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Abstract The paper presents how to identify natural frequencies and mode shapes of
structures by Operational Modal Analysis (OMA) technique, in which the Frequency
Domain Decomposition (FDD) method is used. This method is an experimental
method only base on the data of measuring the dynamic response of the structures
under the excitation due to ambient forces and operational loads to determine the
vibration characteristics. Measure vibration (acceleration) and determine spectral
density matrix, using the singular values decomposition method of spectral density
matrix to determine the natural frequencies and mode shapes of structures. The calcu-
lation results show that the natural frequencies, the mode shapes form determined by
the OMA technique is consistent with the calculation results according to the theory
and show the reliability of the method.
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1 Introduction

The use of experimental tests to obtain information about the dynamic response of
buildings is an important content in the inspection of the structure and monitoring
of the building’s health. The activity of the building structure is expressed as a
combination of modes, each of which is characterized by a set of parameters (natural
frequency, damping ratio, mode shape) and depends characteristics of geometry,
materials and boundary conditions [3, 4, 7].

Experimental Modal analysis (EMA) determines these parameters from measure-
ments of applied force and structural response [ 7]. EMA have been applied in various
fields, such as automotive engineering, aerospace engineering, industrial machinery
and construction engineering. The determination of dynamic parameters by EMA
technology becomes more difficult in the case of building structures because of their
large size and low frequency range.
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Applying measurable and controllable stimuli is often a difficult work thatrequires
expensive and complex equipment. For this reason, researchers have recently focused
more on the advantages provided by Operational Model Analysis (OMA) techniques
[3,4]. The OMA allows the testing of estimating structural dynamics parameters only
from vibration response measurements. The idea behind OMA is to take advantage of
the natural excitation that is available from surrounding forces (wind, vehicle, shock,
etc.) to replace artificial stimulation. Since the OMA only requires the measurements
of the structure’s dynamic response under operating conditions, when subjected to
ambient stimulation, it is also called different names, such as identifying surrounded
vibration pattern or analyze only the output model (Output-only). OMA techniques
include methods such as frequency domain decomposition method (FDD) [4, 5],
stochastic subspace identification (SSI) method [8].

The paper presents the theoretical basis to determine the dynamic parameter of
the structure according to the theory, vibration measurement test of structure and
determine the natural frequencies, the mode shapes of the steel beam structure by
OMA technique uses frequency domain decomposition (FDD) method.

2 Methods

2.1 Analytical Method to Determine the Dynamic Parameters
of Cantilever Beams

Consider a beam structure have any distribution mass m(x), with distributed load q
(x,t) [1] (Fig. 1).

Differential equation for free vibration without considering the effect of resistance
is written in the form.

d? d*X 5
E[Ej(x)ﬁ] =wmkx)X (1)

In which, E is the elastic modulus of the beam material, J (X) is the moment of
inertia of the beam cross-section, X is the bending form of beam structure (mode
shape) only depends on X, w is natural frequency, m(x) is the mass per unit length,
X is the distance from the fixed end.

Fig. 1 Analytical diagram q (x,t)
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If beams have constant stiffness and mass evenly distributed, we have:

— 0 —=X = 2)

With the above equation and the boundary conditions corresponding to the
cantilever beam, we can write the formula to calculate the specific vibration frequency
as follows:

EJ

s 3)

w; = Oli2
In which, E is the elastic modulus of the beam material, J is the moment
of inertia of the beam cross-section, m is the mass per unit length, [/ is the
length of the cantilever beam. «; is the coefficient, get the values o; =
1,875; 4,694; 7,885 ;..;mw(2i +1)/2.
Corresponding to the natural frequency w;, we have the ith mode shape.

2.2 Frequency Domain Decomposition (FDD) Method

Frequency domain decomposition is proposed by Brincker et al. [5]. This method
decomposes the spectral density matrix at each frequency into singularity values and
singularity vectors by the singular value decomposition (SVD). Frequency domain
decomposition is an extension of the basic frequency domain technique or commonly
known as the Pick Peaking technique, in which natural frequencies is identified by
finding peaks in the spectral density matrix.

