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ABSTRACT. In this paper, we introduce a bilevel system of variational inequality
problems and establish a strong convergence theorem for finding a solution of the
considered problem under reasonable assumptions on the problem data. A nu-
merical example is given to illustrate the effectiveness of the proposed algorithm.

1. INTRODUCTION

Throughout this article, we assume that C' is a nonempty closed convex subset
of a real Hilbert space H with an inner product (-, ) : H x H — R and the induced
norm || - |. Let I = {1,2,..., N} be a finite indexing set. Consider the following
bilevel system of variational inequality problems (shortly, BSVIP(A;, B, C))

N
(1.1) find 2™ € 2 := ﬂ SVIP(A;, C) such that (B(z*),y — z*) > 0, Vy € 0,

=1

where B and {A;}ics are finite family of nonlinear mappings from C to H and
SVIP(A;, C') denotes the nonempty solution set of the variational inequality problem
defined as:

(1.2) (A;(z*),y—x") >0, Yy e C.

The formulation of the BSVIP(A;, B, C) is inspired in a bid to provide a single
framework within which a wide variety of mathematical problems such as the sys-
tem of variational inequality problems, bilevel optimization problems, bilevel Nash
equilibrinum problems, bilevel variational inequality problems.

Over the past few years, bilevel problems have become an increasingly popular
way of modelling various important practical problems in many different fields, such
as transportation (network design, optimal pricing), management (network facility
location, coordination of multi-divisional firms), engineering (optimal design, opti-
mal chemical equilibria), economics (Stackelberg games, principal-agent problem,
taxation, policy decisions), ete. see, for example, [3,6,7,11,15, 20,22, 33].
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Let us assume that problem (1.2) has a solution and let us denote by SOL(A;, B, C)
the solution set of problem (1.1). In the case IV = 1, we see that, the BSVIP(A;, B, C)
reduces to the bilevel variational inequality problem, introduced by Kalashnikov and
Kalashnikova [16] and developed by Anh et al. [4] (see, also [2,5,12,30]) as

(1.3) find 2™ € VIP(A, C) such that (B(z"),y — 2™) > 0, Yy € VIP(A, C),

where A and B are nonlinear mappings from C' to H and VIP(A, C) denotes the
nonempty solution set of the following variational inequality problem:

(1.4) (A(x*),y—2*) >0, Yy € C.

Observe that when B is strongly monotone, then problem (1.3) has at most one
solution and in such instance, it is well-known that this problem becomes

find z* € VIP(A, C) such that z* = Pyipa ¢ (z* — AB(z")),

where, A > 0 and Pyp(a ¢) is a metric projection onto VIP(A, C). Another con-
sequence of BSVIP(A;, B, C) is the bilevel optimization problem, widely studied
in [10,25,27,28]. In this case, for each i € I, we take finite family of mappings
{¥:}ier, {¢} from C to R and relate as

(Ai(z*),y — %) = Pi(a") — ¥ily) and (B(z"),y — 27) = ¥(z") — d(y),Vy € C.

Furthermore, when B = 0, we recover the system of variational inequalities (1.2)
due to Pang [24], developed by Konnov [19-21]. This problem has been applied
extensively to model traffic equilibrinm problems, spartial equilibrium problems,
Nash equilibrium problems and general equilibrinin programming problems, see,
c.g, [1,8,9,17,21, 34].

The first projected subgradient algorithm for finding an approximate solution of
the bilevel variational inequality problems was introduced in 2014 by Anh et al. [5].
To improve the practical benefits of this method, Anh [2] initiated the following
strongly convergent extragradient subgradient algorithm for solving (1.3)

(1.5)
choose initial point z; € €, and for all n € N, compute update z,,+; via
yn = Pc (3771 = /),,A(:L‘n)), Tp={u € H: (xn — pnA(xn) — Yn,u — yn) < 0},
zn = P, (11311, - PnA(yn))} Tntl = CpTn + (l — Q) 2n — IB(2n)-

The advantage of algorithm (1.5) over Algorithm 1 of Anh et al. [5], is that, the
second projection can be found in a close form thereby lower computational cost
and so could be used in instances of problems with large datasets.

