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Abstract In this work, the Cosserat model is used to simulate non-stationary processes in
various structures of composite materials. A non-stationary axisymmetric problem of the
propagation of kinematic perturbations from a spherical cavity in a space filled with a homo-
geneous isotropic pseudo-elastic Cosserat medium is considered. The motion of the medium
is represented by a set of three equations written in a spherical coordinate system with the
origin at the center of the cavity and nonzero components of the displacement vector and
rotation field potentials. At first, it is supposed that the plane wave or spherical wave’s front
makes contact with the hollow surface. The initial-boundary value issue is mathematically
formulated in dimensionless form. A serial expansion of Legendre and Gegenbauer polyno-
mials, as well as the Laplace transform in time, is utilized to obtain the solution. The issue is
simplified to a set of independent ordinary differential equations with the Laplace operator
applied to the series coefficients. Due to the complexity of images of the series coefficients,
to determine the originals in the linear approximation, the Laurent series for images in the
vicinity of the start time is employed. The findings indicate that the solutions found using limit
techniques are consistent with previously published results for the classical elastic medium.
For the granular composite material of aluminum fractions in the epoxy matrix, examples of
computations are presented.

1 Introduction

The majority of non-stationary disturbance propagation research [1, 2] is now done in a tra-
ditional elastic medium. As a result, there are very few papers on this subject for material
models that account for angular momentum. Therefore, these models are used to investi-
gate the functioning of various composite material constructions, including various kinds of
weapons .
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The Cosserat brothers investigated the general asymmetrical elastic theory [3]. When
analyzing the stress state of a solid deformable continuum, it is essential to include moment
stresses that create asymmetric tensors, according to the Cosserat brothers’ idea, which takes
into consideration the rotating interaction of material particles. There are many fascinating
scientific studies connected to this innovation published, readers may discover them in the
papers [4–9]. The current scenario of generalized continuum mechanics and its future possi-
bilities are addressed in the works [2] and [3], in which the monograph [11] is concerned with
the formulation, analysis, and development of the moment model of a linearly deformable
medium with strong effects. The possibility of the wave nature of changes in stresses and
deformations has been established, the gradients of which are manifested at the level of sim-
ple stresses and strains in the form of new generalized concepts—bulk moment stresses and
the corresponding all-round tension deformations—compression and rotation, while Smolin
et al. [10] provided an overview of models for the mechanics of generalized medium, with
a focus on the Cosserat medium. This model is given to describe the plastic deformation of
metallic materials with sub-microcrystalline and nanostructures. The papers [12–14] explore
nonlinear moment theories of elasticity. The equations of nonlinear dynamics, energy laws,
and wave impulse change for mediums with moment stresses are obtained in [12, 13]. The
propagation characteristics of planar periodic and solitary waves are studied. The issue of
their stability in the face of transverse disturbances is addressed. Cao and colleagues [14]
discussed the application of Cosserat medium dynamics to the nonlinear issue of out-of-plane
dynamics of elastic rods. In works [15–17], the issues of the Cosserat thermo-elastic medium
are addressed, where Bîrsan [15] addressed the initial-boundary value issue of the linear
dynamics of thermo-elastic Cosserat shells with cavities. The mutual and unique theorems of
the solution are established. The problem’s ongoing reliance on external volumetric forces,
temperature effects, and starting circumstances are also examined. Kumar and Gupta [16]
investigated wave propagation in a transversally isotropic moment-thermo-elastic space. In
Nistor [17], acceleration waves are investigated as moving surfaces on which acceleration
discontinuities and temperature gradients suffer within the context of the moment theory of
thermoelasticity for an anisotropic body. Liu et al. [18] addressed stress concentration issues
that take into consideration instant effects. The issue of a plane with a circular hole uniform
in infinite tension in one direction is addressed in the article within the context of the Cosserat
theory. The system of equations for the stress function and the torque stress function is solved
by isolating the variables. The solution is given in finite form, and it includes certain functions
that satisfy ordinary differential equations and are responsible for the stress concentration at
the hole’s border.

