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Abstract. As key equipment for lifting and transporting duties, cranes are used 

in various industrial fields in modern productions. Thus, the dynamic problem of 

such crane system is commonly encountered in the design process. This paper 

presents a Monte Carlo-based global sensitivity analysis of the dynamic model 

of a bridge crane system using the surrogate model technique. To this regard, 

physical modeling and differential equation motion of a coupled crane system is 

first derived using the Lagrange equation. Then, the numerical solution is offered 

by using the Newmark-β integral method for characterizing dynamic responses 

of the crane system involving bridge beam, trolley, and payload. In order to com-

pute Sobol sensitivity indices, the input-output correlation is formulated by a neu-

ral network-surrogate model formed from the numerical solutions. Finally, for 

the considered configuration, the importance levels of input variables with the 

corresponding estimated values of the first and total order sensitivity functions 

are demonstrated. 
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Monte Carlo simulation, neural network-based surrogate. 

1 Introduction 

Owing to the potential functions, overhead or bridge-type cranes (Fig 1.a) play a sig-

nificant role in the modern production lines [1]. Vibration of structures of such system 

subjected to moving loads is commonly encountered in engineering. Cranes are typical 

of nonlinear mechanical systems in which the motion of the trolley normally results in an 

undesirable swing of the payload. The dynamic response of this system could be captured 

by analyzing the girder vibration under a trolley moving without [2, 3] and with [4-6] 

considering the payload swing. 

Generally, the dynamic response of a certain crane system is influenced by its model 

involving factors (e.g., geometric or material properties, loading conditions). In the 

conventional dynamic analysis of a whole crane or its component, model parameters 

are commonly treated as deterministic ones [2-6]. However, in general, the component 

of this system such as beam, trolley, and payload the have nondeterministic character-

istics because of uncertainties in the construction and manufacturing processes as well 

as due to aging and operational conditions. Probabilistic methods [7, 8] (such as Monte-
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Carlo simulations, perturbation, and stochastic finite element method) are widely used 

for understanding the static and dynamic analysis of structures with random parameters. 

Thanks to these frameworks, a better description of structural dynamic responses or 

reliability based-design optimization can be found. For simply structure, system re-

sponse can be deduced directly from the solving motion equation [9]. However, the 

more complex system with a higher input number should require a meta-model such as 

polynomial or machine learning surrogates. 

The present work aims at studying the dynamic behavior of the crane system within 

uncertain parameters. A neural network-based surrogate is first constructed for charac-

terizing dynamics behavior based on the reference data estimated numerically. Then 

the sensitivity functions of the input variables on the dynamic responses are estimated 

using Monte Carlo simulations to measure the influence of these inputs on the uncer-

tainty margins of the system response. 

2 Mathematical modeling and dynamic response 

A model of a bridge crane system is depicted in Fig. 1. The main girder or beam of 

the crane is introduced by a flexible body with its vertical vibration under consideration. 

This girder is simply supported and modeled by the unit mass mb and the length of L. 

The properties of the beam are defined by Young’s modulus E and an inertia moment 

I. The crane trolley is assumed as a point mass with a mass of mc traveling at a speed 

of v, while the payload mp is assumed to swing angle θ around the trolley center. The 

suspension cable is simplified without mass, and the rope length of l is kept constant 

during the trolley moving. 

 
 

Fig. 1. Crane system [10]  (left) and its dynamic model (right) within the swing of payload. 

The vertical deflection of the flexible girder can be formulated as follows: 
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where i is the ith modal of the simply supported beam, while qi(t) and N are the gener-

alized coordinates and coordinate numbers of the elastic displacement of the main 

girder, respectively.  
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Using the Lagrange equation, the differential equation motion of the bridge crane 

was established. The kinetic energy of the coupled system T, includes the girder kinetic 

energy, the trolley kinetic energy, and the payload kinetic energy, can be expressed by: 
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The total potential energy of the coupled crane system V is: 
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By applying the Lagrange equation, the motion of the system can be derived as: 

,  Mu Ku Cu P  (4) 

where u , u , and u  are the acceleration, velocity, and displacement vector with
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= q q qu .  M, C, and K denote the mass, damping, and stiffness matrices of 

the system, and P is a time-dependent loading vector. They are detailed as: 
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where[ ]i is a matrix having all duplicate rows of  1 2[ ] ...i N    . 

Herein, we use the Newmark- method to solve the matrix equation (4), the accel-

eration and velocity vectors of the system at (t+t) can be discretized as follows [11]: 
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in which the velocity vector u at a time (t+t) and coefficients are estimated as: 
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3 Neural network surrogate and sensitivity analysis 

Neural network surrogate is used 

to construct the relation between the in-

put variables with the output or the sys-

tem response. The reconstructed neural 

network is shown in Fig. 2. This archi-

tecture consists of four layers, includ-

ing an input layer (i.e., EI, mb, mc, mp, 

l), two hidden layers, and an output 

layer (i.e., u and ü). The bias or the last 

neuron in the three left layers is denoted 

by terms (+1). 