The relationship between unknown input x(t) and measured response output y(t)
can be expressed as follows:

[Gyy ()] = [H (@) [Grx (@) ][H(0)]" 4)

where:
[Gyx (w)] is the Power Spectral Density (PSD) matrix of the input;
[G,y(w)]is the PSD matrix of the responses;
[H (w)]* is the complex conjugate matrix of Frequency Response Function (FRF);
[H (w)]" is the transpose matrix of FRF.
The FRF can be written in partial fraction

N

Rl | [RJ*
[H ()] = le o e 1 5)

Ay = —Ok + joar (6)
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where:n is the number of modes, Ay is the pole of the kth mode shape, o} is minus
the real part of the pole and wg; is the damped natural frequencies of the k' mode
shape.

[R;] is the residue expressed as follows.

[Ri]= iy )

where: ¢ is the mode shape vector, y, the modal participation vector.
Suppose the input is white noise, its power spectral density is constant or.
[Gix(w)] = C, (C is constant). Formula (4) is rewritten as follows:

R, R, ] [R,] R, 1"
Gv (w)]—ZZ[‘]w_)\k ]@—XZ]C[]Q)—)\.I{_}_]Q)—)‘-;] ®

Multiplying the two partial fraction factors and making use of the Heaviside
partial fraction theorem, after some mathematical manipulations, the output PSD
can be reduced to a pole/residue form as follows:

N

_ [Ax] [A}] [ Bi ] [B;]
[ny(w)]_;jw—xk+jw—x;§+—jw—xk+—jw—xz ®

where: [A] is the kth residue matrix of the output PSD.

At a certain frequency w only a limited number of modes will contribute signifi-
cantly, typically one or two modes. Thus, in the case of a lightly damped structure,
the response spectral density can always be written:

s ol | diojor” 10

G =
Gy (@)] jo— i jo— A

keSub(w)

where: k € Sub(w) is the set of modes be denoted at a specific frequency, ¢y is the
mode shape vector and A is the pole of the kt4 mode shape.

The Frequency domain decomposition technique is based on the singular value
decomposition of the Hermitian response spectral density matrix.

(G, (@)] = [U][S]U]7 (1)

where: [S] is a diagonal matrix holding the scalar singular values, [U] is a unitary
matrix holding the singular vectors and [U]# is a Hermitian matrix.

From vibration measurement data of the structure (acceleration), we calculate
the spectral density matrix [G,, (w)] and decompose the singular value according to
formula (11) to determine the natural frequencies of the structure.
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Table 1 The physical No. Parameter Value Unit
parameters of the test
structure 1 Length 710 mm

2 Density weight 7850 kg/m?

3 Modulus of elasticity 2.03 x 103 Mpa

4 Width 60 mm

5 Height 8 mm

3 Test on Real Structures

3.1 Test Objectives

The test to obtain dynamic responses (acceleration) of steel beam structures at
nodes over time. The result of vibration measurement is used to identify the natural
frequencies, mode shapes of the structure.

3.2 Test Model

Test structure is a steel beam. The physical parameters of the structure are shown in

Table 1.

3.3 Test Equipment

The equipment used in the test is listed in Table 2.

Table 2 The physical parameters of the test structure

No. |Equipment Code Company Measuring range Quantity
name

1 Vibration NI National Instrument | Multi -channel 01
measurement cDAQ-9137
equipment

2 Accelerometer | PCB 352C68 |PCB Group + 50 g (100 mV/g) |01

3 Accelerometer | PCB 353B33 |PCB Group + 50 g (100 mV/g) |01
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3.4 Test Layout

The test layout for determining the natural frequencies of the steel beam is arranged as
shown in Fig. 2. In which, using two accelerometer sensors to measure the vibration
of the beam, the position of the sensors is shown in Fig. 3, the NI cDAQ-9137
Connected with accelerometer sensors and display. Accelerometer measurements
are collected and displayed through the NI Signal Express software pre-installed.
Proceed with the installation and install parameters for measuring equipment,
Create vibration for the structure by any stimulus is large enough for the structure
to work in the elastic stage. The measured data are recorded as the value of the
acceleration overtime at the location where the acceleration is mounted.

Fig. 2 Experiment setup of fyrcnce PCB3s3Ba3 STEEL BEAM
the real structure - !

