
Available online at www.sciencedirect.com
ScienceDirect

Journal of Differential Equations 309 (2022) 176–195
www.elsevier.com/locate/jde

Proportional local assignability of dichotomy spectrum 

of one-sided continuous time-varying linear systems

Pham The Anh a, Adam Czornik b,∗, Thai Son Doan c, Stefan Siegmund d

a Le Quy Don Technical University, 236 Hoang Quoc Viet, Ha Noi, Viet Nam
b Silesian University of Technology, Department of Automatic Control and Robotics, Poland

c Institute of Mathematics, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Ha Noi, Viet Nam
d Center for Dynamics & Institute of Analysis, Faculty of Mathematics, Technical University Dresden, Germany

Received 4 May 2021; revised 1 October 2021; accepted 15 November 2021
Available online 29 November 2021

Abstract

We consider a local version of the assignment problem for the dichotomy spectrum of linear continuous 
time-varying systems defined on the half-line. Our aim is to show that uniform complete controllability is 
a sufficient condition to place the dichotomy spectrum of the closed-loop system in an arbitrary position 
within some Hausdorff neighborhood of the dichotomy spectrum of the free system using an appropriate 
time-varying linear feedback. Moreover, we assume that the norm of the matrix of the linear feedback 
should be bounded from above by the Hausdorff distance between these two spectra with some constant 
multiplier.
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1. Introduction

The concept of the dichotomy of linear differential equations with variable coefficients has a 
long history, beginning with the work of O. Perron [21], then formalized, developed and sum-
marized in [17], [18] and [8]. The effectiveness of the notion of exponential dichotomy and the 
corresponding spectrum both in the study of the asymptotics of solutions of nonlinear systems, 
the first approximation of which is exponentially dichotomous, and in its applications to dynami-
cal systems analysis, has caused that it entered the theory of dynamical systems including control 
theory as a classical tool.

On the other hand, in control theory, one of the basic methods of designing controls for sys-
tems described by linear equations with constant coefficients is the pole placement method, also 
known as pole-shifting or spectrum assignment method [28]. This method selects the feedback 
so that the poles of the closed loop system have a predetermined position. The theoretical basis 
for this method is that the controllability of a linear time-invariant system is equivalent to the fact 
that for each set of complex numbers with cardinality equal to the dimension of the state vector 
and symmetric relative to the real axis, there is a stationary feedback such that the poles of the 
closed-loop system form this set [10].

There have long been attempts in the literature to generalize this methodology to systems with 
variable coefficients and it has not been completed yet (see [2], [14], [16], [19], [3] and [23]). 
Even the formulation of the problem for time-varying systems encountered many difficulties. 
Firstly, because for time-varying systems we have many non-equivalent concepts of controlla-
bility. Secondly, because we have no proper replacement for the concept of poles, but their role, 
to a certain extent, is played by some numerical characteristics as the Lyapunov and the Bohl 
exponents or the dichotomy spectrum. This work fits into this topic and examines the problem of 
the so-called local proportional assignability of the dichotomy spectrum.

The benefits of dichotomy spectrum placement come directly from the importance of the 
dichotomy spectrum in the qualitative theory of nonautonomous dynamical systems generated 
by time-varying differential equations. To mention only a few results of this theory, note firstly 
the linearized asymptotic stability theorem of nonlinear systems which holds if the dichotomy 
spectrum of the linearized equation is negative, see [4]. Secondly, the nonautonomous Hartman-
Grobman theorem requires the fact that the spectrum of the linear part does not contain zero, see 
[20]. Finally, in [27] a version of nonautonomous normal form theory was established in which 
all non-resonant terms of the Taylor expansion of the vector field (defined in terms of the location 
of the dichotomy spectrum of the linear part) can be eliminated.

Here, we consider a local version of the dichotomy spectrum assignment problem for linear 
continuous time-varying systems, whereas in [3] a global version was investigated. Our aim is 
to obtain sufficient conditions to place the dichotomy spectrum of the closed-loop system in an 
arbitrary position within some neighborhood of the dichotomy spectrum of the free system, i.e. 
the free system, using some time-varying linear feedback. Moreover, we require that the norm of 
the feedback should be bounded from above by the Hausdorff distance between these two spec-
tra, with some constant coefficient. We say that the dichotomy spectrum is proportionally locally 
assignable if all these requirements are satisfied. Our main result is to show that uniform com-
plete controllability is a sufficient condition for proportional local assignability of the dichotomy 
spectrum.

The paper is organized as follows. In the rest of this section, we introduce the notation used in 
the work. In the next section we introduce the definitions of exponential dichotomy, dichotomy 
and repeated dichotomy spectrum. We also formulate and prove a reducibility theorem which 
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is important for our further considerations. The third section contains a formal definition of the 
problem of proportional local assignability of the dichotomy spectrum and the formulation and 
a proof of the main result of this paper Theorem 11.

The following notations will be used throughout this paper: Let K denote the set of all compact 
subsets of R. For U, V ∈ K, the Hausdorff distance dH is defined as

dH (U,V ) := max

{
max
x∈U

min
y∈V

|x − y|,max
y∈V

min
x∈U

|x − y|
}

.

For matrices M1 ∈ Rd1×d1 , . . . , Mk ∈ Rdk×dk , let diag(M1, . . . , Mk) denote the square matrix of 
dimension d1 + · · · + dk of the form

diag(M1, . . . ,Mk) =
⎛⎜⎝ M1 · · · 0

...
. . .

...

0 · · · Mk

⎞⎟⎠ .

Let Rd be endowed with the standard Euclidean norm. For s, d ∈ N , let KCs,d (R+) be the set of 
all bounded and piecewise continuous matrix-valued functions M : R+ →Rs×d such that

‖M‖∞ := sup
t∈R+

‖M(t)‖ < ∞

and Cs,d (R+) the set of all bounded continuous matrix-valued functions M : R+ →Rs×d .

