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ABSTRACT This paper proposes an in-memory binary spiking neural network (BSNN) based on spin-
transfer-torquemagnetoresistive RAM (STT-MRAM).We propose residual BSNN learning using a surrogate
gradient that shortens the time steps in the BSNN while maintaining sufficient accuracy. At the circuit level,
presynaptic spikes are fed to memory units through differential bit lines (BLs), while binarized weights are
stored in a subarray of nonvolatile STT-MRAM. When the common inputs are fed through BLs, vector-
to-matrix multiplication can be performed in a single memory sensing phase, hence achieving massive
parallelism with low power and low latency. We further introduce the concept of a dynamic threshold to
reduce the implementation complexity of synapses and neuron circuitry. This adjustable threshold also
permits a nonlinear batch normalization (BN) function to be incorporated into the integrate-and-fire (IF)
neuron circuit. The circuitry greatly improves the overall performance and enables high regularity in
circuit layouts. Our proposed netlist circuits are built on a 65-nm CMOS with a fitted magnetic tunnel
junction (MTJ) model for performance evaluation. The hardware/software co-simulation results indicate
that the proposed design can deliver a performance of 176.6 TOPS/W for an in-memory computing (IMC)
subarray size of 1× 288. The classification accuracy reaches 97.92% (83.85%) on the MNIST (CIFAR-10)
dataset. The impacts of the device non-idealities and process variations are also thoroughly covered in the
analysis.

INDEX TERMS Binary spiking neural network, emerging memory technology, in-memory computing,
neuromorphic computing, process variation, STT-MRAM.

I. INTRODUCTION
Deep neural networks (DNNs) in on-edge AI devices face the
challenge of high energy consumption due to the requirement
of a large number of tensor operations, which incurs not
only a high computational workload but also large mem-
ory accesses [1]–[5]. The conventional computer architecture
with limited memory bandwidth and a sequential comput-
ing framework is not ideal for such operations, especially
for DNNs in on-edge AI devices such as the Internet of
Things (IoT) or mobile systems, which have strict resource
and power budget constraints. IMC has been recently intro-
duced as a revolutionary approach to solving the memory
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bottleneck challenge [6]. This approach partially shifts the
processing load from the central processing unit to distributed
processing elements in memory, which greatly reduces mem-
ory access while increasing performance and energy effi-
ciency. IMC finds it difficult to support complex processing
operations such as multiply-accumulate (MAC); therefore,
the binary neural network (BNN) has recently emerged [7],
with the aim of simplifying network operations. Interestingly,
IMC approaches and BNNs apparently exhibit much syn-
ergy. Indeed, a BNN typically performs calculations based
on bitwise XNOR operations (for multiplication), and bit
counting (for accumulation) can be fully implemented in
memory, as proposed in some prior works. The proposed IMC
designs in [8], [9] employ resistive RAM (RRAM), yielding
low standby power and improving array density. However,
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in these works, the accumulation process based on the cur-
rent summing approach could require significant energy in
large networks. As a further development, STT-MRAM was
also adopted for IMC-based neural networks. STT-MRAM
exhibits outstanding advantages over other types of memory
in terms of endurance [10]; thus, it is well suited for use as
on-chip memory. The STT-MRAM-based BNN accelerator
architecture in [11] also adopts the current sensing approach
and is only reasonable for small arrays (8× 4). Furthermore,
in [12], the authors introduced a scalable and fully paral-
lel in-memory BNN structure, which supports MAC opera-
tions in a single memory access phase via a voltage sensing
technique and achieves improved scalability and energy effi-
ciency. Nonetheless, the accuracy of BNNs strongly depends
on process variations, which could be quite severe in finer
technologies.

Spiking neural networks (SNNs), known as the third gen-
eration of DNNs, not only better mimic biological neu-
ral behaviors but also exhibit great fault tolerance and can
potentially overcome the persistent drawback of binarized
networks [13]. Therefore, SNNs have been actively stud-
ied recently. Among them, an MTJ was also adopted for
SNNs [14]–[19]. In [14]–[16], the authors leveraged the
binary switching of an MTJ to map the sigmoid function
in an artificial neural network (ANN) to an SNN. How-
ever, this mapping may cause significant accuracy degrada-
tion. Additionally, the accuracy suffers from unstable MTJ
switching and bias current variation. Inhibitory and excitatory
spike-timing-dependent plasticity was processed for on-chip
learningwithMTJ-synaptic [17] andMTJ-neuron [18] imple-
mentations. In [17], a stochastic synapse was introduced,
in which synaptic propagation was modulated stochastically
by a full-precision weight. Then, each neuron accumulated
incoming synaptic events sequentially using a spike counter,
which significantly affected the network latency. In [18],
the leaky-integrate-fire spiking model was used to emulate
biological neuron dynamics, but this work focused only on
neuron circuitry and did not cover the impact of variation.
On the other hand, in [19], the author presented a compact
probabilistic Poisson method based on back-hopping oscilla-
tion in anMTJ, where the number of spikes was exponentially
proportional to the synaptic current in the utilized sampling
time (within a time step). However, the classification accu-
racy of this approach is highly sensitive to the sampling
period.