~

SIGNAL WIRE mipr %

Fig. 3 The position of the N 710 \
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A A ATA
@
13k g \o o
\ T
PCB352C68 PCB353B33

- Note: Unit of measure is millimeter
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4 Results

4.1 Vibration Results of the Structure

After measuring the vibration of the structure, acceleration at the nodes on the steel
girder structure is obtained over time. The data of one measurement is shown in
Figs. 4 and 5.
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Fig. 4 Results of acceleration at the middle of the beam
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Fig. 5 Results of acceleration at the free position of the beam
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Fig. 6 Power spectral density (PSD)
Table 3 Comparison of natural frequencies between methods
No. Mode FDD (Hz) EMA (Hz) Error (%) Theory (Hz) Error (%)
1 1 12.75 12.8 0.4 12.9 1.2
2 2 81.0 79.8 1.5 80.9 0.1
3 3 227.3 228.6 0.6 226.6 0.3
4 4 439.5 446.1 1.5 444 1.01
5 5 733.5 735.6 0.3 734 0.07

4.2 The Ildentification Results of Natural Frequencies

With the acceleration data obtained from the experiment, calculate and estimate
the power spectral density according to Welch’s estimation method and resolve the
singularity values by SVD algorithm according to formula (8). We determine the
natural frequencies of the structure corresponding to the positions of the maximum
power spectral density function. Results of identifying the five natural frequencies
are shown in Fig. 6.

Comparing the natural frequencies obtained by the FDD method and the results of
the calculation of the natural frequencies by the experimental modal analysis (EMA)
method [2] and according to theory [1] are shown in the Table 3.

4.3 Identify Mode Shapes

Most OMA methods provide their results in the form of complex eigenvalues and
complex eigenvectors. Since the estimates of specific vibrational-form are in the form
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of complex vectors, a distinction is needed between the real modes, characterized by
the real oscillator vector real values and the complex modes. From SVD singularity
resolution, we can determine the complex eigenvectors corresponding to the corre-
sponding frequencies, at the specific vibration frequency values there are specific
vibrations of the structure, real part of the vector particularly is the amplitude of the
structure vibration at the locations put the accelerometer head.

To accurately determine the specific vibration pattern of the structure, it is neces-
sary to use many vibration probes located at different positions. Because only two
accelerometers are used, it is necessary to carry out many measurements, the fixed
sensor is used as a reference and move the other sensor at different positions. Through
the measurements, determine the amplitude of the vibration at the positions and
standardize and determine mode shapes of the structure.

Take three measurements, the position of the accelerometer in the measurements
is shown as the Fig. 7.

From the measured data, calculated according to FDD, we get the value of
amplitude of variation corresponding to the types of vibration in Table 4.

Carry out the combination of amplitudes of the same vibration form separately
and draw on the proportions, we get the mode shapes as follows (Fig. 8).

From the results of identifying the natural frequency and mode shapes form by
OMA technique, it shows that the natural frequency is very close to the results
calculated by the forced excitation method and analytical method, the mode shapes
as calculated according to theory. Thus, shows the consistency between theory and
experiment and confirms the reliability of the method.
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(c) Diagram of 2"¢ measurement (d) Diagram of 3™ measurement

Fig.7 Experimental diagram to determine the specific vibration pattern
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Table 4 The amplitude value

T.D. Tran et al.

Measured |Mode | Natural Range of vibration Amplitude normalization
times frequency | gepgor Sensor Sensor position | Sensor
(Hz) position 01 | position 02 | 01 position 02
1 1 12.75 —0.9327 | - 0.3606 1 0.387
2 81 —0.7887 |0.6132 1 - 0.777
3 227.3 —0.9935 |0.1141 1 —0.115
2 1 12.75 — 0.8204 | — 0.5659 1 0.69
2 81 —0.9918 |0.1253 1 —0.126
3 227.3 — 0.8143 ]0.5802 1 - 0.713
3 1 12.75 —0.9908 | —0.1352 1 0.136
2 81 — 0.8361 |0.5466 1 — 0.654
3 227.3 —0.7323 | - 0.681 1 0.93

Fig. 8 Mode shapes of the

beam a Ist mode shape,

b 2nd mode shape, ¢ 3rd

mode shape

5 Conclusion

-

The paper presents the content of the Operational model analysis (OMA) method,
conducting tests on real structures, and identifies the natural frequencies and mode
shapes of the steel beam structure.
The results of identifying are consistent with the natural frequency obtained by
the forced excitation method and theoretically calculated, with small errors and
mode shapes consistent with the calculation theory. This shows the reliability of
the experimental and the identification method.
Operational model analysis technique can be developed for the identification of
the damping ratio of structures, and for application in monitoring, diagnosing the
health of structures and applications in the optimization of shock absorbers. Passive
fluctuations, reduce construction damage when it is affected by earthquakes.
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