2. Repeated dichotomy spectra and reducibility for linear one-sided continuous 
time-varying systems

In this section, we consider a one-sided continuous time-varying linear system

ẋ = M(t)x for t ∈R+, (1)

where M ∈ KCd,d(R+). Denote by XM(·, ·) : R+ × R+ → Rd×d the transition matrix of (1), 
i.e. XM(·, s)ξ solves (1) with the initial value condition x(s) = ξ . We now recall the notion of 
exponential dichotomy which is also known as uniform hyperbolicity for time-varying systems, 
see e.g. [7] and the notion of dichotomy spectrum, see e.g. [24,25].

Definition 1 (Exponential dichotomy and dichotomy spectrum). System (1) is said to admit an 
exponential dichotomy (ED) on R+ if there exist K, ε > 0 and an invariant family of projec-
tions P : R+ → Rd×d , i.e. P(t)XM(t, s) = XM(t, s)P (s) if s, t ∈ R+, satisfying the following 
inequalities

‖XM(t, s)P (s)‖ ≤ Ke−ε(t−s) if s ≤ t, s, t ∈R+, (2)

and

‖XM(t, s)(I − P(s))‖ ≤ Keε(t−s) if t ≤ s, s, t ∈ R+. (3)
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The dichotomy spectrum of (1) is defined by

�ED(M) := {
γ ∈R : ẋ = (M(t) − γ I)x has no ED on R+}

.

It is known that �ED(M) is the union of at most d disjoint compact intervals (called spectral 
intervals), see [15, Theorem 5.12]. We now state and prove a result on how to decouple, via Lya-
punov transformations, the system (1) into a block diagonal system with blocks corresponding 
to these spectral intervals. This type of result was established in [26] for two-sided continuous 
time-varying systems. Before doing this, we recall the notions of Lyapunov transformations, 
asymptotic equivalence (also known in the literature as kinematic similarity, Lyapunov similarity 
or simply equivalence) and reducibility. We refer the readers to [1] and the references therein for 
details.

Definition 2 (Lyapunov transformations, asymptotic equivalence and reducibility). Lyapunov 
transformations: The linear transformation y = T (t)x, where T : R+ → Rd×d , is called a Lya-
punov transformation if T is piecewise continuously differentiable and T , T −1, Ṫ are bounded.

Asymptotic equivalence: System (1) is said to be asymptotically equivalent to

ẏ = N(t)y, where N ∈ KCd,d(R+) (4)

if there exists a Lyapunov transformation y = T (t)x, where T : R+ →Rd×d , such that

Ṫ (t) = N(t)T (t) − T (t)M(t) for t ∈R+.

Reducibility: System (1) is reducible if there exist M1 ∈ KCd1,d1(R
+), M2 ∈ KCd2,d2(R

+) such 
that (1) is asymptotically equivalent to

ẏ = diag(M1(t),M2(t))y. (5)

Remark 3. Assume that (1) is asymptotically equivalent to (4) via the Lyapunov transformation 
y = T (t)x. Denote by XM and XN the transition matrices of (1) and (4), respectively. Then, it is 
well known, for e.g. see [26, Lemma 2.1], that

XN(t, s)T (s) = T (t)XM(t, s) for t, s ∈ R+. (6)

Theorem 4 (Spectral theory and reducibility). Suppose that M ∈ KCd,d(R+). The dichotomy 
spectrum �ED(M) of (1) is nonempty and consists of at most d disjoint closed intervals. Let

�ED(M) =
k⋃

i=1

[αi,βi],

where −∞ < α1 ≤ β1 < α2 ≤ β2 < · · · < αk ≤ βk < ∞ and k ≤ d . Then, the following state-
ments hold:
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(i) Let i ∈ {0, 1, . . . , k} be arbitrary. Then, for any γ ∈ (βi, αi+1), with the convention that 
β0 = −∞, αk+1 = ∞, the subspace

Wγ

i (s) := {
ξ ∈Rd : lim sup

t→∞
e−γ t‖XM(t, s)ξ‖ < ∞}

(7)

is independent of the choice of γ (then we can write Wγ

i (s) simply as Wi (s)), invariant, i.e. 
XM(t, s)Wi (s) = Wi (t) and the dimension of Wi(t) is independent of t ∈R+.

(ii) Let ni be the dimension of the subspace Wi(t) for t ∈ R+. Define di := ni − ni−1 for i =
1, . . . , k (with the convention that n0 := 0). Then, there exist Mi ∈ KCdi ,di

(R+) for i =
1, . . . , k such that system (1) is asymptotically equivalent to

ẏ = diag(M1(t), . . . ,Mk(t))y

and

�ED(Mi) = [αi,βi], i = 1, ..., k.

Before going to the proof of the preceding theorem, we need a result on decoupling a linear 
system when this system has an invariant bounded family of projections. This result is stated in 
the Introduction of [6, Lemma 2] but without a proof. It is also proved in [26, Theorem 3.1] but in 
this paper the author considers wider classes of systems – systems with locally integrable coeffi-
cients and wider classes of Lyapunov transformations which are assumed there to be absolutely 
continuous. Moreover, in the last paper the dichotomy is considered on the whole line.

Proposition 5. Suppose that M ∈ KCd,d(R+) and there exists an invariant bounded family of 
projections P(t), t ∈R+ for (1). Then (1) is asymptotically equivalent to a system

ẋ =
(

M1(t) 0
0 M2(t)

)
x for t ∈ R+, (8)

where d1 = dim imP(t) is independent of t ∈ R+, M1 ∈ KCd1,d1(R
+) and M2 ∈

KCd−d1,d−d1(R
+). Moreover, the Lyapunov transformation establishing the equivalence of (1)

and (8) may be chosen such that

T (t)P (t)T −1(t) =
(

Id1 0
0 0

)
for t ∈R+. (9)

The main ingredient of the proof of the proposition is from [6, Lemma 2]. In fact, this result 
has been shown for systems (1) with M ∈ Cd,d(R+) but the arguments may be repeated for 
M ∈ KCd,d(R+).

