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Abstract. In this paper, we study the combination of Autoencoder
(AE) and Self-Organizing Maps (SOM) for feature extraction and de-
tecting IoT attacks. The AE learns latent representation to reveal useful
features for clustering algorithms, e.g SOM. The AE can find and extract
the most valuable features from data while SOMs can self-organize and
map input instances to a neuronal map. Neurons are categorized in a
suitable group that has a specific label. This label-map is used to clas-
sify normal and anomalous later. We compared the AE+SOM with pure
SOM and other dimensionality reduction (PCA+SOM) on the NBaIoT
dataset. Our study focuses on the ability of the proposed algorithm on
detecting unknown attacks and on transfer learning. In all cases, the final
results showed that the AE+SOM is better than other algorithms. The
exported model can be applied in the real system for anomaly detection.

Keywords: SOM · AE · PCA · IoT · anomaly detection · transfer learn-
ing

1 Introduction

IoT technology plays an important role in enhancing smart applications
in real life, such as smart healthcare, smart home, smart transportation, and
smart education [7,22]. Therefore, the diverse and large-scale nature of IoT sys-
tems with different components involved in the implementation of such systems
presents new security challenges [1]. IoT attack methods are increasingly and
diverse, such as on-board attack, security gateway attack, control server attack,
eavesdropping attack on incoming traffic detection. Therefore, the risk of insecu-
rity in IoT networks is higher than in other networks, and traditional solutions
may not be effective for such systems [16]. One of the prominent attack exam-
ples is the attack using BotNet Mirai. Mirai is a special type of botnet that
has recently caused large-scale DDoS attacks by exploiting vulnerabilities in IoT
devices [16].

Machine learning (ML), particularly Deep learning (DL) are powerful meth-
ods and are currently widely used in many different problems such as classifi-
cation and detection of malicious code, detection of network attacks, predicting
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the anomalous behavior of network data to give early warnings [13, 25]. With
the problem of anomaly detection, ML/DL can rely on training datasets to build
models; then these models will be applied to classify network data streams as
“normal” or “anomaly” [20,27,28]. In addition, ML/DL methods can be applied
in predicting new attacks, often mutations of previous attacks. Currently, fed-
erated learning is also used for IoT networks, to accommodate the dispersion of
IoT network devices [20].

One of the algorithms in IoT malware detection system is autoencoders (AE).
It was introduced by Japkowicz et al. [12] in 1995. The AE was applied for novelty
detection at that time. An autoencoder is a neural network that learns to recon-
struct its input at the output layer. A bottleneck layer compresses redundancies
in the input data while non-redundant information remains [12]. We used AEs
as building blocks in deep neural networks [11], and after training, the output
layer is discarded, and the hidden layer is used as a new feature representation.

Currently, almost all learning methods perform learning from one class, usu-
ally learning from normal data [4, 27], and then proceed to classify or forecast
the data into normal or abnormal. Almost all algorithms in these researches are
based on AE. But AE usually learns and represents well for a single distribution.
It means AE extremely learns from one class in supervised learning manner. But
in unsupervised learning manner, when the distributions are multiple, and the
number of records is different, then AE will learn most features from the major-
ity class (majority class occupies most samples in the dataset) and the latent is
mostly features learned from this class.

In the other manner, PCA tries to project data into a new coordinate system
so that the data are much separated as possible [30]. It means, PCA keeps all
the features, which make the data are most separable. So it the data is more
separated, so PCA is more accurately represented. On the contrary, if data are
the same or mixed so the PCA is not good for representing hidden features.

In this research, we consider the influence of the AE on the performance of
anomaly detection when both normal and abnormal data were used for training.
We combine AE and SOM to leverage the power of the AE in useful features
extraction and SOM in clustering of normal and abnormal data. We also tested
different ratio data to assess the effectiveness of the algorithm. We assume that
when the data ratio is skewed, for example, the normal data is much more
than the abnormal or vice versa, then the AE will learn most features from the
major class, and the minor class will not take effect in the common results. In
experiments (which are presented in more detail in Section 5 and 6) we performed
tests in different parts of the dataset to verify this assumption. Because the other
researches [4, 27] is quite good for attack detection (or even unknown attack
detection), so in our experiments, we focus on transferring our trained model
from one device with specific attack to another device and other attacks.

In this paper, our main contributions are as follows:

– We use the latent representation of Autoencoders (AE) combined with Self-
Organizing Maps (SOM) to build the unsupervised learning models for de-
tecting IoT attacks.
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– We perform a lot of tests on different datasets with different scenarios. The
data ratio is used in a wide range to assess the effectiveness of malware
detection of the model

– We apply our model in transfer learning. The model is trained on one device
and can be used to detect attacks (same type or different type) on other
devices. This saves time and resources for the training process.

The paper is organized as follows. In Section 1 we highlight the importance
of anomaly detection and raised the problem of unsupervised learning methods.
Section 2 presents some related works. The background of the research is de-
scribed in Section 3. Our main proposed model for unsupervised learning detec-
tion system is presented in Section 4. All description of the dataset, experiments
and evaluation is shown in Section 5. Section 6 is about results and discussion.
We draw some conclusion in Section 7. Lastly, some additional testing results
and figures are placed in Appendix A.

2 Related Works

In this section, we discuss recent works which are used for detecting anomalies
in the IoT field. Most of the algorithms used are based on supervised learning
methods, we discuss the use of autoencoders (AEs) in particular. Next, we also
carried out some researches that tend to solve the classification problem using
the unsupervised technique.

The AE-based methods have been widely used as a feature learner for la-
tent representation [2, 3, 5, 8, 10, 18, 23, 26]. This latent is later used for anomaly
detection models. The latent feature representation can be learned in different
manners like supervised learning [18,26], semi-supervised learning [5], and unsu-
pervised learning [8, 10]. The common way is as follow, all methods are trained
on the training data (usually one-class learning), and when the training process
is done, only the encoder is used for further stages. This encoder tries to learn
the latent features from the input, and this latent is next used in the detection
models constructed by traditional machine learning methods. Since the dimen-
sion of latent data is decreased and much less than that of the input data, then
the classification models are mostly faster than previous.