In this article, our sole aim is to develop a parallel extragradient subgradient
algorithmic approach for solving the bilevel system of variational inequality prob-
lem (1.1). In section 2, we recall some elementary concepts and lemmas which
are used in the proof of our main results. In section 3, we list some conditions
often imposed on {A;}icr and {B} and combine ideas from parallel approximation
method introduced by Kim and Dinh [18] with the approaches of Anh [2] to propose
a parallel extragradient subgradient algorithm for finding the unique approximate
solution of BSVIP(A;, B, C) (see, [31] for more detail parallel extragradient algo-
rithms). We prove that the sequence {z,} generated by the proposed algorithm
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converges strongly to the unique element of SOL(A;, B, C). The last section is de-
voted to present a numerical example to illustrate the convergence of the proposed
algorithm.

2. PRELIMINARIES

Now, let C be a nonempty closed convex subset of H. Recall that the metric
projection onto C' is the mapping P¢ : H — C which assigns each z € H to the
unique point Pc(z) in C satisfying

|z — Pe(z)|| = min{|lz — y|| : y € C}.
For example, if H = {y € H : {w,y — y°) < 0} for some w,y® € H, then for any

z € H, we have
’ ]
xr — (u\—z_}—zw ifxé H
Pll(m) = I‘w|>
x ifx € H.
The following properties of metric projection is quite well-known.

Lemma 2.1 (Section 3, [14]). Given z € H and z € C. Then, we have

(a) |Pc(z) — Pl < (Pc(z) —Pcly),x —y), Vy €C;

(b) z=Pc(z) <= (z—2,2—-y) 20, VyeC;

(c) IPc(z) =yl < |l — yl|?> — [z — Pc(2)||?, V y € C.
Definition 2.2 ([2,4]). A mapping ¢ : H — H with domain D(¢) in H is said to
be:

(a) B-strongly monotone on D(¢), if there exists 3 > 0 such that

((,ﬁ(.]?) - é(y)’ xr — y) = ,'3“1: - y“2a v T,y € D(¢)'
(b) monotone on D(¢), if
(o(x) — ¢(y),z —y) 20, V z,y € D(¢);
(¢) pseudomonotone on D(¢), if
(d(x),y —x) 20 = (d(y),y — =) =0, ¥V z,y € D(o);
(d) L-Lipschitz continnous on D(¢), if |¢(z) —o(y)|| < L||lz—yl|, ¥V =,y € D(d).
We need the following basic results in our convergence analysis.

Lemma 2.3 ([32]). Let {yn}>2; be a sequences in (0,1) and {6,}3>, be a sequence
in R satisfying > oo ;Y = oc and limsup,_, .8, < 0 or 3 2%, |yndn| < oo. If

{an}2, is a sequence of nonnegative real number such that an+1 < (1—Yn)an+¥nbn,
Yn > 0, then lim a, = 0.
n—oc

Lemma 2.4 ([23]). Let {a,};>, be a sequence of real numbers such that it does not
decrease at infinity, in the sense that there exists a subsequence {n;} of {n} such
that

An; = Un;+1; A 2 0.
Then there exists an increasing sequence {T(n)} C N such that lim 7(n) = oc and
TL=> O
the following properties are satisfiied by all (sufficiently large) numbers n € N,

Ur(n) < Ar(n)+1 and  ap < Gr(n)+1-
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In fact, 7(n) = max{k < n:ar < ap+1}-

Lemma 2.5 ([2]). Let ¢ : H — H be a 3- strongly monotone and L-Lipschitz
continuous on H with 0 < 0 < 1, 0 <o <1 -0 and 0 < p < %-’; Then for all
x,y € H, we have

(@ = o)z — Bug(z)) — (1 — o)y — Ouo(v))|| < (1 — o — 67) ||z — v,
where 7 =1 — /1 — u(28 — uL?) € (0,1].

3. MAIN RESULTS

In this section, a parallel extragradient subgradient algorithm for finding a unique
approximate solution of bilevel system of variational inequalities is introduced and
its convergence is investigated.