Kumar and Sharma [19] also considered the steady-state mechanisms of wave propagation
in the Cosserat medium. This paper looks at plane waves in a moment-thermo-elastic medium
without dissipating the energy that fills the half-space. The coefficients of reflection of waves
corresponding to various angles of incidence at isothermal half-space borders are calculated.
The papers [20–22] addressed non-stationary issues of moment elastic medium. The dynamic
issue of the moment theory of elasticity concerning a finite length crack under normal stress
on the banks is reduced to a set of singular integral equations for displacements and rotations
in [20], which are solved numerically. Furthermore, in the paper [21], the dynamic issue
for micro-polar elastic bodies is studied utilizing the eigenvalues technique. In this instance,
Fourier transforms in spatial coordinates and Laplace transforms in temporal coordinates
are used to address the issues. Saxena and Dhaliwal [22] considered a dynamically linked
axisymmetric issue of the micro-polar theory of elasticity for an isotropic medium infinite in
the radial direction. In recent years, numerous scientists have investigated the computation

123



Eur. Phys. J. Plus        (2021) 136:1199 Page 3 of 16  1199 

Fig. 1 The model of space filled with the Cosserat pseudo-continuum with a spherical cavity

of plate and shell structures using a variety of various methodologies, and they have obtained
some useful discoveries [23–29].

However, several non-stationary problems for moment medium (particularly moment
medium with constrained rotation) in the case of spherical interfaces have not yet been
sufficiently studied, including the propagation of non-stationary perturbations from a spher-
ical cavity, from the boundary of a solid sphere, and the diffraction of non-stationary waves
by a spherical cavity.

The purpose of this paper is to formulate and establish analytical solutions to two-
dimensional problems involving the propagation of unsteady axisymmetric boundary dis-
turbances in a “non-classical” elastic medium with spherical boundaries, the model of which
is one of the variants of the asymmetric theory of elasticity—the Cosserat pseudo-continuum.

The remainder of this paper is organized as follows. Section 2 delves into the governing
equations of the suggested issues. Section 3 introduces the method for defining original
functions. The simulation results and comments are presented in Sect. 4. The novel findings
of this work are drawn in Sect. 5.

2 Governing equations

2.1 Formulations

The space filled with an isotropic homogeneous pseudo-continuum and a spherical cavity of
radius R0 and center O is considered as shown in Fig. 1. The momentum vector equation for
displacement in the absence of mass force has the following form [30, 31]:

ρ
∂2u
∂t2 � μ�u + (λ + μ)grad div u + 1

/
4(γ + ε)rot rot �u (1)

in which ρ, λ, and μ are the density and the elastic coefficients, respectively; γ and ε are the
additional physical properties of the medium; � is Laplace operator; t is the time. A spherical
coordinate system r, θ , and υ with center O is used in this proposed model.

It assumes that the model is axially symmetric, which implies that the unknown functions
are solely dependent on time, radius r, and angle θ . Using the decomposition of the displace-
ment field into potential and vortex components, the tangential ν, normal w displacements
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through the scalar potential ϕ, and the nonzero component of the vector potential ψ are
expressed as follows:

ur � w � ∂ϕ

∂r
+

1

r

(
∂ψ

∂θ
+ ψ ctgθ

)
, uθ � v � 1

r

(
∂ϕ

∂θ
− ψ

)
− ∂ψ

∂r
, uϑ ≡ 0 (2)

and Eq. (1) is replaced by the following equivalent system:

ϕ̈ � �ϕ

ψ̈ − 1 − κ

2

(
�ψ − ψ

r2 sin2 θ

)
+

η + ξ

4

(
�ψ∗ − ψ∗

r2 sin2 θ

)
� 0

ψ∗ � �ψ − ψ

r2 sin2 θ

� � 1

r2

[
∂

∂r

(
r2 ∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin

∂

∂θ

)]
(3)

The coordinates of the vector of the angle of rotation are related to the displacements as
follows:

ωr � ωθ ≡ 0, ωϑ � ω � 1

2r

[
∂

∂r
(rv) − ∂w

∂θ

]
(4)

The components of the tensor of deformations and bending-torsion are defined by the
following equations:

εrr � ∂w

∂r
, εrθ � ∂v

∂r
− ω, εθr � 1

r

(
∂w

∂θ
− v

)
+ ω,

εθθ � 1

r

(
∂v

∂θ
+ w

)
, εϑϑ � 1

r
(w + vctgθ);

(5)

χrϑ � ∂ω

∂r
, χθϑ � 1

r

∂ω

∂θ
, χϑr � −ω

r
, χϑθ � −ω

r
ctgθ. (6)

Physical relations for the considered medium are defined as follows:

μrϑ � ξ+χrϑ + ξ−χϑr , μθϑ � ξ+χθϑ + ξ−χϑθ , μϑr � ξ+χϑr + ξ−χrϑ ,

μϑθ � ξ+χϑθ + ξ−χθϑ , ξ+ � η + ξ, ξ− � η − ξ
(7)

