows that the maximum value of CCF is
R(t) = 35.73 dB at the pulse width τ = 198 µs. From
these estimated parameters, the TOA is calculated by
the equation:

TOA = tc −
τ

2
= 300− 198

2
= 201 µs. (13)

The estimated parameters of the unknown LFM sig-
nal at SNR = −10 dB is given in Tab. 2. According to
the simulated results, a new method was proposed for
detecting and estimating the parameters of the LFM
signal in low SNR. In the next section of this paper, the
effect of this method needs to be examined with differ-
ent levels of SNR, different LFM signals in comparison
with current methods. In addition, the minimum value
of SNR should be determined at which this method is
suitable to obtain the perfect probability of correct pa-
rameter estimation (Pce ≥ 90 %) on signal analysis.

4. Simulation Results

In the previous, the theoretical description of the pro-
posed method was explained. In this section, the pro-

posed method is evaluated with different simulation pa-
rameters by using the program MATLAB. In order to
verify the performance of this method, Monte Carlo
simulation is performed for all tests of LFM signals by
running the system for 500 loops for an SNR range from
−26 dB to 0 dB and the probability of correct estima-
tion Pce at the end of 500 loops. All tests are performed
on the condition that the chirp-rate and pulse width of
the unknown LFM signal is within the observed chirp-
rate and pulse width range of reference LFM signals.

The first simulation determines the required value
of SNR at which the first estimator is still suitable for
detecting the LFM signal, i.e., for estimating its chirp-
rate µ. The chirp-rate of the unknown LFM signal
was set at the minimum µmin, centre µc and maximum
value µmax of the chirp-rate of the reference LFM sig-
nals. Figure 6 shows a plot of time-frequency charac-
teristic of the test and reference LFM signals.

Figure 7 shows a plot of probability of correct esti-
mation versus the levels of SNR of the test LFM sig-
nals at special chirp-rate. The simulated results show
that the accuracy of the method directly depends on
the chirp-rate µ of the test LFM signal. At the same
value of SNR = −20 dB, this method gives the best
results (Pce = 97.24 %) for the second test LFM sig-
nal (its chirp-rate is equal to the centre of chirp-rate
of reference signals, red line), followed (Pce = 92.20 %)
by the third test LFM signal (black line). The lowest
accuracy (Pce = 0 %) is for the first test LFM signal
(its chirp-rate is equal to the minimum chirp-rate of
reference signals, blue line).

Similar to the first step, in this step the minimum
value of SNR is determined where the method is still
suitable for obtaining a perfect probability of correct
estimation (Pce ≥ 95 %) for centre of pulse width tc for
all test signals. The accuracy of method for analysing
tc versus SNR is shown in Fig. 8(a). It is seen that
irrespective of the time parameter being estimated, at
the same value of SNR = −20 dB, the highest accuracy
(Pce = 90.39 %) is for the second test signal (red line),
followed (Pce = 87.30 %) by the third test signal (black
line). The lowest accuracy (Pce = 86.41 %) is for first
test signal (blue line).

Altogether, the required value of SNR is SNR ≥
−18 dB at all chirp-rate of the unknown LFM signal
in order to obtain a perfect probability of correct es-
timation (Pce ≥ 95 %) for analysing chirp-rate and
centre of pulse width tc of LFM signals. The same
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Fig. 4: CFF between unknown and first reference LFM signals: (a) 3D, (b) peak value of CFF versus frequency of reference LFM
signals, (c) peak value of CFF versus time.
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Fig. 5: CCF between unknown and second reference LFM signals: (a) 3D, (b) CCF versus pulse widths.
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Fig. 8: Probability of correct estimation depends on SNR: (a) centre of pulse width estimation, (b) pulse width estimation.

case is SNR ≥ −14 dB for all test signals when esti-
mating the pulse width τ of the unknown signal with
only difference being the value of SNR to achieve a per-
fect probability of correct estimation (Pce ≥ 95 %) (see
Fig. 8(b)).

The last step in this section is examined the effect
of the proposed method in comparison with the other
methods for analysing LFM signals. The parameters
of the unknown LFM are shown in Tab. 1. The prob-
ability of detection of each method is shown in Fig. 9.
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Figure 9 shows that the proposed method demon-
strated a higher result in comparison with other meth-
ods for detecting the LFM signal in mix signals and
noise. At the same value of SNR = −14 dB,
our method gives the best probability of detecting the
LFM signal (Pd = 97.23 %), followed by TR-FrFT

(Pd = 92.07 %), FrFT (Pd = 81.63 %) in [8] and CCN
(Pd = 10 %) in [7]. The lowest probability of detection
is for method in [4]. The summarised simulation results
in this section confirmed that the proposed method is
more effective than other methods in [4], [7] and [8].
The required value of SNR to obtain a perfect prob-
ability for detecting the LFM signal (Pd ≥ 95 %) is
SNR ≥ −15 dB. However, the effect of the proposed
method depends on the number of reference signals.
The larger number of reference signals gives better re-
sults but has problems with the number of calculations
and running-time of all system. The next paper will be
presented the optimization of this method for analysing
real LFM signals.

5. Conclusion

This paper presents a new, fast, and highly accurate
detection and parameter estimation method based on
the CCF for LFM signals in low SNR. Firstly, the cross-
correlation between the unknown signal and reference
signals was designed to determine the chirp rate µ and
centre of pulse width tc of the unknown signal. This
was then used to estimate the pulse width τ of the un-
known signal. This paper examined the effect of the
proposed method for LFM signals with different chirp
rate for a SNR range from −26 dB to 0 dB. The simu-
lation results show that the minimum value of SNR is
SNR ≥ −18 dB in order to obtain a perfect probabil-
ity of detection (Pd ≥ 95 %) for all test LFM signals
and the proposed method performed higher accuracy
in comparison with other methods (in [4], [7] and [8]).
It confirmed that this method is suitable for detect-
ing and estimating the parameters of LFM signal in an
ultra-low SNR. Therefore, further studies are needed
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to optimise this method in order to reduce the num-
ber of reference LFM signals and the running time of
all system. In addition, the proposed method can be
used as an off-line signal detection and analysis and the
estimated parameters can be used as an input to the
classifier network.
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