Recently Cao et al. [5] introduced two regularized AEs, namely SAE and
DVAE for capture the normal behaviors of network data. These regularizers AEs
are attempted to put normal data towards a small region at the origin of the
latent feature space, which can result in reserving the rest of the space for anoma-
lies occurring in the future. These regularized AEs were designed to overcome the
problem of identifying anomalies in high-dimensional network data. The latent
representation of SAE and DVAE was then used for enhancing simple one-class
classifiers. In a supervised manner, Vu et al. [26] proposed Multi-distribution
VAE (MVAE) to represent normal data and anomalous data into two different
regions in the latent feature space of VAE. Originally, variational autoencoders
(VAEs) learn to map input data into a standard Gaussian distribution N (0, 1)
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in its middle hidden layer. The proposed model was evaluated on two publicly
network security datasets, and it produces promising performance.

In unsupervised manner, Gustavo et. al. [6] explore the power of SOM for
multi-label classification. Since the SOM has ability to map input instances to
a map of neurons. After performing SOM, similar instances are grouped in the
same class. Also using SOM, Andreas Rauber et. al. [21] presented the LabelSOM
approach, which can automatically label and train the SOM with the features
of the most relevant input data in a particular cluster. In [24] J. Tian et. al.
proposed a method that can improve SOM for anomaly detection. For a given test
data, all the neighbors are identified by using the k-nearest neighbor algorithm.
The Euclidean distance was used to measure the distance between the test data
observation and the centroid of the neighbors.

In this work, we attempt to investigate the latent representation of AEs for
IoT malware detection tasks in an unsupervised manner. This means that we
use AEs to learn a latent representation for both normal and IoT malware with-
out labels. The latent representation is later facilitated by SOM for discovering
clusters.

3 Background

3.1 Autoencoder

An autoencoder is an unsupervised learning algorithm based on neural net-
work architecture. An AE is a feed-forward neural network that attempts to
reconstruct the original input data at the output layer. The traditional AE is
used for dimensionality reduction and feature learning. The AE architecture
shows in 3.1 consists of three parts: the encoder, the code (bottleneck) and the
decoder.

The hidden layer h that described a code used to represent the input [9].
An encoder function f is used to learn the input and represented as code, the
decoder g is used to reconstruct the data from the encoded representation.

Mathematically, given data x with no-labels and the function f for encoder
and function g for decoder. Then we have the following equations:

z = f(x) = ae(wx+ b) (1a)

x̂ = g(z) = g(f(x)) = ad(w′.f(x) + b′) (1b)

where ae and ad are the activation functions of the encoder and decoder, x̂ is
x’s reconstruction.

The reconstruction loss function (e.g. squared loss error) is to minimize the
difference between the input x and the output x̂.

L(x, x̂) = ‖x− x̂‖2 (2)

The AEs have many applications, such as image compression, image denois-
ing, feature extraction, image generation, sequence to sequence prediction and
recommendation systems.
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3.2 Principle Component Analysis

Dimensionality reduction is one of the important techniques in Machine
Learning. Dimensionality reduction, to simplifying, is finding a function, which
takes the input of an initial data point x ∈ RD with D is high and creates a new
data point x ∈ RK , which has a dimension number K < D.

One of the simplest dimensionality reduction algorithms is based on a linear
model. This method is called Principal Component Analysis (PCA) [30]. This
method is based on the observation that the data are not normally distributed
randomly in space, but are often distributed near-certain special lines/faces.
PCA considers a special case when those special faces are linear in sub-spaces.
Some modern PCA algorithms are Linear PCA, Kernel PCA, Sparse PCA, Non-
linear PCA, Robust PCA.

3.3 Self-Organizing Maps

The Self-Organizing Maps (SOM) [14,15] or Kohonen maps are self-organizing
neural networks that are able to map similar instances to a group in a map, then
each neuron is placed next to each other. This map provides a mapping from
high-dimensional input space to lower-dimensional output space (usually two-
dimensional). SOMs apply competitive learning as opposed to error-correction
learning (such as back-propagation with gradient descent), and they use a neigh-
borhood function to preserve the topological properties of the input space. In
other words, competitive learning is an unsupervised learning method, and it
is most suitable to illustrate the appropriateness of learning from a single-layer
neural network.

SOMs have been successfully applied in a number of fields, such as identifi-
cation, data clustering and text prediction. The data types include sound, image
and text. More details of SOMs will be described in the section 4.2.

3.4 Transfer Learning

Transfer learning is the application of skills/knowledge learned from one
problem (source domain - DS), with specific application (source task - TS) to
another problem (target domain - DT ) with another application (target task
- TT ) which is relevant. Transfer learning aims to improve the learning of the
function fT (·) for the application TT on the domain DT [29].

4 The proposed hybrid AEs and SOMs

This section presents our proposed method for IoT anomaly detection. It is
a hybrid between AEs and SOMs, consisting of two phases as shown in Fig. 1:

Phase 1 : We employ AEs to construct a new feature space from unlabeled
data. The new feature is in lower dimensionality and is expected to reveal more
robust features. Other feature reduction methods like PCA are also involved for
comparison.
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Phase 2 : SOMs are presented on the resulting feature of AEs. The trained
data will help SOMs find and label clusters associated with normal data and
IoT malware. These cluster labels are used for classifying.

Fig. 1: The system architecture

4.1 Latent representation of AEs

We aim to find a representation for the original data, which is in a lower
dimension but reserves most of the important information as the original data.
As described in section 3, the AE is a neural network that attempts to reconstruct
the input from the bottleneck. There are many versions developed from the
original AE, in this work we use the simple AE with a 3-layer of an encoder and
a 3-layer of a decoder. The AE architecture is shown in the left phase in Fig. 1.