We first impose the following conditions on A; and B for each ¢ € I in consistent
with Anh [2] and Anh et al. [4].

Condition A
(Al) B:H — H is 8- strongly monotone and L-Lipschitz continuous on H.
(A2) A, : H — H is pseudomonotone and v-Lipschitz continuous on H.
(A3) limsup,, ,oo{Ai(2n), y—yn) < (Ai(z™), y—y*) for every sequence {z,}, {yn} C
H converging weakly to z* and y*, respectively.
The following algorithin give us a way to find a solution of BSVIP(A4;, B, C).

Algorithm 1 (Parallel extragradient subgradient algorithm for bilevel system of
variational inequalities).

Initialization: Given an initial choices 29 € Cand 0 < p < —213:; Choose parameters
{pL} C [p,p) for some p, p € (0, %) {a}} C [, &) C (0,1] for each i € I such that
Zz\;l o, = 1. Take {8,} in (0,1) such that lim, 00 6p = 0, > 12,8, = oo and
0<% <1—-46, with lim,, ;o v, =¢( < 1.

Iterative steps: Assume that z, is known for n € N U {0}, then compute the
update x,4+1 by the following rule:

Step 1: Compute the following projections in parallel

'(]:,, = Pc (wn - P:,Az (J:n))s
vi, =P (zn — pLAWL)),
where T} = {u € H: (z, — pt A(zn) — ¥}, u — y},) < 0}.
Step 2: Set z, = 3N | ad vl
Step 3: Update
(3.1) Tn+l = YnZn + (1 — Yn)2n — SnuB(2n).
Stopping criterion: If z, ;1 = z,, then z,, is a solution of the BSVIP (1.1) and
the iterative process stops, otherwise, put n := n + 1 and go back to Step 1.

Remark 3.1. At iteration n, if y,, = x, then x, is an element of SVIP(A;, C).
Simalarly, if z, € 8 and B(z,) = zp, then z, is a unique element of VIP(B, ().
Therefore, in our convergence theorem, we will assume that this does not occur
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after finitely many iterations, so that Algorithm 1 generates an infinite sequence
satisfying y!, # x,, for some i € I and B(z,) # 2z, for alln € N.

We need the following lemma to prove the convergence of Algorithm 1.

Lemma 3.2. Assume that A; satisfies condition (A2), for each i € I and z* € ) =

fil SVIP(A;, C). Let {x,}2, be a sequence generated by Algorithm 1, then we

have

N
lzn = 2°[12 < llen — 2*I* = D 0h(1 — v0h)l|12n — vill?

g1
N
=) ah (1 — vph) vk — vilI%.
i=1

Proof. Let z* € Q, this implies that 2* € SVIP(A;, C) for each i € I.
Since ¥}, = P¢ (#n — p} Ai(2n)), then by Lemma 2.1 (b), we have

(3.2) (zn — pLAi(zn) —¥h, 2 —¥L) <0, VzEC.
By definition, we have

(3.3) T:={ueH: (z, — phA(zs) — yh,u —y,) < 0}, for each i € I.

It follows from (3.3) and (3.2) that C C T}, for each i € I.
Using v}, = Pqi (2 — p},Ai(y},)) and by Lemma 2.1 (c), we have

vy, — 2*||> =|| P, (zn — pnAi(y3)) — =*|1?
<Sllen — pHAY;) — 2|12 = llzn — £hAi(33)) —vil?
=||lzn — 37*”2 == 2P:z(a’n = m*,Ai(y:z»
+ (O 2N AP = llzn — v |2
+ 20}, (zn — vh, Ai(y2)) — (82)* 11 Ai(w) I
=|lzn — 2*||? — llzn — V5l + 265 (™ — ¥, A1)

(3.4)
=|lzn — 2|12 = lzn — vall> — 20} (¥5 — =", Ai(¥}))
+ 205 (¥n — vn: Ai(U0))-
By pseudomonotonity of A; for each 7 € I, we have that