Lemma 6. Suppose that M ∈ KCd,d(R+) and there exists a projector matrix P ∈ Rd×d such 
that XM(t, 0)PXM(0, t) is bounded on R+. Then (1) is asymptotically equivalent to a system 
ẋ = B(t)x for t ∈R+, where B ∈KCd,d(R+) satisfies that PB(t) = B(t)P for t ∈R+.
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Proof of Proposition 5. Since P(t), t ∈ R+ is an invariant family of projections for (1), it fol-
lows that P = XM(0, t)P (t)XM(t, 0) is a projector matrix that does not depend on t ∈ R+. 
Furthermore, by boundedness of P(t) we have that P(t) = XM(t, 0)PXM(0, t) is bounded. 
Then, by Lemma 6 there exists a Lyapunov transformation T : R+ → Rd×d establishing the 
asymptotic equivalence of (1) and the system

ẋ = B(t)x for t ∈R+, (10)

where B ∈ KCd,d(R+) satisfies that

PB(t) = B(t)P for t ∈R+. (11)

Let S ∈Rd×d be an invertible matrix such that

SPS−1 =
(

Id1 0
0 0

)
=: P0,

where d1 = dim imP . Then T : R+ → Rd×d , T (t) = ST (t) for t ∈ R+, is a Lyapunov transfor-
mation that establishes the asymptotic equivalence of (1) and

ẋ = C(t)x for t ∈R+,

where

C(t) = ST (t)M(t)T −1(t)S−1 + S
.

T (t)T −1(t)S−1 = SB(t)S−1.

Moreover, (11) implies that P0C(t) = C(t)P0 for all t ∈ R+. This equality implies that

C(t) =
(

C1(t) 0
0 C2(t)

)
,

where C1 ∈KCd1,d1(R
+) and C2 ∈KCd−d1,d−d1(R

+). The proof is complete. �
Proof of Theorem 4. (i) The fact that the dichotomy spectrum �ED(M) is the union of at most d
closed intervals can be seen in [15, Theorem 5.12]. For each γ ∈ (βi, αi+1), the subspace Wi (s)

coincides with the range of the projection Pγ (s), where Pγ is an invariant family of projections 
corresponding to the ED of the shifted system

ẋ = (M(t) − γ I)x,

see [15, Proposition 5.5]. Hence, invariance of Pγ implies that Wi (s) is also invariant and hence 
the dimension of Wi (s) is independent of s. Finally, rankPγ is independent on the choice of 
γ ∈ (βi, αi+1), thus the dimension of Wi (s) is also independent on the choice of γ ∈ (βi, αi+1)

and thus by definition of Wi(s) we conclude that Wi(s) is independent of the choice of γ ∈
(βi, αi+1).
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(ii) Let γ ∈ (βk−1, αk). Then, the shifted system ẋ(t) = (M(t) −γ I)x(t) has an ED, i.e. there 
exist K, ε > 0 and an invariant family of projections Pγ : R+ → Rd×d satisfying the following 
inequalities

‖XM−γ I (t, s)Pγ (s)‖ ≤ Ke−ε(t−s) if s ≤ t, s, t ∈ R+, (12)

and

‖XM−γ I (t, s)(I − Pγ (s))‖ ≤ Keε(t−s) if t ≤ s, s, t ∈R+. (13)

In particular, Pγ (s) is bounded with respect to s ∈ R+ and therefore by Proposition 5 there exists 
a Lyapunov transformation T : R+ → Rd×d such that

Ṫ (t) = N(t)T (t) − T (t) (M(t) − γ I) for t ∈ R+, (14)

where

N(t) =
(

N1(t) 0
0 N2(t)

)
for t ∈ R+,

where N1(t) ∈ Rnk−1×nk−1 and

nk−1 := dimWk−1(t) = dim imPγ (t).

From (14) we have

Ṫ (t) =
(

N1(t) + γ I 0
0 N2(t) + γ I

)
T (t) − T (t)M(t) for t ∈R+,

which shows that system (1) is asymptotically equivalent to system

ẋ =
(

M1(t) 0
0 M2(t)

)
x for t ∈R+,

where M1(t) = N1(t) + γ I ∈ Rnk−1×nk−1 and M2(t) = N2(t) + γ I ∈ Rdk×dk . Then, from Re-
mark 3 we derive that (

XM1(t, s) 0
0 XM2(t, s)

)
= T (t)XM(t, s)T (s)−1.

Note that by Proposition 5 the Lyapunov transformation T satisfies (9) with nk−1 instead of d1
and Pγ (t) instead of P(t). Therefore, we have(

XM1(t, s) 0
0 XM2(t, s)

)(
Id1 0
0 0

)
= T (t)XM(t, s)T (s)−1T (s)Pγ (s)T −1(s)

and hence
182



P. The Anh, A. Czornik, T.S. Doan et al. Journal of Differential Equations 309 (2022) 176–195
(
XM1(t, s) 0

0 0

)
= T (t)XM(t, s)Pγ (s)T −1(s)

= eγ (t−s)T (t)XM−γ I (t, s)Pγ (s)T −1(s).

Thus, the inequalities (12) and (13) imply

‖XM1(t, s)‖ ≤ K ‖T ‖
∥∥∥T −1

∥∥∥ e(γ−ε)(t−s) if s ≤ t, s, t ∈R+,

and

‖XM2(t, s)‖ ≤ K ‖T ‖
∥∥∥T −1

∥∥∥ e(γ+ε)(t−s) if t ≤ s, s, t ∈R+.