In order to generate the reference 

data for NN training, the above-de-

scribed procedure for estimating the 

system dynamics is implemented. 

 

Fig. 2. NN architecture. 

The NN variables could typically be a set of raw data, so a normalization task is 

required to ensure such data relies on the same range of the activation function used 

(e.g., [0, 1] for a case of the standard sigmoid, f(v)=1/[1+exp(-v)]). Herein, the input 

and output are normalized using their minimum and maximum values as, 

min

max min
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The constructed meta-model serves a great support in terms of the cost of function 

call for a sensitivity analysis in which the effects (e.g., sensitivity index) of an input 

factor on the output are measured. In the Sobol’s approach, the idea for computation of 
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sensitivity indices is to decompose the function y(t,x) into terms of increasing dimen-

sionality as [12]: 

1
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where x = (EI, mb, mc, mp, l) is input variable vector defined on the domain Kd. 

We use the Monte-Carlo based numerical procedure to compute the full set of the 

first and total effect sensitivity indices for the considered model. First, we generate two 

matrices of data (A and B of size Nd), and a matrix Ci formed by all columns of B 

except the ith column, which is taken from A. Then, the sensitivity indices can be esti-

mated as [13]: 
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with 
( )

, , i

j

A B Cx are row vectors of the sampling matrices A, B, and C, respectively. 

4 Results and discussion 

The bridge crane configuration has the follow parameters [14, 15]: L = 6 m, mb = 

163.2 kg/m, EI = 4.50104 Nm2, mc = mp = 97.9 kg/m, l = L/3 (see Fig. 1a). Here, the 

initial swing angle of the payload is (0) = - 0.01 rad, and trolley speed is v = 0.4 m/s. 

  

Fig. 3. Dynamic response of the crane system: (a-c) beam midpoint, and (d) payload. 
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From the curves in Fig. 3 that the solution obtained by considering only the first 

mode (N=1) is very close to that obtained by considering ten first modes (i.e., N=10) 

only for displacement and velocity responses (Fig. 3a-b), while there is a great differ-

ence in terms of acceleration behavior (Fig. 3c). This suggests that the high modes can-

not be neglected for such factor. The reference data for NN model are produced within 

the dynamic behavior of ten first modes. Using the fast Fourier transfer for the swing 

angle of the payload, the obtained swing frequency of  0.333 Hz is slightly lower than

1 / 2 /
p

f g l . The above observations are consistent with Refs. [10, 15]. 

 

Fig. 4. Performance of the proposed NN model within the training dataset. 

In the established NN architecture, both hidden layers have ten neurons. To generate 

data for the NN model, the sampling dataset of 2104 data points. For training and 

testing purposes, the data is randomly divided into three distinct sets: a training set (80 

% of the data), a validation set (10 %), and a test set (10 %). Here, as a demonstration, 

we consider two output metrics as the maximum displacement and acceleration of the 

girder. For the first output umax, regression graphs for the dataset shown in Fig. 4a-c 

clearly demonstrate good predictability of the proposed NN model, in which the output 

values perfectly track the target ones (i.e., root mean squared error is approximately 1). 

It can be noticed that we only use a sampling of 103 points for such case. However, in 

Fig. 4d-f for ümax, the results show a lower degree of correlation (i.e., 0.956). This 

confirms again the nonlinear dynamic feature of the considered system. 

Now, we perform the sensitivity analysis on the established NN model. Fig. 5 pre-

sents the calculation results of sensitivity index S and ST with the output metric of umax 

(left panel) and ümax (right panel), respectively. Based on the investigated configura-

tions, the properties of the girder (EI) and the trolley mass (mc) are the most important 
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factors, while others related to the payload (i.e., mp, l) and mass mb should be neglected 

except in the effect of interaction between mb with others. In addition, for velocity out-

put withSi > 0.994 it is seen that all high order sensitivity indices can be ignored, 

while for acceleration behavior withSi < 0.745, we should consider high order effects 

or interactions of the girder properties including its mass per length unit mb. 

Fig. 5. Results of sensitivity index S and ST with the output of umax (a) and ümax (b). 

5 Conclusion 

This work deals with the sensitivity analysis for a dynamic model of a crane system 

using the surrogate technique and MC simulations. The global sensitivity analysis 

method is applied to the dynamic model through the constructed NN model. The con-

structed NN model offers an accurate prediction of dynamic behavior, whereas time 

consumption for NN simulations is significantly reduced compared with numerical sim-

ulations (e.g., a computing six-hour task can be undertaken by the NN model in less 

than a second). The results reveal that the sensitivity functions of input variables are 

highly dependent on output metrics (i.e., vertical displacement and acceleration). Based 

on the investigated configurations, the properties of the girder (EI) and the trolley mass 

(mc) are the most important factors, while others (e.g., related to the payload) play an 

important role. In addition, the system acceleration behavior as the output, we should 

consider high order effects or interactions of the girder properties including its mass 

distribution. For both cases, the uncertainties in factors related to the payload seem to 

have no effect on the system response. 
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