The input data is passed in autoencoder model for training. The process is
terminated when the output layer is constructed similar to the input. It means
the reconstruction error was minimized. After training the AEs, the decoder part
is discarded, while the encoder part is kept and used to extract features from
the original.

4.2 Anomaly Detection using SOM

Mapping Process On the training SOM, the winning neuron is archived using
Euclidean distance, which is represented in Equation 3.

dj(x) =

√√√√ A∑
i=1

(xi − wji)2 (3)

where x is the attribute vector of the instance and wj is the weight vector of the
jth neuron, A is the number of attributes of an instance.
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When the winning neuron is obtained, its weights will be adjusted to ap-
proximate it to the instance. Since then, a map of its neighborhood is defined.
The process is continued as follow: the weights of each neighborhood also is up-
dated, and approximate to the winning neuron; a good choice for finding for the
neighborhood is using Gaussian function 4, where hj,i is the neighborhood of
the winning neuron i, while j is the older winning neuron, the distance dj,i is a
distance between neurons, the σ defines the spreading of neighborhoods. [6].

hj,i = exp(−
d2j,i
2σ2

) (4)

The weight update process is given by Equation 5, where wj is the weight
vector, x is input instance, η is a learning rate.

∆wj = ηhj,i(x− wj) (5)

Finally, the weight vector at iteration (t+ 1) is updated by Equation 6.

∆wj(t+ 1) = wj(t) + ηhj,i(x− wj(t)) (6)

The training process of the algorithm is shown in Algorithm 1. Firstly, the
weight matrix is initialized by generating randomly or using PCA method. Sec-
ondly, the winning neuron is selected from the neuron grid Ω by using the dis-
tance metric (e.g. Euclidean). Finally, the weights of all related neurons will
be updated using Equation 6 [6]. The process is terminated when the network
is converged, and the weights in the map might have the same distribution as
the input vectors. It means, after the finite number of iterations, the inputs
are placed in appropriate positions in the Kohonen network (another name of
Self-organizing maps).

Algorithm 1 The SOM algorithm

Input: X = [q, (a+ l)], e: number of epochs
Output: W = [n, a]
Main loop

for i ← 1 to e do
Initialize weight matrix W
for j ← 1 to q do
o(xj) = argmink‖xj − wk‖, k ∈ Ω
wk(i+ 1) = wk(i) + η(i)hk,o(xj)(i)(xj(i)− wk(i))

end for
end for
return W

In the Algorithm 1, X is a dataset, q is a number of instances, a is a number
of attributes, l is a number of labels and n is a number of neurons.
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Classification Algorithm Given instance xi, and the mission is to classify this
instance into an appropriate class. Firstly, all classes are represented by binary
vector vi. The jth position in this vector is corresponding to the jth class (cj).
If the instance xi is a member of class cj , then the vi,j has value 1, and 0 vice
versa [6].

The test instance is mapped to labels-map and after its closest neurons are
found, one vector (called prototype vector) is obtained by averaging the class
vectors of the training instances mapped to this neuron and notated as v̄. It is
the possibility of classifying the test instance into each class. The formulation of
the prototype vector is shown in Equation 7. The Sn is the training set which
mapped to neuron n, while the Sn,j is the training instances which mapped to
the neuron n and classified to class cj .

v̄n,j =
Sn,j

Sn
(7)

To map instance n to class cj , the v̄n,j is compared to the threshold. We set
the value of 0.5 for the threshold. Then all the positions whose values are greater
than or equal to 0.5 receives the value 1, and 0 otherwise.

The algorithm of classifying the instance using the SOM model is shown in
Algorithm 2 [6]. The sample is classified using the labels-map which received
after training SOM (Algorithm 1). A label cj is assigned to the neuron is the
majority of samples mapped in that neuron have label cj . The algorithm function
will assign the most common label in the dataset in case that no class is suited
for this neuron. The steps are as follow:

Step 1 : The winning neuron is selected from the neuron grid Ω;

Step 2 : Get training instances mapped to winning neuron;

Step 3 : Calculate prototype vector;

Step 4 : Compare the prototype vector to threshold ;

Step 5 : Get the appropriate class.

Algorithm 2 The SOM-based classification algorithm

Input: Xtrain = [q, (a+ l)], W = [n, a]
Output: P
Main loop

for j ← 1 to m do
o(xtestj ) = argmink‖xtestj − wk‖, k ∈ Ω
T ← instances mapped to o(xtestj );
v̄j ← average of the label vectors from T ;
xtestj ← xtestj + v̄j
pj ← v̄j
pj compares to threshold

end for
return P
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Where q is the number of training instances, a is the number of attributes
dataset, l is the number of labels, m is the number of instances in the testing
set, W is the weight matrix and P is the prediction matrix.

5 Experiments

In this section, we present the experiment settings and evaluation of three
models AE+SOM, SOM and PCA+SOM for classifying the IoT attacks. We use
SOM as an unsupervised method for classifying, PCA and AE as dimensional-
ity reduction methods for data preprocessing. The detailed description of the
dataset, parameter settings for experiments, and metrics used to evaluate our
proposed methods are presented in the rest of this section.

In experiments, we conducted assessing the ability of proposed model on
detecting known attack, unknown attack and transfer learning. As described in
Section 1, on the results analysis in Section 6, we focus on unknown attack and
transfer learning.

Ability to detect unknown attack types. There are two types of attacks in the
dataset (Mirai and Gafgyt) in each device (exclude device D3 and device D7,
which contains only benign and Gafgyt). So our idea is to train the algorithm
in one type of data and apply it later in other types.

Transfer learning. In our experiments, we used one device for learning, and
test on the type of attack in the same device and on the other devices.