Thus

�ED(M1) ⊂ (−∞, γ ) and �ED(M2) ⊂ (γ,∞) . (15)

On the other hand, it is known that

�ED(M) = �ED(M2) ∪ �ED(M1) =
k⋃

i=1

[αi,βi],

see [5]. This together with (15) implies that

�ED(M2) = [αk,βk] and �ED(M1) =
k−1⋃
i=1

[αi,βi].

Using this procedure and reapplying it to subsystems, we complete the proof by induction. �
When we also want to emphasize the information of dimension of subspaces corresponding to 

the dichotomy spectral intervals, we arrive at the following definition of the repeated dichotomy 
spectrum. We refer the readers to [9,12] for a similar definition of repeated Lyapunov spectrum 
with the same meaning.

Definition 7. The repeated dichotomy spectrum �r
ED(M) of (1) is defined by

�r
ED(M) =

(
[α1, β1], . . . , [α1, β1]︸ ︷︷ ︸

d1times

, . . . , [αk,βk], . . . , [αk,βk]︸ ︷︷ ︸
dk times

)
, (16)

where d1, . . . , dk are the dimensions of the subsystems corresponding to the spectral intervals 
[α1, β1], . . . , [αk, βk], respectively.

Remark 8. From Definition 7, two spectral intervals of a repeated dichotomy spectrum are either 
disjoint or the same. Then, a collection of d closed intervals [α1, β1], . . . , [αd, βd ] is said to be 
admissible for repeated dichotomy spectrum of a linear continuous time-varying system on Rd

(for short admissible closed intervals) if for i 
= j
183



P. The Anh, A. Czornik, T.S. Doan et al. Journal of Differential Equations 309 (2022) 176–195
[αi,βi] = [αj ,βj ] or [αi,βi] ∩ [αj ,βj ] = ∅.

3. Proportional local assignability of repeated dichotomy spectrum

3.1. Time-varying control systems and the statement of the main result

Consider a linear time-varying control system described by the following equation

ẋ = A(t)x + B(t)u for t ∈R+, (17)

where A ∈KCd,d(R+), B ∈KCd,m(R+) and u ∈KCm,1(R+) is the control. For (t0, x0) ∈ R+ ×
Rd the solution of system (17) satisfying x(t0) = x0, will be denoted by x(·, t0, x0, u). Now we 
will introduce the definition of uniform complete controllability, see e.g. [23] and the references 
therein.

Definition 9 (Uniform complete controllability). System (17) is called uniformly completely con-
trollable on R+ if there exist α, K > 0 such that for all (t0, ξ) ∈ R+ ×Rd there exists a control 
u ∈ KCm,1(R+) such that x(t0 + K, t0, 0, u) = ξ and

‖u(t)‖ ≤ α‖ξ‖ for t ∈ [t0, t0 + K].

If in system (17) we apply a control of the form

u(t) = F(t)x(t),

where the feedback F ∈KCm,d(R+), we obtain a so-called closed loop system

ẋ = (A(t) + B(t)F (t))x. (18)

Our interest in this paper is to know the possibility of proportional local assigning of �r
ED(A +

BF). We have the following definition of proportional local assignability of dichotomy spectrum 
(cf. [23, Definition 16.2] for the definition of the proportional local assignability of an arbitrary 
Lyapunov invariant of linear time-varying control systems).

Definition 10. Denote the repeated dichotomy spectrum of the free system

ẋ = A(t)x (19)

by �r
ED(A) =

(
[a1, b1], . . . , [ad, bd ]

)
, where [a1, b1], . . . , [ad, bd ] are admissible closed in-

tervals. The repeated dichotomy spectrum of (18) is called proportionally locally assignable 
if there exist δ, 	 > 0 such that for arbitrary admissible closed intervals [̂a1, ̂b1], . . . , [̂ad, ̂bd ]
with max1≤i≤d dH ([̂ai, ̂bi], [ai, bi]) ≤ δ there exists F ∈ KCm,d(R+) satisfying that ‖F‖∞ ≤
	 max1≤i≤d dH ([̂ai, ̂bi], [ai, bi])) and

�r
ED(A + BF) =

(
[̂a1, b̂1], . . . , [̂ad, b̂d ]

)
.
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We now state the main result of this paper about the fact that uniform complete controllability 
implies proportional local assignability of repeated dichotomy spectrum.

Theorem 11 (Proportional local assignability of repeated dichotomy spectrum). Suppose that 
system (17) is uniformly completely controllable. Then, the repeated dichotomy spectrum of (18)
is proportionally locally assignable.

3.2. Proportional local assignability of repeated dichotomy spectrum by additive perturbation

Together with system (19), we will consider the additively perturbed system

ẏ = (A(t) + Q(t))y for t ∈R+. (20)

The perturbation Q ∈KCd,d(R+) will be called an additive perturbation of the system (19). The 
following theorem from [22, Theorem 2] will play an important role in our further consideration.

Theorem 12. If system (17) is uniformly completely controllable, then there exist β > 0 and 
	1 > 0 such that for an arbitrary matrix Q ∈ KCd,d(R), ‖Q‖∞ ≤ β , there exists a control F ∈
KCm,d(R+), ‖F‖∞ ≤ 	1‖Q‖∞ providing the asymptotic equivalence of the system (20) and 
system (18).