In this work, we propose a complete design approach
with multilevel optimization for a BSNN that leverages
high-energy and efficient IMC based on STT-MRAM. For
network training, we first propose a direct BSNN training
approach using a surrogate gradient augmented with resid-
ual connections. While directly training a deep SNN with
binary weights can cause accuracy degradation, as reported
in [20], our training method improves the accuracy and
reduces the network latency. In the BSNN inference process,
we also provide a mathematical formulation to justify that
the MAC function of the BSNN can fully utilize in-memory

with XNOR-based computation. Specifically, we propose an
equivalent IF model with a dynamic threshold instead of a
fixed threshold. This permits the MAC operation–the most
computationally intensive operation of the synapse – to be
realized solely in the XNOR IMC array. Additionally, the
fundamental operation of the IF neuron is based only on an
accumulation function. The latter not only simplifies the neu-
ron circuitry but also enhances its calculation accuracy. Addi-
tionally, considering that the threshold is dynamic, we adjust
the initial value (i.e., after firing) to emulate the impact of BN.

Our contributions can be summarized as follows

• We propose a BSNNwith residual connections and train
the network with a surrogate gradient, which enables
higher classification accuracy with fewer time steps.

• The proposed dynamic threshold mechanism allows
neural synapses to be mapped to XNOR cells based
on the STT-MRAM subarray in [12] and reduces the
complexity of the neuron circuit by incorporating BN.

• The proposed approaches are built for circuit-level sim-
ulations. The accuracy and other performance metrics of
the network are then evaluated based on parameters real-
istically extracted from circuit simulations, including the
nonlinearity and process variations.

The rest of this paper is organized as follows. Section II
presents the BSNN training model. The BSNN IMC model
with a novel MAC operation using an XNOR cell circuit is
introduced in Section III. Section IV expresses the models of
the STT-BSNN array and introduces the sense amplifier used
in the proposed architecture. Section V evaluates the accuracy
of the proposed training method, and the energy efficiency of
our design is compared with that of previous studies. Then,
Section VI concludes this work.

II. TRAINING A BSNN WITH A SURROGATE GRADIENT
AND RESIDUAL CONNECTIONS
In this section, we present the training process for BSNNs
using surrogate gradient backpropagation with residual con-
nections. In our training model, the binarized weights are
represented in bipolar format (i.e.,±1), as introduced in [21].

A. BACKGROUND
In the conventional IF model, the membrane potential ut,li for
the i-th neuron at time step t in layer l is defined as follows

ut,li = ut−1,li +
γ

σ

 M∑
j=1

wlij · s
t,l−1
j − µ

+ β (1)

Here, γ and β are scaling and shifting parameters, respec-
tively; σ andµ correspond to the standard deviation andmean
of BN, respectively. M denotes the number of presynaptic
spikes, and st,l−1j is the presynaptic spike in the j-th neuron.

wlij = α · wb,lij represents the latent weight of the BSNN,

where wb,lij = sign(wlij) is the corresponding binary weight

and α =
∣∣∣wlij∣∣∣ is the latent weight scaling factor.
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For the spike representation, we use the rate encoding
method introduced in [22]. Specifically, the real input data are
converted into spike format using a Poisson random number
generator. The generated value is proportional to the total
number of spikes within T time steps. According to the IF
model in (1), if the membrane potential ut,li surpasses the
firing threshold θ li , a postsynaptic spike ot,li is generated.
Then, the membrane potential is reset to zero before being
accumulated again. Furthermore, the cross-entropy loss func-
tion is calculated through the last output membrane potential
uT ,Li , which is expressed as follows

Lp = −
C∑
i=1

yilog

(
eu

T ,L
i∑C

k=1 e
uT ,Lk

)
(2)

where Y = (y1, y2, . . . , yC ) is a label vector andC is the total
number of network outputs.