(3.5) (yh —x*, A(yL)) >0, Viel.
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It folows from (3.4) and (3.5) that

lvi, — 2*|1% llen — 2*||2 = ||l2n — V5112 + 205 (¥ — V5, Ai(¥d))
=z — =*|12 + 205 (), — vh, Ai(Wh)) — llon — ¥ + yh — VL2
=|lzn — 2*||2 + 205 (¥ — vh, Ai(@h)) — llzn — ynll? — llyh — vill®

- 2(y:l - vin Tn — y;z)

:“xn = 37*”2 — ||xn — y:z.”2 - “y:z = ”:1”2
+ 2(y,, — v, PR AI(YR) — 2 +Up)
=[x — 2*|1® = |20 — yhI* — [y — o517

+ 2(zn — pLAi(Tn) — U5, Vi — Uh)
+ 205 (Ai(xn) — Ai(y}), vh — )

(3.6) <llzn — 2*)1? — 12 — yall® — s — V512
+ 20} (Ai(2n) — Ai(y2), v — U3
Slon — =¥ — |#n — ¥l = llh — w312
+ 204 || Ai(zn) — As(w)lllve, — vall
S|z — =*||? = llzn — ynll® — llys — vl
+ 2905 lln — wallllvs, — wall
<llwn — 2*||% = llzn — yall® — llvs — vl

+ 904 (llzn — wi 112 + Nyt — vil?)
=”:17n = 17*”2 - (1 = "!’P:;)Hxn = y;llz
— (1= vph) llvh — vhII%

Since inequality (3.6) holds for cach 7 € I and z, = E?Ll ol vl we obtain

N
lza — 2*1 =11 3 oo, — 2°|2

i=1
N
3.7 =11 e (v, — =)
=1
N 1 N N
=D _eulv —2*IP =5 0> anadllvn —vhI1%.
=1 1=1:'t=1

Substituting equation (3.6) in the above equation, we have that

‘\T 1\!
(3:8) llza—="I1? < llzn—2"1P=Y_ o (1-7ph) lza—vhl2 =D an (1—vph) lwh—vil1%.
i=1 i=1
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Owing to the hypothesis on p!, i € I and v we have that (1 — yp%) > 0 for each
i € I. Therefore, equation (3.8) reduces to

(3.9) lzn — =%|| € ||z — z™||, ¥Vn € N.

a

Next, by using the above lemma, we prove the following theorem for solving the
BSVIP (1.1).

Theorem 3.3. For eachi € I, let A; and B satisfy conditions (A1) — (A3) such that
£Yi= ﬂ:’zl SVIP(A;, C) # 0. Then the sequence {x,}°, generated by Algorithm 1
converges strongly to the unigue element x* € SOL(A;, B, C).

Proof. For each 7 € I, let * € (1. Using Algorithm 1, we have

lznsr — 27| =llynzn + (1 = ) 2n — SnpuB(zn) — 27|
=|I(1 = w)2zn — 6nptB(2zn) — (1 — Yn)x* + énpuB(x")
+ Yn(zn — %) — S uB(z*})||
<L = m)zn — dnuB(zn)) — (1 — yn)z* — dnpuB(z"))||
+ Wnll#n — 27| + Snpl| B(z7)l.

Using Lemma 2.5 and inequality (3.9) we have

[Zns1 — @[] (1 =90 — uT)ll2n — 2*|| + Wnllzn — 27| + dnpe|| B(z¥)
<(1 = — OnT)||Zn — 2*|| + Wllzn — 2*|| + dnp|| B(z*)||
=(1 = 0n7)||Tpn — ¥|| + Snpe|| B(x)||