Definition 13 (Proportional local assignability of spectrum by additive perturbation). The re-
peated dichotomy spectrum of (1) is called proportionally locally assignable by additive per-
turbation if there exist positive numbers δ, 	 > 0 such that for arbitrary admissible closed 
intervals [̂α1, ̂β1], . . . , [̂αd, ̂βd ] with max1≤i≤d dH ([̂αi, ̂βi], [αi, βi]) ≤ δ there exists a function 
Q ∈ KCd,d(R+) such that

‖Q‖∞ ≤ 	 max
1≤i≤d

dH ([̂αi, β̂i], [αi,βi]), �r
ED(M + Q) =

(
[̂α1, β̂1], . . . , [̂αd, β̂d ]

)
. (21)

In the following proposition, we show the persistence of proportional local assignability of 
repeated dichotomy spectrum by additive perturbation via asymptotic equivalence.

Proposition 14. Proportional local assignment of repeated dichotomy spectrum by additive per-
turbation persists via asymptotic equivalence.

Proof. Consider a system

ẏ = N(t)y for t ∈ R+

which is asymptotically equivalent to (1) via the Lyapunov transformation T = (T (t))t∈R+ , i.e.

Ṫ (t) = N(t)T (t) − T (t)M(t) for t ∈R+.

Suppose that the repeated dichotomy spectrum of (1) is proportionally locally assignable by addi-
tive perturbation with respect to δ, 	 as in Definition 13. Let [̂α1, ̂β1], . . . , [̂αd, ̂βd ] be arbitrary ad-
missible closed intervals satisfying max1≤i≤d dH ([̂αi, ̂βi], [αi, βi]) ≤ δ. Then, by Definition 13
there exists a function Q ∈KCd,d(R+) satisfying ‖Q‖∞ ≤ 	 max1≤i≤d dH ([̂αi, ̂βi], [αi, βi]) and
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�r
ED(M + Q) =

(
[̂α1, β̂1], . . . , [̂αd, β̂d ]

)
. (22)

Let

Q̂(t) = T (t)Q(t)T −1(t) for t ∈ R+. (23)

Then, we have the following claims

‖Q̂‖∞ ≤ 	‖T ‖∞‖T −1‖∞ max
1≤i≤d

dH ([̂αi, β̂i], [αi,βi])

and

�r
ED(N + Q̂) =

(
[̂α1, β̂1], . . . , [̂αd, β̂d ]

)
.

The first claim follows from the inequality

‖Q̂‖∞ ≤ ‖T ‖∞‖Q‖∞‖T −1‖∞

≤ 	‖T ‖∞‖T −1‖∞ max
1≤i≤d

dH ([̂αi, β̂i], [αi,βi]).

The second one is deduced from (22) and the fact that M(t) +Q(t) and N(t) + Q̂(t) are asymp-
totically equivalent, since for t ∈ R+

T −1(t)
(
N(t) + Q̂(t)

)
T (t) − T −1(t)Ṫ (t)

= T −1(t)
(
N(t) + T (t)Q(t)T −1(t)

)
T (t) − T −1(t)Ṫ (t)

= T −1(t)N(t)T (t) − T −1(t)Ṫ (t) + Q(t)

= M(t) + Q(t).

The proof is complete. �
We now state and prove the main result of this subsection in which we describe a relation be-

tween proportional local assignability of the dichotomy spectrum of (20) by additive perturbation 
and proportional local assignability of (18).

Proposition 15. Suppose that system (17) is uniformly completely controllable. If the repeated 
dichotomy spectrum of the associated free system (19) is proportionally locally assignable by 
additive perturbation, then the dichotomy spectrum of (18) is proportionally locally assignable.

Proof. From the proportional local assignability of the dichotomy spectrum of (19) by 
additive perturbation, there exist δ1, 	1 > 0 such that for any admissible closed intervals 
[̂a1, ̂b1], . . . , [̂ad, ̂bd ] with max1≤i≤d dH ([̂ai, ̂bi], [ai, bi]) ≤ δ1 there exists a function Q ∈
KCd,d(R+) satisfying the estimate

‖Q‖∞ ≤ 	1 max dH ([̂ai, b̂i], [ai, bi])

1≤i≤d
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and providing the relation

�r
ED(A + Q) =

(
[̂a1, b̂1], . . . , [̂ad, b̂d ]

)
. (24)

According to Theorem 12, there exist δ2 > 0 and 	2 > 0 such that for each system (20)
with Q ∈ KCd,d(R+), ‖Q‖∞ ≤ δ2 there exists a feedback control F ∈ KCm,d(R+), such that 
‖F‖∞ ≤ 	2‖Q‖∞ and the corresponding closed-loop system (18) is asymptotically equivalent 
to system (20). Let

δ := min

{
δ2

	1
, δ1

}
, 	 := 	1	2. (25)

To conclude the proof, choose and fix arbitrary admissible closed intervals [̂a1, ̂b1], . . . , [̂ad, ̂bd ]
such that

max
1≤i≤d

dH ([̂ai, b̂i], [ai, bi]) ≤ δ.

By definition of δ and δ1, there exists a function Q ∈KCd,d(R+) such that

‖Q‖∞ ≤ 	1 max
1≤i≤d

dH ([̂ai, b̂i], [ai, bi]) ≤ 	1δ ≤ δ2

and (24) is satisfied. For this function Q and by definition of δ2 there exists a feedback control 
F ∈ KCm,d(R+) for system (18) such that

‖F‖∞ ≤ 	2‖Q‖∞ ≤ 	2	1 max
1≤i≤d

dH ([̂ai, b̂i], [ai, bi])

= 	 max
1≤i≤d

dH ([̂ai, b̂i], [ai, bi]),

and such that systems (20) and (18) are asymptotically equivalent. Since equivalent systems have 
the same dichotomy spectrum the proof is completed. �
3.3. Proof of proportional local assignability by additive perturbation for systems with one 
dichotomy spectral interval

We now state and prove the main result of this subsection about proportional local assignabil-
ity by additive perturbation for the system

ẋ = A(t)x (26)

under the assumption that the dichotomy spectrum �ED(A) consists of only one spectral interval.