σrr � εrr + κ(εθθ + εϑϑ), σrθ � σrθs − σrθ∗, σθr � σrθs + σrθ∗,

σθθ � κ(εrr + εϑϑ) + εθθ , σϑϑ � κ(εrr + εθθ ) + εϑϑ , σrθs � 1 − κ

2
(εrθ + εθr ),

σrθ∗ � 1

2

{
∂μrϑ

∂r
+

1

r

[
∂μθϑ

∂θ
+ 2μrϑ + μϑr + (μθϑ + μϑθ )ctgθ

]}
(8)

where σαβ and μαβ are the components of stress tensors and moment stress tensors; σαβs

and σαβ∗ are the symmetric and asymmetric components of the stress tensor. It assumes that
there are no perturbations at infinity. Therefore, the boundary conditions are specified at the
surface of the cavity. In the general case, the boundary conditions will be in the form of
displacements (ur , uθ and uϑ ≡ 0) or are given in the form of stresses, where we use two
of the following conditions on stresses (σrr , σrr , σθr , σθθ , σϑϑ , μrϑ , μθϑ , μϑr , μϑθ ) and
uϑ ≡ 0. However, in this work, the author has chosen the boundary conditions in the simple
to reduce the computational volume:

w|r�1� w0(θ, τ ), v|r�1� 0, ω|r�1� 0 (9)
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The initial conditions are defined as follows:

ϕ|τ�0� ψ |τ�0� ϕ̇|τ�0� ψ̇ |τ�0≡ 0. (10)

in relations (2)–(10) and for further investigations, dimensionless quantities are used, which
are indicated by strokes omitted in the subsequent presentation as

r ′ � r

R0
, w′ � w

R0
, v′ � v

R0
, ϕ′ � ϕ

R2
0

, ψ ′ � ψ

R2
0

, χ ′
αβ � R0χαβ, σ ′

αβ � σαβ

λ + 2μ
,

μ′
αβ � μαβ

(λ + 2μ)R0
({α, β} � {r, θ, ϑ}), η � γ

(λ + 2μ)R2
0

, ξ � ε

(λ + 2μ)R2
0

,

κ � λ

λ + 2μ
, τ � c1t

R0
, c1 �

√
λ + 2μ

ρ
, c2 �

√
μ

ρ
, γm � c1

cm
(m � 1, 2),

herein c1 and c2 are the speeds of propagation of tension-compression waves and deformation
in a classical elastic medium.

2.2 Theoretical formulation

2.2.1 Representation of solutions in the form of rows

To construct a solution to the initial-boundary problem that given in Eqs. (2)–(10), the method
of incomplete separation of variables, expanding the required functions, and the right part
of the boundary conditions (9) into series in terms of Legendre Pn(cos θ), and Gegenbauer
polynomials C3/2

n−1(cos θ) are employed [32–34]:

⎛

⎜⎜
⎝

ϕ

w

εrr
σrr

⎞

⎟⎟
⎠ �

∞∑

n�0

⎛

⎜⎜
⎝

ϕn(r, τ )

wn(r, τ )

εrrn(r, τ )

σrrn(r, τ )

⎞

⎟⎟
⎠Pn(cos θ),

⎛

⎜⎜⎜⎜⎜⎜
⎝

ψ

v

ω

εrθ

εθr

⎞

⎟⎟⎟⎟⎟⎟
⎠

� − sin θ

∞∑

n�1

⎛

⎜⎜⎜⎜⎜⎜
⎝

ψn(r, τ )

vn(r, τ )

ωn(r, τ )

εrθn(r, τ )

εrθn(r, τ )

⎞

⎟⎟⎟⎟⎟⎟
⎠

C3/2
n−1(cos θ)

(11)
⎛

⎜⎜
⎝

εθθ

εϑϑ

χθϑ

χϑθ

⎞

⎟⎟
⎠ �

∞∑

n�0

⎛

⎜⎜
⎝

εθθn(r, τ )

εϑϑn(r, τ )

χθϑn(r, τ )

0

⎞

⎟⎟
⎠Pn(cos θ) +

cos θ

r

∞∑

n�1

⎛

⎜⎜
⎝

vn(r, τ )

−vn(r, τ )

ωn(r, τ )

rχϑθn(r, τ )

⎞

⎟⎟
⎠C3/2

n−1(cos θ),

⎛

⎜⎜
⎝

μθϑ

μϑθ

σθθ

σϑϑ

⎞

⎟⎟
⎠ �

∞∑

n�0

⎛

⎜⎜
⎝

μθϑn(r, τ )

μϑθn(r, τ )

σθθn(r, τ )

σϑϑn(r,τ )

⎞

⎟⎟
⎠Pn(cos θ) +

cos θ

r

∞∑

n�1

⎛

⎜⎜
⎝

2ηωn(r, τ )

2ηωn(r, τ )

(1 − κ)vn(r, τ )

(κ − 1)vn(r, τ )

⎞

⎟⎟
⎠C3/2

n−1(cos θ)