=(1 — 8a7)||en — 2*|| + 5,17””3_51)”
<max { fan — o7, LLEE
{
B(xz*
<m0 — a7, AAEENY

where 7 =1 — /1 — u(28 — uL?) € (0,1].
Hence, {z,}32,, {B(zn)}22,, and {2,}52, are bounded sequences.
Further, using Algorithm 1, Lemma 2.5 again and the inequality

lz —yl? < |lz]® - 2{y,2 —y), ¥ 2,y € H,
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we get
|en+1 — I*Hz =|lvnzn + (1 — Yn)2zn — SnuB(2n) — 4’7*“2
=[((1 = ¥)zn — 8npB(2zn)) — ((1 — ¥n)z™ — pnpuB(z"))
+ (@0 — 2%) — 8B ()|
<I((X = ¥n)zn — 8npB(2z2)) — ((1 — ¥n)2™ — ppuB(z"))
+ Yn(Tn — -77*)“2 — 260 p{B(z7), Tp41 — %)
S[”(l — Yn)2n — OnptB(2n)) — ((1 — yn)x™ — SnpuB(z"))||
+Ynllen — 2% (1] — 20,1(B(z*), 2ns1 — z*)
<[(1 = v = 8am)llzn = 2| + Yl — 2711]*
= 20np(B(27), Xns1 — 27)

(1 — Y — On7)||zn — x*”2 + Ynllxn — ‘1’*”2
— 20, p{B(x*), xpnt1 —2°).
This means that
(3.10) |Zznsa —=*||2 € (1 — 8u?) |z — *||% + 20, 1({B(=*), &"* —Zpni1).

Now, we show that xz, converges strongly to the unique solution z* of the BSVIP
(1.1), in that purpose, it is enough to show that

lim ||z, — z*|| = 0.
n—oo

Indeed, we consider two possibilities on the sequence {|z, — z*|[}2%, with respect
to relation (3.10).

Casg 1. We assume that there exists ng € N such that {||x,, —2*||}5Z, is decreasing
for n > ny.

Since the sequence {2,};2, is bounded, then the limit of {||z,, — 2™||};Z, exists. In
this case, it follows from equation (3.10) and (3.9) that

0 <||lwn — 1.*”2 —|lzn — =" ”2
OnT 5 i
S — 2T ||¢ = A B(a7); 2" —%sy
—~ 1_’),'!”311 H ” 1_7n< ( ) H A In'l)
+ ,'_,'*2_.___,*2‘
1= Vn (”‘r'n x ” ”-Enll €T “ )

Owing to the hypotheses on {v,} and {4}, we get
(3.11) nlg)go (”wn _ m*HZ - ”z'n o x*H2) —0.

Since 0 < p!, < p for each i € I, we get from from (3.8) that

N N
D oh (1= p)llzn — whl? < ) ah (1 — ph)llen — yil?
21 =1

< Jlzn — 2*)|? = l|lza — z*|%,

(3.12)
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and
N N
Gaad) D o= Alivh —wll” < D en@ = phmllvn = vhll®
=1 i=1
< |lzn — w*“2 — [|lzn — 11"'”2-

Therefore, combining with (3.11), we deduce from inequalities (3.12) and (3.13)
that

(3.14) nli_{ng”:L‘,,, — 94| =0 and '}gxgclly; — %]l =0 for cach i € I.

Further, since {x,}>°; is bounded and H is reflexive, there exists a subsequence
{zn, }72, of {zn}32, such that

(3.15) T, — 0 as k — oo and
(3.16) limsup(B(z*),z* — zp+1) = lim (B(z*), 2" — zp,4+1).
n—oo k—roa

It follows from (3.14), (3.15) and the boundedness of {y}, }32, for each i € I that

(3.17) Yy, — 0 as k — oo for each i € I.
Now, since C' is closed and convex, then it is weakly closed and this implies that
8.eC.

Next, we will show that # € Q. Indeed, observe that (3.15) and (3.16) we have
(3.18) limsup(B(z*),z* — zp41) = lim (B(z"), 2" — zp,+1) = (B(z"),z" — 6).

n—oo ko0

Based on definition of y!, = P (a:n - pf,A,-(z,,)) and by using Lemma 2.1 (b), we
get
(3.19) (xn — pLAi(zn) — ¥, 2 — 92 ) <0, Vz EC.