Theorem 16. Consider system (26) and suppose that its dichotomy spectrum consists of only 
one spectral interval. Then, the repeated dichotomy spectrum of (26) is proportionally locally 
assignable by additive perturbation.
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The main idea of the proof of the above theorem is to transform (26) into an upper triangular 
system and to use the following result on an explicit form of dichotomy spectrum of an upper-
triangular system. A proof of (i) can be seen in [13] and a proof of (ii) can be seen in [5].

Proposition 17. Consider an upper-triangular system

ẋ = U(t)x, where U(t) =

⎛⎜⎜⎜⎜⎜⎝
u11(t) u12(t) · · · u1d(t)

0 u22(t) · · · u2d(t)
...

...
. . .

...

0 0 · · · udd(t)

⎞⎟⎟⎟⎟⎟⎠ ∈ KCd,d(R+).

Then, the following statements hold:

(i) The dichotomy spectrum [αi, βi] := �ED(uii) of the subsystem ẋi = uii(t)xi is given by

αi = lim inf
t−s→∞

1

t − s

t∫
s

uii(τ )dτ and βi = lim sup
t−s→∞

1

t − s

t∫
s

uii(τ )dτ. (27)

(ii) �ED(U) = ⋃d
i=1 �ED(uii).

Proof of Theorem 16. It is known that there exists an upper triangular system

ẏ = U(t)y, (28)

where U ∈ KCd,d , which is asymptotically equivalent to (26) (see e.g. [1, Theorem 3.3.1]). Since 
proportional local assignment of repeated dichotomy spectrum by additive perturbation persists 
via asymptotic equivalence (Proposition 14), it is sufficient to prove the proportional local as-
signment of repeated dichotomy spectrum for (28) under the assumption that �ED(U) = [a, b], 
where a ≤ b. In what follows, we consider two separate cases:

Case 1: a < b. Let

δ := b − a

3 + |a| + |b| and 	 := max(2, |a| + |b|)
b − a

(1 + max
1≤i≤d

(‖uii‖∞)). (29)

Now, let [̂α1, ̂β1], . . . , [̂αd, ̂βd ] be arbitrary admissible closed intervals satisfying that
max1≤i≤d dH ([̂αi, ̂βi], [a, b]) ≤ δ. By (29) and dH ([̂αi, ̂βi], [a, b]) ≤ δ, we have [ 2a+b

3 , a+2b
3 ] ⊂

[̂αi, ̂βi] for all i = 1, . . . , d . Thus, by virtue of Remark 8 all intervals [̂α1, ̂β1], . . . , [̂αd, ̂βd ] coin-
cide and let ̂α := α̂i and β̂ := β̂i . Let

η := β̂ − α̂

b − a
, ζ := α̂b − aβ̂

b − a
. (30)

Define Q ∈KCd,d(R+) by
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Q(t) := diag((η − 1)u11(t) + ζ, . . . , (η − 1)udd(t) + ζ ) for all t ∈R+.

By Definition 13, to complete the proof of the theorem in this case it is sufficient to show that

‖Q‖∞ ≤ 	max{|̂α − a|, |β̂ − b|}, �ED(M + Q) = [̂α, β̂]. (31)

Concerning the estimate on ‖Q‖∞, from the definition of Q we have

‖Q‖∞ = max
1≤i≤d

|(η − 1)‖uii‖∞ + ζ | ≤ max
1≤i≤d

(|η − 1| ‖uii‖∞ + |ζ |).

By (30), we have

|η − 1| ≤ 2

b − a
max{|̂α − a|, |β̂ − b|}, |ζ | ≤ |a| + |b|

b − a
max{|̂α − a|, |β̂ − b|}.

Thus,

‖Q‖∞ ≤ max(|η − 1|, |ζ |)(1 + max
1≤i≤d

‖uii‖∞)

≤ max(2, |a| + |b|)
b − a

(
1 + max

1≤i≤d
‖uii‖∞

)
dH ([a, b], [̂α, β̂]),

which together with (29) proves the first part of (31). Concerning the remaining part of (31), by 
using Proposition 17 we obtain

�ED(U + Q)

=
d⋃

i=1

�ED(ηuii + ζ )

=
d⋃

i=1

⎡⎣ lim inf
t−s→∞

1

t − s

t∫
s

ηuii(τ ) + ζ dτ, lim sup
t−s→∞

1

t − s

t∫
s

ηuii(τ ) + ζ dτ

⎤⎦
=

d⋃
i=1

⎡⎣η lim inf
t−s→∞

1

t − s

t∫
s

uii(τ ) dτ + ζ, η lim sup
t−s→∞

1

t − s

t∫
s

uii(τ ) dτ + ζ

⎤⎦
=

d⋃
i=1

η�ED(uii) + ζ = [ηa + ζ, ηb + ζ ],

which together with the definition of η and ζ as in (30) shows that �ED(U + Q) = [̂α, ̂β]. The 
proof of the theorem is complete in this case.

Case 2: a = b. By virtue of Proposition 28, we arrive at �ED(uii) = {a} and

a = lim
t−s→∞

1

t − s

t∫
uii(τ )dτ for i = 1, . . . , d. (32)
s
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Let [̂α1, ̂β1], . . . , [̂αd, ̂βd ] be arbitrary admissible closed intervals of the form(
[a1, b1], . . . , [a1, b1]︸ ︷︷ ︸

d1times

, . . . , [ak, bk], . . . , [ak, bk]︸ ︷︷ ︸
dk times

)

satisfying that max1≤j≤k dH ([aj , bj ], {a}) ≤ 1 and b1 < a2, . . . , bk−1 < ak . Let j ∈ {1, . . . , k} be 
arbitrary and define a function pj ∈ KC1,1(R+) by

pj (t) :=
{

bj − a, if t ∈ [(2m)2, (2m + 1)2), where m ∈Z≥0;
aj − a, if t ∈ [(2m + 1)2, (2m + 2)2), where m ∈Z≥0.