(12)

The functions w0 and χrϑ , χϑr , μrϑ , μϑr , σrθ , σθr are represented similarly to
Eq. (2.1???) in the form of series in the Legendre and Gegenbauer polynomials.
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By substituting Eqs. (11) and (12) into Eq. (3), the following equations for the coefficients
of the series for the potentials are obtained:

ϕ̈n � �nϕn (n ≥ 0),

ψ̈n � 1 − κ

2
�nψn − 1

4
(η + ξ)�2

nψn (n ≥ 1),

�n � ∂2

∂r2 +
2

r

∂

∂r
− n(n + 1)

r2

(13)

The series coefficients for the remaining components of the stress–strain state correspond-
ing to Eqs. (2) and (4)–(8) are determined as follows:

wn � ∂ϕn

∂r
− n(n + 1)

r
ψn, vn � ϕn − ψn

r
− ∂ψn

∂r
, ωn � 1

2

(
vn − wn

r
+

∂vn

∂r

)
(14)

εrrn � ∂wn

∂r
, εθθn � 1

r
[wn − n(n + 1)vn], εϑϑn � wn

r
, εrθn � εθrn � 1

2

(
∂vn

∂r
+

wn − vn

r

)

(15)

χrϑn � ∂ωn

∂r
, χθϑn � −n(n + 1)

ωn

r
, χϑθn � −χϑrn � ωn

r
(16)

μrϑn � ξ+
∂ωn

∂r
− ξ−

ωn

r
, μθϑn � −n(n + 1)ξ+

ωn

r

μϑrn � −ξ+
ωn

r
+ ξ−

∂ωn

∂r
, μϑθn(r, τ ) � −n(n + 1)ξ−

ωn

r

(17)

σrrn � ∂wn

∂r
+

κ

r
[2wn − n(n + 1)vn],

σrθn � σrθns − σrθn∗, σθrn � σrθns + σrθn∗σrθns � 1 − κ

2
(εrθn + εθrn),

σrθn∗ � 1

2

(
∂μrϑn

∂r
+

μθϑn + μϑrn + 2μrϑn

r

)
+ η

ωn

r2

σθθn � κ
∂ωn

∂r
+

1

r
[(1 + κ)ωn − n(n + 1)vn]

σϑϑn � κ
∂ωn

∂r
+

1

r
[(1 + κ)ωn − n(n + 1)κvn]

(18)

The corresponding initial and boundary conditions according to Eqs. (9) and (10) have
the following form:

wn |r�1 � w0n(θ, τ ), vn |r�1 � 0, ωn |r�1 � 0; (19)

ϕn |τ�0 � ψn |τ�0 � ϕ̇n |τ�0 � ψ̇n
∣∣
τ�0 ≡ 0. (20)

2.2.2 Determination of coefficients of series in the Laplace transformations

The Laplace transform in time to differential Eqs. (13) and taking into account conditions
(19) is applied as follows:

∂2ϕL
n (r, s)

∂r2 +
2

r

∂ϕL
n (r, s)

∂r
−

[
n(n + 1)

r2 + s2
]
ϕL
n (r, s) � 0; (21)

(η + ξ)�2
nψ

L
n (r, s) − 2(1 − κ)�nψ

L
n (r, s) + 4s2ψ L

n (r, s) � 0. (22)

in which s is the parameter of transform, and the subscript “L” denotes a transformant.
The general solution of Eq. (21) has the form:

ϕL
n (r, s) � r−1/2

[
C (1)
n1 (s)Kn+1/2(rs) + C (1)

n2 (s)In+1/2(rs)
]

(23)
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where C (1)
n1 and C (1)

n2 are arbitrary constants of integration; Iν(z) and Kν(z) are modified
functions Bessel of the order of the first and second kind [35].

To solve Eq. (22), the following equation is considered:

�nψ
L
n � λψ L

n (24)

Then, the following characteristic equation is obtained as followed:

(η + ξ)λ2 − 2(1 − κ)λ + 4s2 � 0. (25)

and the roots of Eq. (25) are gotten as follows:

λ1,2 � (1 − κ) ±
√

(1 − κ)2 − 4s2(η + ξ)

η + ξ
, Re

√· > 0. (26)

By taking into account the fundamental system of solutions to Eq. (24) consisting of
modified Bessel functions, the general solution of Eq. (22) can be found:

2∑

m�1

C (2)
nm(s)Kn+1/2

(
r
√

λm

)
+

2∑

m�1

C (2)
n,m+2(s)In+1/2

(
r
√

λm

)
(27)

where C (2)
nj ( j � 1, 4) is the arbitrary constants of integration.