By utilizing the pseudomonotonicity of A; for cach ¢« € I with the fact that pilk >
p > 0, we obtain

(Ai(), zn, — ) < (Ai(zn,), ZTn, — )

v 1 o
- (A,‘(Ink), Ty — y:-u) o E '/)—i—-(wnk - y:zk:y:;k - :L‘>

ng

1 . : .
+ — Ty, — PrpAi(Zng) — Urr & =)
g

, 1 o
S (Ai(xnk)’ Tny — y:z;,) h pT(Ink - y;lkiy:lk - ‘I:>

Tk

: 1 . :
< [[Ai(En ) ll2n, — Yo, |l + p,—llwnk = Yn, llvm, — =l

g

; 1 : :
< Ai(zn ) l2n, — Yo, |l + /—)Ilwnk = Yni MY, — =ll-
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It follows from the boundedness of {A;(%n; )}, {Zn, }72, and {y;, }72, for each

1 € I and equation (3.14), (3.17), (3.15) that

(3.20) 0 < limsup(Ai(z),xz — x,,) < (Ai(z),z — 0),Vx € C and each i € I.
k—oc

Let z; = (1 — t)0 + t=, t € [0,1]. This and relation (3.20) imply that
0 < (Ai(ze),ze — 0) < (Ai(z), (1 — )0 +tz — 0)
= t{A;(x¢), z — 6).
Hence, by Cauchy- Schwarz inequality for all ¢ € (0, 1], we obtain
0< (Ai(z),z —6)
= (Ai(xz) — Ai(8), 2 — 6) + (Ai(6),2 — 6)
< yllze — 0||||lx — 0| + {A:(0), = — 6)
= (1 =)0 + tz — O||||x — 6| + (A:(0),z — 6)
= yt||lz — O||lx — @|| + (A:i(8),z — @), for each i € I.
Taking limit as ¢t — 07, we get
(A;(8),z — 8) > 0, Vo € C and for each i € I. This implies that 8 € Q.

Thus, we deduce that

(3.21) (B(z"),0 —z™) > 0.

Therefore from equation (3.21) and (3.18), we obtain

(3.22) limsup(B(z*), 2™ — xny1) < 0.
=00

Note that inequality (3.10) can be expressed as
(3.23) I#n+1 = 2*)I* < (1 = 8n7)ll@n — 27||? + 6n76n,

where (, = %‘—‘(B(:z:‘),x* — Zp41)-
Using Lemma 2.3, inequalities (3.22) and (3.23), we can conclude that z,, > z* €
SOL(A;, B,C) as n — oc.

CASE 2. Suppose that the sequence {||z,, — z*||}2%, is increasing. That is, there
exists a subsequence {z,,, }5°_, of {z,}2°, such that

Zn.. —2*|| < 1€ — z*||, vm € N.

By Lemma 2.4, there exists a nondecreasing sequence {7(n)}32, of N such that

n=1
lim 7(n) = oo and for sufficiently large n € N we have
TG

(324) (%) — 2l < Nerguyss — Il and flzn — 1| < l2rgnys1 — =1l -
Now since {2 () }ne; and {z,(n)}f,_l are bounded, then repeating the steps in Case
1, we deduce that

(325) nlllblgo (”I'r('n.) - x*”Z - “Z'r(n) == x*”Z) =0.

Consequently,

(3.26) nlgrgo||m7(n) - yi(n)” = lim ||y_ir(n) - vi(n)H = 0 for each i € I.

n—oo
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Using (3.25) and triangle inequality, we obtain

(3.27) nlgrgo”mf(n) — z'r(n)” = 0.

Since {x,(n)}ne; is bounded, following similar steps in Case 1, we have that
(3.28) limsup(B(z*), 2" — T,(n)41) < 0.

n—oo

By combining (3.10) and (3.24), we get
(3.29)
IZrny+1 — 212 < (@ = SrnyT) 12 r(n) — 2*11? + 26,y B(2*), * — Tr(ny41)
< (1= - yT)12r(ny+1 — 2|1 + 28, myu{ B(2*), 2" — Zr(n)41)-
It follows from (3.24) and (3.29) that

* * 2"" * *
(330) ”In_ - ”2 = ||x‘r(n)—!—l - “2 < ?(B(l’ ),.’L’ - I‘r(n)—!-l)'

By taking limsup in (3.30), using (3.28) as n — oo, we have limsup,, . ||z, —2*||? <
0. Hence, in both cases, z,, — z* € SOL(A4;, B, C). This completes the proof. O
Remark 3.4. When N = 1, our results in this paper immediately reduce to the

results in Anh et al. [4], Anh et al. [5], and Anh [2] for solving bilevel variational
imnequalities (1.3).