(33)

By definition of pj , we have

lim sup
t−s→∞

1

t − s

t∫
s

pj (τ ) dτ = bj − a, lim inf
t−s→∞

1

t − s

t∫
s

pj (τ ) dτ = aj − a. (34)

We now define Q(t) := diag(q1(t), . . . , qd(t)) where1

qi(t) := pj (t) for i ∈ {d1 + · · · + dj−1 + 1, d1 + · · · + dj }, j = 1, . . . , k.

To conclude the proof, we will estimate ‖Q‖∞ and compute �r
ED(U + Q). Firstly, by definition 

of Q and (33) we have

sup
t∈R+

‖Q(t)‖ ≤ max
1≤j≤k

dH

([aj , bj ], {a}) .

Finally, from (32) and (34) we derive that for i ∈ {d1 + · · · + dj−1 + 1, d1 + · · · + dj }, where 
j ∈ {1, . . . , k}

lim sup
t−s→∞

1

t − s

t∫
s

uii(τ ) + qi(τ ) dτ = bj , lim inf
t−s→∞

1

t − s

t∫
s

uii(τ ) + qi(τ ) dτ = aj .

In view of Proposition 17(i), we have �ED(uii + qi) = [aj , bj ] and thus

�r
ED(U + Q) =

(
[a1, b1], . . . , [a1, b1]︸ ︷︷ ︸

d1times

, . . . , [ak, bk], . . . , [ak, bk]︸ ︷︷ ︸
dk times

)
.

The proof is complete. �
1 Throughout the paper, we use the convention that d1 + · · · + dj−1 = 0 when j = 1.
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3.4. Proof of the main results

Proof of Theorem 11. Thanks to Proposition 15, to show the proportional local assignability 
of the dichotomy spectrum of (18) it is sufficient to verify the proportional local assignability 
of the dichotomy spectrum by additive perturbation of system (19). Let the repeated dichotomy 
spectrum �r

ED(A) be of the following form

�r
ED(A) =

(
[a1, b1], . . . , [ad, bd ]

)
=

(
[a∗

1 , b∗
1], . . . , [a∗

1 , b∗
1]︸ ︷︷ ︸

d1times

, . . . , [a∗
k , b∗

k ], . . . , [a∗
k , b∗

k ]︸ ︷︷ ︸
dk times

)
,

where

a1 ≤ b1 ≤ a2 ≤ b2 ≤ · · · ≤ ad ≤ bd

and

a∗
1 ≤ b∗

1 < a∗
2 ≤ b∗

2 · · · < a∗
k ≤ b∗

k .

Then, we have for all i = 1, . . . , k

[a∗
i , b∗

i ] = [aj , bj ] for d1 + · · · + di−1 + 1 ≤ j ≤ d1 + · · · + di. (35)

In light of Theorem 4, system (19) is asymptotically equivalent to a block-diagonal system

ẏ = diag(A1(t), . . . ,Ak(t))y for t ∈ R+, (36)

where Ai ∈KCdi ,di
(R+) for i = 1, . . . , k satisfies that

�ED(Ai) = [a∗
i , b∗

i ] for i = 1, . . . , k.

By Proposition 14, to conclude the proof we verify proportional local assignability of the di-
chotomy spectrum by additive perturbation of (36). Note that by virtue of Theorem 16, for 
i = 1, . . . , k the repeated dichotomy spectrum of each subsystem

ẏi = Ai(t)yi, (37)

is proportionally locally assignable by additive perturbation. This implies that for each i =
1, . . . , k there exist δi and 	i such that for each admissible intervals [ai

1, b
i
1], . . . , [ai

di
, bi

di
] sat-

isfying sup1≤j≤di
dH ([ai

j , b
i
j ], [a∗

i , b∗
i ]) ≤ δi there exists Qi ∈ KCdi ,di

(R+) such that ‖Qi‖∞ ≤
	i max1≤j≤di

dH ([ai
j , b

i
j ], [a∗

i , b∗
i ]) and

�r
ED(Ai + Qi) =

(
[ai

1, b
i
1], . . . , [ai

di
, bi

di
]
)
.

Define
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δ := min

{
min

1≤i≤k
δi, min

1≤i≤k−1

(a∗
i+1 − b∗

i )

3

}
, 	 := max

1≤i≤k
	i . (38)

To complete the proof, let [̂a1, ̂b1], . . . , [̂ad, ̂bd ] be arbitrary admissible closed intervals satis-

fying that max1≤i≤d dH ([̂ai, ̂bi], [ai, bi]) ≤ δ. Using the fact that δ ≤ min1≤i≤k−1
(a∗

i+1−b∗
i )

3 , for 
i = 1, . . . , k, there exist exactly di intervals [̂a1, ̂b1], . . . , [̂ad, ̂bd ] whose Hausdorff distance to 
[a∗

i , b∗
i ] is smaller than δ. More precisely, for i = 1, . . . , k we have

max
d1+···+di−1+1≤j≤d1+···+di

dH ([̂aj , b̂j ], [a∗
i , b∗

i ]) ≤ δ.