By taking into account the properties of the modified functions Bessel (at infinity Iν(z) is
unbounded and Kν(z) is bounded) and the condition that there are no perturbations at infinity,
C (1)
n2 (s) � C (2)

n3 (s) � C (2)
n4 (s) ≡ 0 can be obtained. That means:

ϕL
n (r, s) � 1√

r
C (1)
n1 (s)Kn+1/2(rs), ψ L

n (r, s) � 1√
r

2∑

m�1

C (2)
nm(s)Kn+1/2

(
r
√

λm

)
(28)

By using the connection of the modified functions Bessel of a half-integer index with
elementary functions (n � 0, 1, 2, . . .) [32], the following expressions are obtained:

Kn+1/2(z) �
√

π

2

e−z

zn+1/2 Rn0(z), Rn0(z) �
n∑

k�0

Ankz
n−k

Ank � (n + k)!

(n − k)! k! 2k
(0 ≤ k ≤ n), Ank � 0 (k < 0, k > n)

(29)

then the following expressions for the images of the potential coefficients can be found
as follows:

ϕL
n (r, s) � 1

rn+1 A
L
n (s)Rn0(rs)e

−(r−1)s

ψ L
n (r, s) � 1

rn+1

2∑

m�1

BL
nm(s)Rn0

(
r
√

λm

)
e−(r−1)

√
λm

(30)

with AL
n (s) � π

sn
√

2πs
C (1)
n1 (s)e−s and BL

nm(s) � πC(2)
nm (s)√

2πλ
n/2+1/4
m

e−√
λm (m � 1, 2).
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Substituting these equalities into the Laplace transformed formulas (14), the following
representations of the series coefficients for the displacements and the angle of rotation are
expressed as

wL
n � − 1

rn+2

[

AL
n (s)Rn1(rs)e

−(r−1)s + n(n + 1)

2∑

i�1

BL
ni (s)Rn0

(
r
√

λi

)
e−(r−1)

√
λi

]

vL
n � 1

rn+2

[

AL
n (s)Rn0(rs)e

−(r−1)s +
2∑

i�1

BL
ni (s)Rn3

(
r
√

λi

)
e−(r−1)

√
λi

]

ωL
n � − 1

2rn+3

[
2∑

i�1

BL
ni (s)Qn

(
r
√

λi

)
e−(r−1)

√
λi

]

(31)

in which

Rn1(z) � Rn+1,0(z) − nRn0(z), Rn3(z) � Rn+1,0(z) − (n + 1)Rn0(z)

Qn(z) � Rn+2,0(z) − (2n + 3)Rn+1,0(z) Rn1(z) �
n+1∑

k�0

Bnkz
n+1−k ,

Rn3(z) �
n+1∑

k�0

Cnkz
n+1−k Qn(z) �

n+2∑

k�0

Dnkz
n+2−k ,

Bnk � An+1,k − nAn,k−1, Cnk � An+1,k − (n + 1)An,k−1 Dnk � An+2,k − (2n + 3)An+1,k−1

(32)

Substituting Eq. (31) into the Laplace transformed boundary conditions (19) and deter-
mining the integration constants, the following expressions for the images of the series
coefficients for the displacements and the angle of rotation are obtained as follows:

wL
n (r, s) � wL

n0(s)

rn+2

[

WL
n0(r, s)e

−(r−1)s + n(n + 1)

2∑

m�1

WL
nm(r, s)e−(r−1)

√
λm

]

vL
n (r, s) � wL

n0(s)

rn+2

[

V L
n0(r, s)e

−(r−1)s +
2∑

m�1

V L
nm(r, s)e−(r−1)

√
λm

]

ωL
n (r, s) � wL

n0(s)

2rn+3

2∑

m�1

�L
nm(r, s)e−(r−1)

√
λm

(33)

where

Xn(s)W
L
n0(r, s) � −Rn1(rs)Sn1

(√
λ1,

√
λ2

)
, Xn(s)W

L
n1(r, s) � Rn0

(
r
√

λ1

)
Sn2

(
s,

√
λ2

)

Xn(s)V
L
n0(r, s) � Rn0(rs)Sn1

(√
λ1,

√
λ2

)
, Xn(s)V

L
n1(r, s) � −Rn3

(
r
√

λ1

)
Sn2

(
s,

√
λ2

)

Xn(s)�
L
n1(r, s) � Qn

(
r
√

λ1

)
Sn2

(
s,

√
λ2

)

Xn(s) � −Rn1(s)Sn1

(√
λ1,

√
λ2

)
+ n(n + 1)Rn0(s)

[
Sn2

(√
λ1,

√
λ2

)
− Sn2

(√
λ2,

√
λ1

)]

Sn1(x, y) � Rn3(x)Qn(y) − Rn3(y)Qn(x), Sn2(x, y) � Rn0(x)Qn(y)
(34)
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Formulas for the functions WL
n2(r, s), V

L
n2(r, s) and �L

n2(r, s) are obtained from the equal-
ities for WL

n1(r, s), V
L
n1(r, s) and �L

n1(r, s) by multiplying by (– 1) and swapping λ1 and
λ2.