5.1 Datasets

The NBaIoT dataset 1 was introduced by Y. Meidan et al. [17]. It contains
data samples collected from nine different IoT devices, as described in Table 1.
For each device, the two most popular kinds of attacks are launched such as
Mirai and BASHLITE (or Gafgyt) for generating Malware data together with
benign data. These devices can be categorized into four main groups: doorbell,
thermostat, monitor and camera/webcam. Each record in the dataset consists
of 115 features extracted by using Kitsune [19].

In experiments, we employed two groups of devices: doorbell (D1 and D3
in the table 1) and camera (D5, D6 and D8 in the table 1). For the training
phase, we used only one type of attack on each device. The resulting models
were then utilized to evaluate other attack types on the same device and on
different devices.

We carried out groups of scenarios, which are shown in Table 2.
Since both devices D3 and D7 series have only one device, we have not

included them in our experiments at this time.
In this phase, we divided the train data into two parts: train and validation

with a ratio 0.7 for training and 0.3 for validation. We also used Early-Stopping to
early terminate the training process when the result reaches an acceptable value.

1 https://archive.ics.uci.edu/ml/datasets/detection of IoT botnet attacks N BaIoT
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Table 1: The dataset description
Device ID Device Name Type Benign Gafgyt Mirai

D1 Danmini Doorbell Doorbell 49548 652100 316650

D2 Ecobee Thermostat Thermostat 13113 512133 310630

D3 Ennio Doorbell Doorbell 39100 316400

D4 Philips B120N10 Baby Monitor Monitor 175240 312273 610714

D5 Provision PT 737E Security Camera Camera 62154 330096 436010

D6 Provision PT 838 Security Camera Camera 98514 309040 429337

D7 Samsung SNH 1011 N Webcam Webcam 52150 323072

D8 SimpleHome XCS7 1002 WHT Camera 46585 303223 513248
Security Camera

D9 SimpleHome XCS7 1003 WHT Camera 19528 316438 514860
Security Camera

Table 2: The training and testing scenarios

No Scenarios Training
Testing

Same device &
same attack

Same device with
different attacks

Different Devices

Group 1
1.1 D1, Gafgyt D1, Gafgyt D1, Mirai D3, Gafgyt
1.2 D1, Mirai D1, Mirai D1, Gafgyt D3, Gafgyt

1.3 D3, Gafgyt D3, Gafgyt
D1, Mirai
D1, Gafgyt

Group 2

2.1 D5, Gafgyt D5, Gafgyt D5, Mirai
D6, Gafgyt
D8, Mirai

2.2 D5, Mirai D5, Mirai D5, Gafgyt
D6, Mirai
D8, Gafgyt

2.3 D6, Gafgyt D6, Gafgyt D6, Mirai
D5, Gafgyt
D8, Mirai

2.4 D6, Mirai D6, Mirai D6, Gafgyt
D5, Mirai
D8, Gafgyt
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Since the benign data is less than attack data, so we included all benign data for
training in all scenarios. The attack data for training was taken from the original
dataset with ratios 0.01, 0.1, 1.0, 5.0 compared to benign data respectively. The
relative ratio between attack and benign data is signed as r (Ratio A:B).

5.2 Parameters Setting

Firstly, we set up the size of the encoded (bottleneck) for used algorithms
(AE and PCA). Since the original size of the features is 115, so we chose the
ratio is 0.33 and this produced the size 29 for encode respectively.

Next, we set up parameters for autoencoder, the input layer has the same
dimension as the input data. The encoder in the model consists of four hidden
layers which have the decreasing size of 75%, 50%, 33%, 25% of the input layer’s
size. The bottleneck dimension is 29 (compare to 115 in the original). The de-
coder has absolutely the same number of hidden layers as the encoder, but with
increasing order. For training, we split training data into training and validation
set with a ratio of 0.8 : 0.2. The loss function used is MSE (mean squared error),
the optimization method is Adam. Early stopping is also used to save the time
of training when the result reached to the expected one. The number of epochs
is 50 and the batch size is 200. Additionally, the tanh activation was used in all
layers.

For the PCA, we also passed the size of the bottleneck (coded size) as the
AE. All other parameters of the PCA are set to default.

For training SOM, firstly we used tuning techniques for searching the best
parameters. The parameters are σ, learning rate η. After these parameters were
found, we used them for training SOM, building the label-maps, determining
the outliers percentage. All these parameters are used later for detecting and
classifying anomaly data.

5.3 Evaluation Metrics

We utilize Area Under the Curve (AUC) for evaluating the performance of
our proposed methods on different scenarios.

The true positive rate (TPR) and false positive rate (FPR) were calculated
by the following formulas.

TPR =
TP

TP + FN
(8)

FPR =
FP

FP + TN
(9)

By plotting TPR against FPR, we received the Receiver Operating Char-
acteristic curve (ROC curve) at different thresholds. Lowering the classification
threshold classifies more items as positive, thus increasing both False Positives
and True Positives. The AUC was calculated as the entire area underneath the
ROC curve. AUC provides an aggregate measure of performance across all pos-
sible classification thresholds.
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6 Results and Discussion

In this section, we describe the results of the experiment process in detail.
All the results were collected from scenarios (described in section 5). We also
carried out an explanation of the received results.

Because the classification of attacks is inconsistent, our experiments focus
on classifying benign and attack types. As seen above in 1, we have two main
different groups of attack types, Mirai and Gafgyt respectively, so in the final
stage, we combined all types of sub-class in a single class (must be Mirai or
Gafgyt). We have two classes at the final stage are benign and attack.

All experiments were implemented in Python using Keras 2, Scikit-learn 3

and Minisom 4 frameworks. The computer used has the following specifications:
Ubuntu 18.04 LTS, Intel(R) Core i7 930 CPU, and 18 GB memory.

Experiments process: All experiments were performed as described in Ta-
ble 2. The more details about results are shown in Appendix A.