During the training process, the loss function Lp is mini-
mized by gradient descent, and the latent weight is updated
as follows [22]

wlij = wlij − η ·
∑
t

∂Lp
∂wt,lij

(3)

where η is a learning rate.
∑

t
∂Lp

∂wt,lij
is the accumulated gradi-

ent over all time steps, which is calculated as in [22]:

∑
t

∂Lp
∂wt,lij

=


∑
t

∂Lp
∂ot,li

∂ot,li
∂ut,li

∂ut,li
∂wt,lij

, if 1 ≤ l < L

∑
t

∂Lp
∂uT ,Li

∂uT ,li

∂wt,Lij
. if l = L

(4)

In (4), the gradient calculation suffers from non-
differentiable spiking activities. To address this issue,
an approximate gradient (i.e., a surrogate gradient) was intro-
duced in [22], [23], which is formally expressed as

∂ot,li
∂ut,li

= δ · max

{
0,1−

∣∣∣∣∣u
t,l
i − θ

l
i

θ li

∣∣∣∣∣
}

(5)

where δ typically is set to 0.3. The surrogate gradient is effec-
tive for solving non-differentiable spiking activity. However,
when the network gets deeper, the training process based on
gradient descent in (3)-(4) suffers from the degradation prob-
lem [20], [24]. In the following, we present how a residual
connection [20], [24] can be adopted for our BSNN to tackle
the degradation issue.

B. PROPOSED BSNN WITH RESIDUAL CONNECTIONS
Residual connection is an effective technique that helps to
stabilize the training processes and improve the classification
accuracies of deep networks [20], [24]. We hence propose a
BSNN training model using a surrogate gradient in conjunc-
tionwith residual connections. As illustrated in Fig. 1, relative
to the conventional BSNN network in Fig. 1(a), each convo-
lutional (Conv) layer in the residual structure in Fig. 1(b) has

FIGURE 1. (a) A conventional BSNN topology, (b) a BSNN topology with
residual connections using an inverter-AND spike-element-wise function.

an additional connection from layer (l − 1) to layer l via the
inverter-AND spike-element-wise (SEW) function g.

The spike st,li of layer l is now dependent on the IF output
ot,li and the spike st,l−1i as follows

st,li = g
(
ot,li , s

t,l−1
i

)
= (1− ot,li )

∧
st,l−1i (6)

By supporting the SEW function in (6), if the output in (1)
is ot,li = 0, the output of the element-wise function becomes
st,li = st,l−1i , which satisfies the identity mapping condition.
The algorithm that describes the whole training process can
be found in Appendix A.

III. XNOR-BASED BSNN INFERENCE WITH A DYNAMIC
THRESHOLD
This section presents a BSNN inference model that utilizes
the MAC operation based on an XNOR array; the latter is
suited for implementation in memory using emerging tech-
nologies [12], [25]. To simplify the inference model in (1)
without accuracy degradation, we set γ = 1 and β = 0
in the BN layers [26]. The original IF model for a BSNN is
expressed as

Integration : ut,li = ut−1,li +
α

σ

{∑M

j=1
wb,lij s

t,l−1
j −

µ

α

}
Firing : ot,li =

{
1, if ut,li > θ li

0, otherwise

Resetting : ut,li = 0 (7)

In this model, during every time step, the membrane
potential ut,li accumulates with α/σ

{∑M
j=1 w

b,l
ij s

t,l−1
j −

µ
α

}
and then is compared with a threshold θ li for the firing deci-
sion. To avoid multiplication in (7), which could be costly to
implement at the circuit level, we scale both the membrane
potential and the threshold by a factor of α/σ .
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FIGURE 2. BSNN architecture for intra-layer processing using an XNOR
cell array.