The equalities similar to Eq. (31) for the remaining components of the stress–strain state
can be obtained.

2.2.3 Limiting transition of symmetric elasticity theory

For the indicated transition in the relations obtained above, it is necessary to pass to the limit
when η → 0 and ξ → 0. In this case, for the roots appeared in Eq. (26) of the characteristic
equation, the following relations are obtained as

λ1 → ∞, λ2 → 2s2

(1 − κ)
� (γ2s)

2

As a result of the images of the coefficients of the series in the Legendre and Gegenbauer
polynomials for displacements, the following results are gotten as

wL
n � wL

n0(s)

rn+2

[
WL

n0(r, s)e
−(r−1)s+ WL

n2(r, s)e
−(r−1)γ2s

]
,

vL
n � wL

n0(s)

rn+2

[
V L
n0(r, s)e

−(r−1)s + V L
n2(r, s)e

−(r−1)γ2s
]
,

in which

Yn(s)W
L
n0(r, s) � Rn1(rs)Rn3(γ2s)Dn0, Yn(s)W

L
n2(r, s) � −n(n + 1)Rn0(rγ2s)Rn0(s)Dn0,

Yn(s)V
L
n0(r, s) � −Rn0(rs)Rn3(γ2s)Dn0, Yn(s)V

L
n2(r, s) � Rn3(rγ2s)Rn0(s)Dn0,

Yn(s) � Rn1(s)Rn3(γ2s)Dn0 − n(n + 1)Rn0(s)Rn0(γ2s)Dn0,

This finding is consistent with the one provided in [32].

3 Algorithm for the definition of original functions

The Laplace translation of differential equations from a time function t to an image function s
is a reasonably straightforward operation that may be performed on any complex differential
equations. However, it is not always feasible to perform the Laplace inverse transformation
from the image function to the original function. It is difficult to obtain analytical expressions
for the originals of functions wL

n (r, s), vL
n (r, s) and ωL

n (r, s) because the expression (31)
contains the terms radicals

√
λ1,2. Therefore, the asymptotic representations of the required

functions at the initial moment should be constructed, which corresponds to the expansion
of the images in a series in powers s−1 in the vicinity of the point at infinity. For roots in
Eq. (26), these series have the following form:

√
λ1 � √

s
∞∑

l�0

βl s
−l ,

√
λ2 � √

s
∞∑

l�0

βl s
−l , β0 � αa0, β1 � αa1, β2 � αa2, α � 1 + i

a0 � 1

(η + ξ)1/4 , a1 � 1 − κ

4(η + ξ)3/4 , a2 � − (1 − κ)2

32(η + ξ)5/4

(35)

where i is the imaginary unit, and bar is the sign of complex conjugation.
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Then, the series for the exponentials in Eqs. (31)–(33) and containing radicals using the
well-known Maclaurin series are obtained as

er
√

λ1 � e−rβ0
√
s

∞∑

k�0

Aks
−k/2,

er
√

λ2 � e−rβ0
√
s

∞∑

k�0

Aks
−k/2

A0 � 1, A1 � rβ1, A2 � (r β1)
2/2,

A3 � r β2, A4 � r2β1β2 � 2r2a1a2

(36)

Before expanding polynomials, Eq. (32), with similar arguments, first, the series for the
powers of the radicals using Eq. (35) must be constructed as

(√
λ1

)k � sk/2
∞∑

m�0

bkm
sm

,
(√

λ2

)k � sk/2
∞∑

m�0

bkm
sm

bk0 � βk
0 , bk1 � kβ1β

k−1
0 , bk2 � kβk−1

0

(
k − 1

2
β1 + β2

) (37)

As result, it comes to the following results:

Rn0

(
r
√

λ1

)
� s

n
2

∞∑

m�0

Enm(r)s−m/2, Rn0

(
r
√

λ2

)
� s

n
2

∞∑

m�0

Enm(r)s−m/2

Rn1

(
r
√

λ1

)
� s

n
2

∞∑

m�0

Fnm(r)s−m/2, Rn1

(
r
√

λ2

)
� s

n+1
2

∞∑

m�0

Fnm(r)s−m/2

Rn3

(
r
√

λ1

)
� s

n+1
2

∞∑

m�0

Gnm(r)s−m/2, Rn3

(
r
√

λ2

)
� s

n+1
2

∞∑

m�0

Gnm(r)s−m/2

Qn

(
r
√

λ1

)
� s

n+2
2

∞∑

m�0

Hnm(r)s−m/2, Qn

(
r
√

λ2

)
� s

n+2
2

∞∑

m�0

Hnm(r)s−m/2

(38)

where

Enm(r) �
[m/2]∑

k�knm

An,m−2kr
n+2k−mbn+2k−m, Fnm(r) �

[m/2]∑

k�kn+1,m

Bn,m−2kr
n+1+2k−mbn+1+2k−m,

Gnm(r) �
[m/2]∑

k�kn+1,m

Cn,m−2kr
n+1+2k−mbn+1+2k−m, Hnm(r)

�
[m/2]∑

k�kn+2,m

Dn,m−2kr
n+2+2k−mbn+2+2k−m,

knm �
{

0 whenm ≤ n,[m−n
2

]
whenm ≤ n.
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The expansions for the functions Sn1
(√

λ1,
√

λ2
)
, Sn2

(√
λ1,

√
λ2

)
, Sn2

(√
λ2,

√
λ1

)
, Sn2(

s,
√

λ1
)
, Sn2

(
s,

√
λ2

)
and Xn(s) are obtained by using Eqs. (34) and (38).

Sn1

(√
λ1,

√
λ2

)
� s

2n+3
2

∞∑

k�0

iγn1ks
−k/2, Sn2

(√
λ1,

√
λ2

)
� sn+1

∞∑

k�0

γn2ks
−k/2

Sn2

(√
λ2,

√
λ1

)
� sn+1

∞∑

k�0

γ n2ks
−k/2s−k/2, Sn2

(
s,

√
λ1

)
� s

3n+2
2

∞∑

k�0

νnks
−k/2

Sn2

(
s,

√
λ2

)
� s

3n+2
2

∞∑

k�0

νnks
−k/2, Xn(s) � s

4n+5
2

∞∑

k�0

iξnks
−k/2

(39)

The coefficients γnjk ( j � 1, 2), νnk , and ξnk of these series are determined through the
coefficients of the series in Eq. (38) using the rule for the product and addition of power
series. Adding to these operations the division of power series and using formulas appeared
in Eqs. (34) and (36), the following expansions of the terms in Eq. (33) are obtained as

WL
n0(r, s)e

−(r−1)s � e−(r−1)s
∞∑

k�0

wn0k(r)s
−k/2,

V L
n0(r, s)e

−(r−1)s � e−(r−1)s
∞∑

k�0

vn0k(r)s
−k/2

WL
n1(r, s)e

−(r−1)
√

λ1 � e−(r−1)β0
√
s

∞∑

k�3

wn1k(r)s
−k/2

WL
n2(r, s)e

−(r−1)
√

λ2 � e−(r−1)β0
√
s

∞∑

k�3

wn1k(r)s
−k/2

V L
n1(r, s)e

−(r−1)
√

λ1 � e−(r−1)β0
√
s

∞∑

k�2

vn1k(r)s
−k/2

V L
n2(r, s)e

−(r−1)
√

λ2 � e−(r−1)β0
√
s

∞∑

k�2

vn1k(r)s
−k/2

�L
n1(r, s)e

−(r−1)
√

λ1 � e−(r−1)β0
√
s

∞∑

k�1

ωn1k(r)s
−k/2

�L
n2(r, s)e

−(r−1)
√

λ2 � e−(r−1)β0
√
s

∞∑

k�1

ωn1k(r)s
−k/2

(40)

The originals of the coefficients of the series in (40) are found using theorems of operational
calculus and the following tabular relations [32, 35].

e−kss−μ .�·
(τ − k)μ−1

+

�(μ)
(μ > 0)

e−a
√
ss−m/2 .�·

τ
m/2−1
+√
21−mπ

e− a2
8τ D1−m

(
a√
2τ

)
(m � 0, 1, 2 . . . ; Rea ≥ 0)

where �(μ) is the gamma function; H(t) is the Heaviside function; Dν(x) is the function of
a parabolic cylinder; and xα

+ � xαH(x).
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Note that, the function of the parabolic cylinder has the property Dν(z) � Dν(z). Using
this property and also equalities (33) and (40), it follows that the originals of the sought
functions are real.