First, we train the AE model for extracting valuable features. The AE model
sweeps all devices (D1, D3, D5, D6, D8) for each attack type (Mirai, Gafgyt).
The reconstruction losses for training processes of D1-Gafgyt and D3-Gafgyt are
shown in Fig. 2. The Fig. 2a shows the reconstruction loss on training D1-Gafgyt
and the Fig. 2b shows the result on training D3-Gafgyt.

(a) AE training loss on device 1 (b) AE training loss on device 3

Fig. 2: The AE losses

6.1 Data Analysis

Mirai 5 and Gafgyt (also known as BASHLITE) 6 are all botnets that de-
veloped to inject to IoT devices and generate the DDoS traffic from that bots.

2 https://keras.io/
3 https://scikit-learn.org/
4 https://github.com/JustGlowing/minisom
5 https://en.wikipedia.org/wiki/Mirai (malware)
6 https://en.wikipedia.org/wiki/BASHLITE
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Gafgyt is a branch of Mirai which is developed upon the existing source code.
But the difference is the Gafgyt focuses on generating DDoS traffic, while Mirai
focuses on making the victim become a bot.

Table 3: The statistics of datasets
Device Dataset Mean Median Std

Benign 0.14 0.02 0.17
Gafgyt 16.40 0.05 123.90D1
Mirai 45.74 0.14 223.91

Benign 0.08 0.03 0.13
Gafgyt 4.32 0.01 32.65D3
Mirai

Benign 0.09 0.02 0.18
Gafgyt 2.22 0.01 17.11D5
Mirai 4.05 0.04 21.70

Benign 0.10 0.03 0.18
Gafgyt 1.49 0.00 10.36D6
Mirai 2.71 0.03 13.45

Benign 0.12 0.00 0.21
Gafgyt 0.47 0.00 3.15D8
Mirai 1.72 0.00 7.53

In NBaIot, both Mirai and Gafgyt consist of five different types of attacks.
Mirai contains ACK, Scan, SYN, UDP, UDPPLAIN, and Gafgyt contains Combo,
Junk, Scan, TCP, and UDP attacks. After normalizing (we use the normalized
model from benign, and use this model for normalizing both Mirai and Gafgyt),
the statistical table (Table 3) shows that the Mirai is far from both benign and
Gafgyt, while Gafgyt and benign are closer to each other and in some cases
Gafgyt tends to mix with benign data (see Fig. 3). The metrics used to compare
are mean, median and standard deviation. Consider dataset in all devices (D1,
D3, D5, D6, D8), the values of Mirai are much higher than benign and Gafgyt.

To confirm this assumption, we visualize the normalized data in a coordinate
system. In Figure 3, we use two pairs of features for visualizing data. The Mirai
is scattered using green, while benign is in blue and Gafgyt is in orange color.
It is clear that Mirai is differed from benign and Gafgyt and all values are far
compared to the origin of axes.

From the above consideration, we draw a conclusion: Mirai differs from both
benign and Gafgyt; Gafgyt and benign share some common features. The tradi-
tional ML methods can be used and can bring good results on Mirai prediction,
while it is difficult to detect the Gafgyt malware. In the detection system, if
ML models are used, Mirai can be detected with a higher probability while the
accuracy of Gafgyt detection is decreased.
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(a) D1-First Pair of
Features

(b) D1-Second Pair
of Features

(c) D5-First Pair of
Features

(d) D5-Second Pair
of Features

Fig. 3: The Data Visualization of D1 and D5

6.2 Unknown attack detection

As described in Table 2, we performed experiments to determine how meth-
ods can detect unknown attacks. So we train the model on Mirai and tested it
on Gafgyt and vice versa.

In our opinion, the attacks are sharing some common properties, e.g. the
source IP address, the target IP address, the protocol used... Since then, we did
training on one type of attack and testing on the other one. Devices D1, D5,
D6, D8 are included in these tests due to these devices contain both Gafgyt
and Mirai together with benign in the dataset. We sequentially did training on
Gafgyt, testing on Mirai, and later training on Mirai, and testing on Gafgyt.
We also calculate the mean, median and standard deviation to compare the
effectiveness of models used (AE+SOM, PCA+SOM, pure SOM). The results
for testing on D1 and D5 are shown in Table 4 (G stands for Gafgyt and M stands
for Mirai respectively); the rest results for D6 and D8 are shown in Appendix
A. The AE+SOM is good when data is unbalanced, and PCA+SOM is good for
most cases when the ratio between benign and attack is around 1.0.

The AUC value has the minimum value is 0.504 and the maximum value is
0.996. It means in all test cases, models achieved more than 50% of anomaly
detection in the worse case, and mostly 100% in the best case.

The influence of data ratio r: We also visualized the AUC values for all
tests in the Fig. 4. The AUC is plotted against the data ratio r. All the models
bring lower AUC when the data ratio r is 0.01, then increased when the r is
0.1 and 1.0. When the r is 5.0, some models are still good, even reached to 1.0
value (mostly when Gafgyt is included in training data), but some models are
worse (when Mirai is included in training data). This confirms again for our
assumption, that the model is worse when Mirai is used for training. When r is
too small (0.01, 0.1) or high (5.0) the AUC is smaller than the balanced value
(1.0).