Since δ ≤ δi , it follows that there exists Qi(t) such that

‖Qi‖∞ ≤ 	i max
d1+···+di−1+1≤j≤d1+···+di

dH ([̂aj , b̂j ], [a∗
i , b∗

i ]) (39)

and

�r
ED(Ai + Qi) =

(
[̂ad1+···+di−1+1, b̂d1+···+di−1+1], . . . , [̂ad1+···+di

, b̂d1+···+di
]
)
. (40)

Let Q(t) = diag(Q1(t), . . . , Qk(t)). Then, by (39) and (35) we have

‖Q‖∞ ≤ max
1≤i≤k

	i max
d1+···+di−1+1≤j≤d1+···+di

dH ([̂aj , b̂j ], [a∗
i , b∗

i ])

≤ 	 max
1≤j≤d

dH ([̂aj , b̂j ], [aj , bj ]).

Furthermore, by (40) we have

�r
ED(A + Q) =

k⋃
i=1

�r
ED(Ai + Qi) =

(
[̂a1, b̂1], . . . , [̂ad, b̂d ]

)
.

The proof is complete. �
4. Examples

In this section, we consider several time-varying linear planar control systems whose free 
systems have dichotomy spectrum consisting either of two spectral intervals (Example 18) or of 
one spectral interval (Example 19). When dealing with these examples, we explain how to use 
the developed theoretical results in the previous section in constructing the desired linear state 
feedbacks in the proportional local assignment of the dichotomy spectrum problem.
Before going to these examples, we recall Kalman’s characterization for uniform complete con-
trollability, see e.g. [23], for linear time-varying control systems

ẋ = A(t)x + B(t)u for t ∈ R+. (41)
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The characterization is stated as that system (41) is uniformly completely controllable if and only 
if there exist positive constants ρ and ϑ such that the controllability matrix W(t0, t0 + ϑ) :=∫ t0+ϑ

t0
XA(t0, s)B(s)B(s)TXA(t0, s)T ds satisfies the inequality

ξTW(t0, t0 + ϑ)ξ ≥ ρ‖ξ‖2 for any t0 ∈R+, ξ ∈Rd . (42)

When we take B(t) = I and the time-varying matrix A(t) is bounded, then system (41) is uni-
formly complete controllable. To see this, let m := supt∈R+ ‖A(t)‖. Then, we have |XA(t, s)| ≤
em|t−s| for all t, s ∈ R+. Consequently, for a fixed ϑ > 0 and for all t0 ∈ R+ we have

ξTW(t0, t0 + ϑ)ξ =
t0+ϑ∫
t0

‖XA(t0, s)ξ‖2 ds

≥
t0+ϑ∫
t0

e2m(t0−s) ds‖ξ‖2

= 1 − e−2mϑ

2m
‖ξ‖2,

which together with (42) shows the uniform complete controllability of (41) in this case.

Example 18. Consider a linear time-varying control system of the following form

ẋ = A(t)x + B(t)u for t ∈R+, (43)

where

A(t) =
(

sin t 0
0 1

2

)
, B(t) = I.

By using the Proposition 17, the dichotomy spectrum of the free system can be computed ex-
plicitly as �ED(A) = {0, 12 }. We now apply the procedure in Case 2 in the proof of Theorem 16
to verify that the dichotomy spectrum of the free system is proportionally locally assignable 
with two constants δ = 1

6 and 	 = 1. Let [a, b], [c, d] be arbitrary admissible closed intervals 
with dH ([a, b], {0}), dH ([c, d], { 1

2 }) ≤ δ. Then, since δ ≤ 1
6 , two intervals [a, b] and [c, d] are 

disjoint and [a, b] ⊆ [−δ, δ] and [c, d] ⊆ [ 1
2 − δ, 12 + δ]. We construct the linear state feedback 

F ∈ KC2,2(R+) of the form F(t) = diag(f1(t), f2(t)), where

f1(t) :=
{

a, if t ∈ [(2m)2, (2m + 1)2), where m ∈ Z≥0;
b, if t ∈ [(2m + 1)2, (2m + 2)2), where m ∈Z≥0;

and
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f2(t) :=
{

c − 1
2 , if t ∈ [(2m)2, (2m + 1)2), where m ∈ Z≥0;

d − 1
2 , if t ∈ [(2m + 1)2, (2m + 2)2), where m ∈Z≥0.

Then, ‖F‖∞ ≤ max{dH ([a, b], {0}), dH ([c, d], { 1
2 })} and as it is shown in the proof of Theo-

rem 16 the dichotomy spectrum �ED(A +BF) of the closed loop system ẋ = (A(t) +B(t)F (t))x

is [a, b] ∪ [c, d].

Example 19. Consider a linear time-varying control system of the following form

ẋ = A(t)x + B(t)u for t ∈R+, (44)

where

A(t) =
(

sin(log(1 + t)) + cos(log(1 + t)) −1
0 0

)
, B(t) = I.

The free system ẋ = A(t)x is considered in [1, p. 95] and [11, Example 3.3] (after a shift of 
the time by 1). It is shown in these references that the Lyapunov exponents are unstable and the 
dichotomy spectrum of the free system is given by �ED(A) = [−√

2, 
√

2]. We now apply the 
construction in Case 1 in the proof of Theorem 16 to show that the dichotomy spectrum of the 
free system is proportionally locally assignable with two positive constants (cf. (29))

δ = 2
√

2

3 + 2
√

2
and 	 = 1 + √

2.

Let [a, b], [c, d] be arbitrary admissible closed intervals with

dH ([a, b], [−√
2,

√
2]), dH ([c, d], [−√

2,
√

2]) ≤ δ.

Then, [a, b] ≡ [c, d]. As was proved in Case 1 in the proof of Theorem 16, the linear state 
feedback F ∈KC2,2(R+) of the form F(t) = diag(f1(t), f2(t)), where

f1(t) =
(b − a

2
√

2
− 1

)(
sin(log(1 + t)) + cos(log(1 + t))

)+ a + b

2

f2(t) = a + b

2

satisfies that �ED(A + BF) = [a, b] and ‖F‖∞ ≤ 	dH ([a, b], [−√
2, 

√
2]).
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