4 Simulation results and discussion

As a material filling the space, consider a granular composite of aluminum shot in an epoxy
matrix (λ � 7.59 GPa; μ � 1.89 GPa; γ + ε � 2.64 kN) [36], which corresponds to dimen-
sionless parameters κ � 0.67, η + ξ � 0.00232. It assumes that displacements of the type
are given on the boundary of the cavity:

w0(θ, τ ) � 1

2
(1 + cos 2θ)H(τ )

wherein

wL
00(s) � 1

3s
, wL

20(s) � 2

3s
, wL

n0(s) ≡ 0 (n � 1, n ≥ 3)

and in series (11)–(12), only the terms with indices n � 0 and n � 2 are nonzero.
As a result, one gets:

w(r, θ, τ ) � w0(r, τ )P0(cos θ) + w2(r, τ )P2(cos θ)

v(r, θ, τ ) � −v2(r, τ )C3/2
1 (cos θ) sin θ, ω(r, θ, τ ) � −ω2(r, τ )C3/2

1 (cos θ) sin θ

w0(r, τ ) � 1

3r2

∞∑

k�0

w00k(r) f1k(r, τ ), ω2(r, τ ) � Re
∞∑

k�1

ω21k(r) f2k(r, τ )

w2(r, τ ) � 2

r2

∞∑

k�0

w20k(r) f1k(r, τ )+2Re
∞∑

k�3

w21k(r) f2k(r, τ )

v2(r, τ ) � 2

r2

∞∑

k�2

v20k(r) f1k(r, τ ) + 2Re
∞∑

k�2

v21k(r) f2k(r, τ )

f1k(r, τ ) � 1

3r2 ζk(τ − r + 1)
k/2
+ , f2k(r, τ ) � 1

3r4
√

π
2

k+3
2 τ

k
2

+ e−β2
0

/
(8τ)D−k−1

(
β0√
2τ

)

ζk � �−1
(

1 +
k

2

)
, �

(
1 +

k

2

)
�

{
m! when k � 2m,

2−m−1(2m + 1)! !
√

π when k � 2m + 1,
(m � 0, 1, 2, ...)

(41)

The graphs of normal displacement versus time at distances r � 1.01, r � 1.03, r �
1.05, and r � 1.08 from the center of the cavity at the values of the angles θ � π

/
4 and

θ � π
/

2 are shown in Figs. 2. In Fig. 2a, we notice that there are certain edges, implying
that some points in graphs seem to be nondifferentiable. It is shown that the difference in
value created by the pseudo-elastic Cosserat medium’s normal displacement (w) is small
in comparison with the boundary value applied to the spherical cavity surface. As seen in
Fig. 2b, the graphs first bear little resemblance to one another. It is mentioned that the moment
effect has a minimal influence on the changes in the medium’s stress–strain state.

Figures 3 and 4 show the graphs of the tangential displacement v(r, θ, τ ) and the angle
of rotation ω(r, θ, τ ) at θ � π

/
4. At θ � 0 and θ � π

/
2, these functions are equal to zero

since the corresponding equalities contain the factors sin θ and C3/2
1 (cos θ) � 3 sin θ .

All graphs are plotted for four members of the power series. When one more member is
taken into account, the results are practically the same.
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Fig. 2 a Normal displacement at
θ � π

/
4, b Normal

displacement at θ � π
/

2

(a)

(b)

Fig. 3 Tangential displacement,
θ � π

/
4
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Fig. 4 Angle of rotation

Fig. 5 Comparative graphs of
normal displacement for two
models of the medium, θ � π

/
4

Figure 5 shows comparative graphs of normal displacement for two models of medium
(solid lines correspond to the above moment medium, and dashed lines—to the classical
version of the same medium) for a given external disturbance.

The simulation results show that at the initial time, the graphs differ little from each other,
that the moment effect affects the changes in the stress–strain state of the medium, but it is
small.

5 Conclusion

The Cosserat model is used to represent non-stationary processes in composite material con-
structions in this paper. Unsteady axisymmetric kinematic perturbations propagating across
space from an isotropic pseudo-elastic Cosserat medium are studied. The medium’s motion
is described by three equations, with the origin at the cavity’s center and nonzero displace-
ment vector and rotation field potential components. The following main results are given as
follows:

• Using the representation of the sought functions in the form of series in Legendre polyno-
mials and the Laplace transform, solutions of new non-stationary axisymmetric problems
on the propagation of surface perturbations in the pseudo-continuum Cosserat with spher-
ical boundaries (a space with a spherical cavity) are obtained.
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• For images of the Laplace transform containing factors in the form of exponentials with
radicals, an inversion algorithm for the coefficients of the series in Legendre polynomials
has been developed. This method is based on the expansion of the images into the Laurent
series in the vicinity of an infinitely distant point, which corresponds to the power series
in the vicinity of the initial moment of time. A method for determining the coefficients of
these series has been developed and implemented.

• A numerical study of the convergence in the obtained solutions of series in Legendre
polynomials and power series in time is carried out.
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