6.3 Transfer Learning

We also performed experiments with transfer learning. The model trained
from one device with a specific attack type can be transferred to another with
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Table 4: Unknown attack detection results (D1-D3)
Data ratio r Metrics

Train-Test Model
0.01 0.10 1.00 5.00 mean median std

AE+SOM 0.668 0.620 0.809 0.988 0.771 0.738 0.143
PCA+SOM 0.795 0.713 0.903 0.996 0.852 0.849 0.107D1G-D1M

SOM 0.914 0.674 0.673 0.804 0.767 0.739 0.101

AE+SOM 0.535 0.950 0.841 0.972 0.825 0.896 0.175
PCA+SOM 0.874 0.976 0.982 0.861 0.923 0.925 0.056D1M-D1G

SOM 0.642 0.976 0.966 0.985 0.892 0.971 0.145

AE+SOM 0.679 0.584 0.802 0.919 0.746 0.741 0.126
PCA+SOM 0.644 0.666 0.821 0.975 0.776 0.743 0.133D5G-D5M

SOM 0.508 0.746 0.737 0.869 0.715 0.742 0.131

AE+SOM 0.946 0.874 0.959 0.637 0.854 0.910 0.129
PCA+SOM 0.641 0.984 0.654 0.979 0.815 0.817 0.167D5M-D5G

SOM 0.631 0.968 0.983 0.972 0.889 0.970 0.149

(a) D1G-D1M (b) D1M-D1G (c) D5G-D5M (d) D5M-D5G

(e) D6G-D6M (f) D6G-D6M (g) D8G-D8M (h) D8M-D8G

Fig. 4: Unknown attack detection results on the same device
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other attacks. We divided testing devices into two groups for performing tests.
The first group is doorbell (D1 and D3), and the second group is camera (D5,
D6, D8). The detailed results were presented in the following subsections.

Transferring model testing on doorbell devices The doorbell devices con-
sist of two devices D1 and D3. First, we did the train on Gafgyt and Mirai on
device D1 and tested on Gafgyt on device D3. Next, we did the train on Gafgyt
on device D3 and tested on all data attack types on device D1 (both Mirai and
Gafgyt were used for testing). The results are shown in Table 5.

The AE+SOM model is more consistent on an unbalanced dataset (the data
ratio is 0.01 and 5.0), while the PCA+SOM is better on the balanced dataset
(the data ratio is 0.1 and 1.0). The AE+SOM model which was trained on
Gafgyt also shows better results than the model trained on Mirai data. As data
analyzed in section 6.1, Gafgyt data and benign are close to each other, so the
AE learns and explores features better on benign+Gafgyt. The AE is not good
on benign+Mirai, because Mirai is lying further from origin coordinate than
Gafgyt and benign. The AUC score of model AE+SOM got a minimum value
of 0.563 while PCA+SOM got 0.624 correspondings to the data ratio of 0.01.

On contrary, PCA+SOM is trying to project data from one coordinate system
to another one, it keeps all features that have a close correlation to others. When
the data is balanced, the PCA+SOM is given better results than the unbalanced
data. The maximum AUC score is 0.997 when the data ratio r is balanced (1.0)
on both PCA+SOM and AE+SOM models.

Table 5: The transfer learning testing results on D1-D3
Data ratio r Metrics

Train-Test Models
0.01 0.10 1.00 5.00 mean median std

AE+SOM 0.984 0.985 0.987 0.951 0.977 0.985 0.015
PCA+SOM 0.939 0.995 0.994 0.936 0.966 0.966 0.028D1G-D3G

SOM 0.981 0.991 0.993 0.948 0.978 0.986 0.018

AE+SOM 0.605 0.934 0.896 0.715 0.787 0.805 0.134
PCA+SOM 0.624 0.968 0.954 0.807 0.838 0.881 0.139D1M-D3G

SOM 0.615 0.957 0.944 0.794 0.827 0.869 0.138

AE+SOM 0.935 0.995 0.997 0.976 0.976 0.986 0.025
PCA+SOM 0.993 0.994 0.997 0.951 0.984 0.993 0.019D3G-D1G

SOM 0.977 0.995 0.986 0.967 0.981 0.981 0.010

AE+SOM 0.563 0.685 0.848 0.577 0.668 0.631 0.114
PCA+SOM 0.676 0.722 0.684 0.950 0.758 0.703 0.112D3G-D1M

SOM 0.710 0.674 0.811 0.950 0.786 0.761 0.107

The AUC scores are plotted against data ratio (see Fig. 5). The direction
of the the line tends to permanently on training and testing on Gafgyt and
fluctuating on training or testing on Mirai.
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(a) D1G-D3G (b) D1M-D3G (c) D3G-D1G (d) D3G-D1M

Fig. 5: The AUC visualization for D1-D3

Transferring model testing on camera devices The camera group consists
of devices D5, D6, and D8. While D5 and D6 are devices with a different version
of one brand, D8 is a device of another one. Each device contains benign, Gafgyt
and Mirai, so we train sequentially on benign+Gafgyt and benign+Mirai on one
device and test on two rest devices. In this section, the testing results are shown
for training dataset benign+Gafgyt of device D5 (Table 6), the other results for
device D6 and D8 are shown in Appendix A.

Table 6: The transfer learning results (Train: D5-Gafgyt, Test: D6, D8)
Data ratio r Metrics

Train-Test Models
0.01 0.10 1.00 5.00 mean median std

AE+SOM 0.988 0.997 0.996 0.958 0.985 0.992 0.016
PCA+SOM 0.979 0.996 0.998 0.961 0.983 0.988 0.015D5G-D6G

SOM 0.964 0.995 0.994 0.948 0.975 0.979 0.020

AE+SOM 0.672 0.660 0.883 0.941 0.789 0.777 0.125
PCA+SOM 0.673 0.694 0.680 0.925 0.743 0.687 0.105D5G-D6M

SOM 0.521 0.680 0.702 0.943 0.712 0.691 0.151

AE+SOM 0.985 0.989 0.768 0.702 0.861 0.877 0.128
PCA+SOM 0.974 0.993 0.947 0.720 0.909 0.960 0.110D5G-D8G

SOM 0.963 0.993 0.969 0.953 0.969 0.966 0.015

AE+SOM 0.807 0.650 0.685 0.699 0.710 0.692 0.059
PCA+SOM 0.658 0.671 0.627 0.669 0.656 0.664 0.017D5G-D8M

SOM 0.595 0.664 0.647 0.949 0.714 0.656 0.138

The AUC scores are also plotted in Fig. 6. The AUC scores are the re-
sults of training on Gafgyt of device D5, and testing on D6 and D8. AE+SOM,
PCA+SOM and SOM give the better results when testing on Gafgyt (Fig. 6a
and Fig. 6c), and worse when testing on Mirai (Fig. 6b, Fig. 6d). The plot for
D5-Mirai in shown in Fig. 7 in Appendix A.