When B(z) = z — z9 (29 is given, may play the role of a guessed solution) then
BSVIP(A4;, B, C') becomes
find z* € @ = NN, SVIP(A;, C) such that (z* — x9, 2 — 2*) > 0, Vz € Q.
It is equivalent to the following problemn
find z* € @ = N, SVIP(A;, C) such that ||z* — 27| < ||z — 29|, Vz € Q.

This problem can be considered as a generalization of problems studied by Dinh
and Muu [13], Konnov [19,20]. When z¢ = 0, it reduces to the problem of finding
the minimum-norm solution in 2 which studied guite intensively in literature, see,
for example [26,29].

In this case, we get the following corollary.

Corollary 3.5. Let 29 € C, suppose that A;,i = 1,..., N satisfy conditions (A2) —
(A3) such that 2 = ﬂ:\:rl SVIP(A;,C) # 0. Let {p},} C [p, p) for some p, p € (0, %)
{adi} C [a,&) C (0,1] for each i € I such that 3N | of, = 1. Take {3,} in (0,1)
such that limy,_yo 8, = 0, 3 _0% 6, = oo. Let {z,} be a sequence generated by

5
20 S

¥ =Pc (zn — pAi(zn));

Ty = {u€ H: (2o — pA(zn) — ¥y, u—¥;) < 0},
U = P (zn — PLA(WL)),i=1,2,...,N;

Zn = Yoy ohvh;

{Zn41 = 0n2? + (1 — 6n)2n-

Then {x,} converges strongly to Po(z9).
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Proof. By setting B(xz) = = — 29, it can be checked that B is 1-Lipschitz continuous
and l-strongly monotone on H. By choosing v, = 0 and p = 1, we get Corollary 3.5
imtemidiately from Algorithm 1 and Theorem 3.1. [}

4. A NUMERICAL EXAMPLE

In this section, we illustrate Algorithmn 1 by a class of Problems BSVIP(A;, B, C)).
Let H = R® with the standard inner product and the Euclidean norm. Let C be a
polyhedron given by the following formula:

x3 +x2—x3— x4+ 225 > —1
C=<z= (21,22 %3 24,25)T €R®:2x1 — 2z — 23+ 24+ 25 =>—1
1 —x2—2x3+xT4+ x5 = -—1

Let A; : R® — R% i = 1,2, 3 be operators defined by the following formula:
Ai(z) = (sin [z + 2)a’, Az() = (cos ||z|| + 2)a?, As(x) = (sin2l|z|| + 3)a®,

where a! = (1,1,-1,-1,2)T,a2 = (2,-1,-1,1,1)T,a% = (1,—-1,—-1,1,1)7. Since,
for all z,y € R® such that (A;(x),y — z) > 0 implies (A,(y),z —y) < 0, A; is
pseudomonotone on R®. Morover, for z = (37/2,0,0,0,0)7 and ¥ = (0,0,0,0,0)7,
we have Z,y € C and (A;(z) — A1(9),Z — §) = —37/2 < 0, so A; is not monotone
on R%. Similarly, we have that A,, A3 are psendomonotone on R® but they are not
monotone on R®. Furthermore, forall 2,y € R®, we have

|A1(z) — A1 ()|l =lla*||| sin ||z|| — sin ||y|||
< 2v/5]||x|| — [Jyll]
< 2v/5||z — y||.