Given that, the scaled membrane potential ût,li and the
threshold θ̂ li can be rewritten as

ût,li = ût−1,li +

M∑
j=1

wb,lij s
t,l−1
j −

µ

α

θ̂ li =
σ

α
· θ li (8)

The MAC component
∑M

j=1 w
b,l
ij s

t,l−1
j in (8) is essentially

the most computationally extensive operation. On the other
hand, in the binary spiking model, a spike signal is repre-
sented in unipolar format (0, 1) [27], [28], while the weights
wb,lij are trained with a bipolar format (−1, 1). Therefore,
unlike in the case of a BNN [12], [25], it is not possible
to directly utilize an XNOR array for a BSNN MAC func-
tion. To overcome this issue, assuming that the M weights
in (8) haveM1 negative weights (w

−b
ij ) andM −M1 positive

weights (w+bij ), the MAC function in (8) can be reformulated
as

M∑
j=1

wb,lij s
t,l−1
j =

M1∑
j=1

(1+ w−bij )⊕ st,l−1j −M1

+

M−M1∑
j=1

w+bij ⊕ s
t,l−1
j =

M∑
j=1

wu,lij ⊕ s
t,l−1
j −M1 (9)

In (9), wu,lij is represented in unipolar format (wu,lij =

(wb,lij + 1)/2). Substituting the expression of (9) into (8) and
denoting ρ = M1 +

µ
α
, the scaled membrane potential in (8)

is now expressed as

ût,li = ût−1,li +

M∑
j=1

wu,lij ⊕ s
t,l−1
j − ρ (10)

In (10), the component
∑M

j=1 w
u,l
ij ⊕ s

t,l−1
j can be realized

entirely in memory by using an XNOR array.

However, this transformation introduces a constant ρ
in (10) implies that the hardware implementation must sup-
port both accumulation and subtraction. The latter leads
to undesirable complexity in the circuit implementation.
To solve this problem, we propose an equivalent IF model
with a dynamic threshold mechanism. Specifically, instead of
a fixed threshold, we can transform the negative component ρ
of the scaled membrane in (10) into a positive component of
the threshold θ̂ li , which is now considered the time-dependent
quantity θ̂ t,ldyn,i. Therefore, the proposed IF model can be
formulated as follows

Integration :


ût,lxnor,i = ût−1,lxnor,i +

M∑
j=1

wu,lij ⊕ s
t,l−1
j

θ̂
t,l
dyn,i = θ̂

t−1,l
dyn,i + ρ, θ̂

t=0,l
dyn,i = θ̂

l
i

Firing : ot,li =

{
1, if ût,lxnor,i > θ̂

t,l
dyn,i

0, otherwise

Resetting : ût,lxnor,i = 0 and θ̂ t,ldyn,i = θ̂
l
i (11)

Compared to the IF model in (7), the IF model in (11)
requires only accumulation operations. This means that the
latter model can help to simplify the subsequent hardware
implementation.
However, the model in (11) is correct only when ρ is posi-

tive. Although it rarely occurs, the value of ρ can theoretically
be negative, i.e., the subtraction in (10) is actually an addition.
In that case, we retain the original expression in (10) and keep
the threshold constant. Accordingly, a small modification is
required in the IF neuron circuit implementation (detailed in
Section IV) for covering both positive and negative values
of ρ.
The pseudocode of the XNOR-based BSNN infer-

ence process with a dynamic threshold is presented in
Appendix B.

IV. IN-MEMORY STT-MRAM BITCELL AND SUBARRAY
CIRCUITS
This section presents the circuit implementation for the
BSNN model presented in Section II and Section III. The
general architecture for intra-layer processing using the pro-
posed model is shown in Fig. 2. First, the binarized weight
wu,lij ≡ w

ij
is mapped into the memory of theN×M STT sub-

array. Then, the digital presynaptic spikes st,l−1j are encoded
by the column decoder and fed to the array through bit line
BLj (j = 1÷M ) to fit the XNOR-MAC computation. Finally,
the source line (SL) SLi (i = 1÷N ) voltage, which represents
the output of the MAC operation, is passed into the IF model
in (11) to generate postsynaptic spikes ot,li .
All of the circuit implementation and simulation steps

are completed on a 65-nm CMOS with the MTJ parameters
presented in Table 1.

The detailed implementations of individual subcircuits
are subsequently described in the following
sections.
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TABLE 1. BSNN circuit parameters.

A. MAC OPERATIONS USING A COMPLEMENTARY 2T-2R
STT-MRAM BITCELL AND SUBARRAY
To map an MAC computational unit into the IMC memory,
we employ a 2T-2R STT-MRAM-based XNOR cell. The
details of this circuit and model can be found in [12]; here,
we give brief descriptions of the bitcell and row operations.
Updating the binary weights is performed at the beginning.
Since SL is shared among the cells in the same row, each
MTJ has to be written individually. Specifically, apart from
the BL corresponding to the active MTJ, other BLs are left
in the high-impedance state while an appropriate voltage is
applied across (BL, SL) for flipping the MTJ magnetization.
The write peripheral circuit is omitted for clarity, details can
be found in [29], [30]. As seen in Fig. 3(a), for a single XNOR
bitcell, the binarized weight (0, 1) is encoded by the MTJ
states (RAP and RP), and the presynaptic spike is encoded to
a pair of BL voltages as follows

st,l−1j ≡

 0, if BL t,l−10,j = 0 (V ) ,BL t,l−11,j = VBL

1, if BL t,l−10,j = VBL ,BL
t,l−1
1,j = 0 (V )