The influence of data ratio r: To assess the influence of r, we also per-
formed tests in a range of values 0.01, 0.1, 1.0, and 5.0. The AE+SOM seems
to be better than PCA+SOM and SOM on training on Gafgyt and testing on
Gafgyt with r small. When r is 1.0, the AE+SOM is better at training on Gafgyt
and testing on Mirai. In the last case, if the r is equal to 5.0 then pure SOM is
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(a) D5G-D6G (b) D5G-D6M (c) D5G-D8G (d) D5G-D8M

Fig. 6: The AUC visualization for D5 (Train on Gafgyt)

the best. The value 5.0 means the amount of attack data is 5 times more than
benign. But in that case, the dataset is more “balanced” compare to other values
of 0.01 and 0.1. This proves that, when the amount of benign is much more or
at least equal to attack, then AE+SOM can handle better. When the attack
dominates benign, then the effectiveness of AE+SOM is increased. This point is
already mentioned in the section 1 and 2 that AE fit with one class classification
or in cases when amount data of majority class is much more than the other
classes.

To compare the effectiveness of all algorithms on devices, we total up the
minimum and maximum values of AUC scores in Table 7. As seen in this table,
the AE+SOM model is shown better than other models. It means that the
attacks are different, but they are sharing common characteristics, such as packet
format, generation sources... AE can learn and extract most features from the
data. The latent contains most characteristics of the original input.

Table 7: Algorithm Effectiveness Comparison
Device Metric AE+SOM PCA+SOM SOM

Min 0.563 0.624 0.615
D1

Max 0.997 0.997 0.995

Min 0.521 0.549 0.521
D5

Max 0.997 0.996 0.991

Min 0.777 0.564 0.628
D6

Max 0.998 0.998 0.998

Min 0.524 0.506 0.508
D8

Max 0.993 0.989 0.989

In IoT network, the amount of devices is huge, the protocols used are also
diverse, and most of data is unlabeled. Therefore, the applying of a trained model
from one known device to other devices is really meaningful. It can save time and
resources for training. Especially, the new device does not have enough data for
training. The transferring model can help to detect unknown malware attacks
on such devices. It can detect unknown attacks (zero-day attacks) not only in
the device types which are used for training but in new coming devices in the
future.
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7 Conclusions and Future work

In this work, we proposed the use of a combination of autoencoder with
self-organizing maps (AE+SOM) for detecting attacks on IoT dataset NBaIoT.
Our main contribution is to apply the unsupervised learning methods to build
one end-to-end system for detecting anomalies. The results are acceptable and
reliable because we trained and tested on different datasets and devices. Experi-
ments show that the AE+SOM classifier is better than other methods (PCA+SOM,
SOM) at the last stages for transfer learning. Almost all methods are able to
detect not only unknown attacks in the same device but on another one. Our
method can be applied to the real system for real-time classification, since the
time for loading model and classifying is not too much.

In the future, our method can be extended in the following manners. First, we
can use the joint-learning method to improve the classification process; it means
we can use both AE and SOM in one training stage, instead of separation.
Second, the data can be better clustered if the regularizers are used. We did
not use any regularizer in our experiments, but this method can be good for
separating data.
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A Appendix

Table 8: Unknown attack detection results
Data ratio r Metrics

Train-Test Model
0.01 0.10 1.00 5.00 mean median std

AE+SOM 0.567 0.657 0.663 0.810 0.674 0.660 0.087
PCA+SOM 0.680 0.674 0.680 0.924 0.740 0.680 0.106D6G-D6M

SOM 0.650 0.680 0.681 0.684 0.674 0.681 0.014

AE+SOM 0.634 0.859 0.843 0.937 0.818 0.851 0.112
PCA+SOM 0.965 0.560 0.654 0.979 0.790 0.810 0.186D6M-D6G

SOM 0.949 0.952 0.821 0.964 0.922 0.950 0.058

AE+SOM 0.606 0.729 0.692 0.736 0.691 0.710 0.051
PCA+SOM 0.603 0.661 0.593 0.746 0.651 0.632 0.061D8G-D8M

SOM 0.543 0.657 0.816 0.970 0.747 0.737 0.161

AE+SOM 0.583 0.965 0.954 0.949 0.863 0.952 0.162
PCA+SOM 0.912 0.954 0.971 0.648 0.871 0.933 0.131D8M-D8G

SOM 0.504 0.641 0.673 0.953 0.693 0.657 0.163

Table 9: The transfer learning results (Train: D5-Mirai, Test: D6, D8)
Data ratio r Metrics

Train-Test Models
0.01 0.10 1.00 5.00 mean median std

AE+SOM 0.640 0.622 0.839 0.944 0.761 0.739 0.136
PCA+SOM 0.554 0.969 0.910 0.928 0.840 0.919 0.167D5M-D6G

SOM 0.849 0.966 0.646 0.916 0.844 0.882 0.122

AE+SOM 0.969 0.986 0.991 0.974 0.980 0.980 0.009
PCA+SOM 0.961 0.999 0.999 0.966 0.981 0.983 0.018D5M-D6M

SOM 0.995 0.996 0.994 0.946 0.983 0.995 0.021

AE+SOM 0.610 0.615 0.681 0.858 0.691 0.648 0.100
PCA+SOM 0.549 0.967 0.906 0.691 0.778 0.798 0.167D5M-D8G

SOM 0.848 0.938 0.579 0.906 0.818 0.877 0.142

AE+SOM 0.740 0.743 0.521 0.819 0.705 0.741 0.111
PCA+SOM 0.697 0.942 0.730 0.713 0.771 0.722 0.099D5M-D8M

SOM 0.722 0.729 0.767 0.934 0.788 0.748 0.086
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(a) D5M-D6G (b) D5M-D6M (c) D5M-D8G (d) D5M-D8M