So, A; satisfies the Lipschitz condition on R® with constant v = 2/5. Similarly, we
have that Ay, A3 are 2/5-Lipschitz continuous on R5.
Now, let ¢ > 1, consider a mapping B : R®> — R® given by:

B(z) = (tx1 + txa + sinxy, —txy + Lz + sinxg, (¢t — 1)xs, (¢t — 1)xy, (¢ — 1)1:5)T.
Then, we have
(B(x) — B(y),x —y) = [t(x1 — y1 + 22 — y2) +sinx; — siny](z1 — y1)

+ [H(—z1 + 1 + 22 — y2) + sinzg — sinys)(z2 — y2)
+ (8 — 1) (23 — y3)* + (t — 1)(z4 — ya)* + (t — 1)(xs5 — y5)°

> tl(x1 — v1)? + (22 — ¥2)?)] — (21 — n1)® — (z2 — 12)?
+ (w3 — y3)® + (x4 — ya)® + (25 — y5)°

= (t—1)|l= —yl%

Therefore, B is strongly monotone with constant 3 = ¢ — 1. Next, we show that B
satisfies the Lipschitz on R® with constant L = +/2¢2 + 4¢ + 1. Indeed,

I1B(z) — B)|I* = [t(z1 — 91 + 22 — y2) + sinz1 — siny1]?
+ [t(=21 + y1 + T2 — y2) + sin x3 — sin yo]?
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+ (t — 1)*[(w3 — y3)® + (24 — ya)® + (5 — ¥5)?]

< 28%[(x1 — v1)? + (z2 — ¥2)?)
+2t[(z1 — v1)* + 2|21 — w1l-|z2 — val + (22 — ¥2)?] + (21 — n1)?
+ (z2 — y2)® + (t — 1)*[(x3 — ¥3)® + (24 — va)® + (25 — ¥5)?]

< (2t% + 4t + 1) ||z — y|I>.

So B is L-Lipschitz on R>.

We implement Algorithm 1 for this problem when ¢t = 5 in Matlab R2014a running
on a Laptop with Intel(R) Core(TM) i5-3230M CPU @ 2.60GIHz, 4 GB RAM.

To compute g} in Step 1, we use the quadratic-program solver from the Matlab
optimization, while v* can be computed by explicit formula since T are half spaces.
We choose = 1995, 7o = 0.05, 8, = 25, pi = 091, o} = 1/3 for all n
and for all 7 = 1,2,3. To terminate the Algorithm, we use the stopping criteria:
Tol = ||2**+1 — 2| < ¢ for some given tolerance ¢.

The computation results on Algorithm 1 for this problem are reported in Table 1,
with some starting points 2° = a, 2° = b or 2° = ¢ with a = (10, 20,40, 50,60)T, b =
(1,1,1,1, )7, ¢ = (0,0,0,0,0)7 and the tolerance e = 1072 and € = 107°.

From the computed results reported in Tables 1, we can see that the computational

z° € | Elapsed Time(s) | Iter.(n) ZTp
a | 1073 7.5192 249 (—0.0109, 0.0825, 0.3815, —0.1157, —0.3854)7
10-% 22.7293 770 (—0.0064, 0.0841,0.3317, —0.1341, —0.4299)”
b | 10-8 2.5896 75 (—0.0191,0.0799, 0.3445, —0.1233, —0.3892)7
10~ 22.5421 752 (—0.0064, 0.0841,0.3314, —0.1342, —0.4299)7
¢ | 1072 1.0452 33.0 | (—0.0263,0.0647,0.3085, —0.1428, —0.3914)7
10-5 22.1989 752 (—0.0064, 0.0841, 0.3314, —0.1342, —0.4299)7

TABLE 1. Results computed with Algorithm 1.

time and the number of iterations depend very much on the tolerance e.

CONCLUSION

In this paper, we have demonstrated that it is possible to model system of varia-
tional inequalities and bilevel variational inequality problems within a single frame-
work and improve algorithmic procedures for finding a solution of bilevel system of
variational inequalities. We constructed a parallel extragradient subgradient algo-
rithm for finding an approximate solution of bilevel system of variational inequalities
and implemented a MATLAB version of our Algorithm. We leave for future work
the splitting bilevel algorithm which would greatly improve the practical benefit of
this method.
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