Fig. 7: The AUC visualization for D5 (Train on Mirai)

(a) D6G-D5G (b) D6G-D5M (c) D6G-D8G (d) D6G-D8M

Fig. 8: The AUC visualization for D6 (Train of Gafgyt)

(a) D6M-D5G (b) D6M-D5M (c) D6M-D8G (d) D6M-D8M

Fig. 9: The AUC visualization for D6 (Train on Mirai)

(a) D8G-D5G (b) D8G-D5M (c) D8G-D6G (d) D8G-D6M

Fig. 10: The AUC visualization for D8 (Train of Gafgyt)
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Table 10: The testing results on devices D6-D5-D8
Data ratio r Metrics

Train-Test Models
0.01 0.10 1.00 5.00 mean median std

AE+SOM 0.982 0.996 0.998 0.993 0.992 0.994 0.006
PCA+SOM 0.994 0.997 0.997 0.982 0.992 0.995 0.006D6G-D5G

SOM 0.995 0.996 0.998 0.992 0.995 0.996 0.002

AE+SOM 0.648 0.714 0.909 0.938 0.802 0.812 0.124
PCA+SOM 0.656 0.679 0.850 0.893 0.770 0.765 0.103D6G-D5M

SOM 0.660 0.676 0.680 0.728 0.686 0.678 0.025

AE+SOM 0.981 0.986 0.970 0.942 0.970 0.975 0.017
PCA+SOM 0.993 0.994 0.940 0.760 0.922 0.967 0.096D6G-D8G

SOM 0.993 0.991 0.993 0.881 0.964 0.992 0.048

AE+SOM 0.618 0.803 0.806 0.814 0.760 0.804 0.082
PCA+SOM 0.655 0.721 0.694 0.682 0.688 0.688 0.024D6G-D8M

SOM 0.634 0.628 0.657 0.719 0.660 0.646 0.036

AE+SOM 0.934 0.850 0.851 0.887 0.881 0.869 0.034
PCA+SOM 0.957 0.963 0.953 0.968 0.960 0.960 0.006D6M-D5G

SOM 0.968 0.968 0.641 0.966 0.886 0.967 0.141

AE+SOM 0.946 0.993 0.981 0.984 0.976 0.982 0.018
PCA+SOM 0.986 0.996 0.998 0.994 0.994 0.995 0.005D6M-D5M

SOM 0.983 0.997 0.997 0.995 0.993 0.996 0.006

AE+SOM 0.928 0.844 0.835 0.563 0.792 0.839 0.137
PCA+SOM 0.776 0.956 0.843 0.952 0.882 0.898 0.076D6M-D8G

SOM 0.953 0.969 0.637 0.838 0.849 0.895 0.132

AE+SOM 0.956 0.777 0.799 0.660 0.798 0.788 0.105
PCA+SOM 0.564 0.981 0.886 0.758 0.797 0.822 0.156D6M-D8M

SOM 0.726 0.753 0.786 0.713 0.745 0.740 0.028

(a) D8M-D5G (b) D8M-D5M (c) D8M-D6G (d) D8M-D6M

Fig. 11: The AUC visualization for D8 (Train on Mirai)
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Table 11: The testing results on devices D8-D5-D6
Data ratio r Metrics

Train-Test Models
0.01 0.10 1.00 5.00 mean median std

AE+SOM 0.917 0.986 0.990 0.921 0.954 0.954 0.035
PCA+SOM 0.841 0.970 0.931 0.927 0.917 0.929 0.047D8G-D5G

SOM 0.949 0.982 0.990 0.693 0.903 0.965 0.122

AE+SOM 0.627 0.665 0.683 0.785 0.690 0.674 0.059
PCA+SOM 0.643 0.660 0.654 0.784 0.685 0.657 0.057D8G-D5M

SOM 0.641 0.675 0.684 0.589 0.647 0.658 0.037

AE+SOM 0.917 0.989 0.993 0.866 0.941 0.953 0.053
PCA+SOM 0.840 0.975 0.910 0.889 0.904 0.899 0.049D8G-D6G

SOM 0.952 0.985 0.984 0.745 0.916 0.968 0.100

AE+SOM 0.628 0.665 0.683 0.729 0.677 0.674 0.036
PCA+SOM 0.643 0.660 0.633 0.747 0.671 0.652 0.045D8G-D6M

SOM 0.642 0.676 0.677 0.642 0.659 0.659 0.018

AE+SOM 0.525 0.958 0.926 0.828 0.809 0.877 0.171
PCA+SOM 0.509 0.968 0.964 0.717 0.790 0.841 0.191D8M-D5G

SOM 0.509 0.960 0.975 0.769 0.803 0.864 0.188

AE+SOM 0.662 0.938 0.889 0.843 0.833 0.866 0.104
PCA+SOM 0.830 0.953 0.959 0.752 0.873 0.891 0.087D8M-D5M

SOM 0.789 0.830 0.959 0.781 0.840 0.809 0.071

AE+SOM 0.524 0.957 0.914 0.779 0.794 0.847 0.169
PCA+SOM 0.506 0.964 0.963 0.752 0.796 0.858 0.189D8M-D6G

SOM 0.508 0.965 0.976 0.709 0.790 0.837 0.194

AE+SOM 0.663 0.937 0.880 0.796 0.819 0.838 0.103
PCA+SOM 0.830 0.951 0.961 0.785 0.882 0.891 0.076D8M-D6M

SOM 0.790 0.835 0.961 0.726 0.828 0.813 0.086
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