(12)

Here, VBL is set to 0.3 V to limit the bitcell reference
current to less than 50 µA and avoid a high disturbance rate
and high power consumption [31]. The BL driver encodes
incoming spikes using a pair of complementary transistors (an
n-channel MOS (NMOS) and a p-channel MOS (PMOS)).
The SL voltage represents the output of a single XNOR
operation (see Fig. 3(b)). Fig. 3(a) shows the circuit imple-
mentation for a single-row XNOR-based BSNN using STT-
MRAM. Each high-load WL is driven by a buffer (an 4-stage
inverter chain) that guarantees the fast transition and stable
level value during the MAC operation on the memory row.
Additionally, from [12], the MAC product in the output of the
i-th row connection is represented by the merged SL voltage
V t,l
SL,i (i.e., all bitcells in a row share the same SL), which is

equal to [12]

V t,l
SL,i = VBL

(
M − K
M

·
Rbitcell

RAP + Raccess
+
K
M
·

Rbitcell
RP + Raccess

)
(13)

where Rbitcell is the overall resistance seen from the SL
terminal of the bitcell, which is data-independent and equal
to (RAP + Raccess) || (RP + Raccess); K denotes the number of
XNOR outputs (i.e., st,l−1j ⊕wij) equal to+1 across the entire
row of M bitcells. The SL voltage linearly depends on K
and ranges from VBL

Rbitcell
RAP+Raccess

(K = 0) to VBL
Rbitcell

RP+Raccess
(K = M ) [12].

FIGURE 3. (a) A single STT-MRAM row based on 2T-2R STT-MRAM bitcells
for realizing binarized MAC operations, (b) the SL voltage level
corresponding to the XNOR operation for a single 2T-2R bitcell [12] and
(c) the dependence of the SL voltage on the number of (+1) values
among the XNOR outputs (K ) of the circuit simulation for a row of 288
bitcells with VBL = 0.3 V and VWL = 0.9 V.

In Fig. 3(c), we plot the circuit simulation of V t,l
SL,i with

respect to K . The simulation results show that V t,l
SL,i, which

ranges from 110mV to 184mV , is linearly dependent on K .
This confirms that the MAC calculation (11) can be per-
formed within a single in-memory access phase.

In the following, we introduce an approach for implement-
ing an IF neuron mechanism (the model in (11)) using circuit
computation in the charge domain, whose input is the SL
voltage V t,l

SL,i from the MAC operation.

B. IF NEURON AND SEW CIRCUIT DESIGNS
1) GENERAL ARCHITECTURE
Fig. 4 shows the proposed implementation of the IF neuron
and SEW circuit architecture. The IF neuron circuit con-
sists of two charge-based accumulations (ACC1 and ACC2),
a capacitive voltage booster (CB), and firing and shaping (FS)
circuits. The charge-based accumulations are used to update
the membrane potential and the dynamic threshold. As dis-
cussed earlier, the result of an MAC operation is represented
in the form of a voltage at the merged SL (V t,l

SL,i). Subse-
quently, this voltage must be accumulated in every time step,
followed by the IF model in (11). However, since V t,l

SL,i varies
from 110mV to 184mV , it must be amplified to an adequate
level to limit the charging current.1

1If V t,lSL,i is used directly to control the charging current (the drain current
of the PMOS M1), the accumulated charge on C1 can quickly reach the
saturation level (i.e., VDD × C , where C is the capacitance of C1) because
the M1 transistor is almost at the full-driving state.
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FIGURE 4. The IF neuron and SEW circuit of the proposed XNOR-based BSNN inference with STT-MRAM synapses.

The amplification process is performed by the CB circuit
introduced in [31], considering the amplification factor (G)
does not require high precision, and the CB circuit is very
compact and energy efficient. As seen in Fig. 5, V t,l

SL,i is sam-
pled before being fed into the booster circuit, the sampling
time τsample for this array size is chosen to be 1 ns (when
SCE = 1). The capacitors in the CB are precharged by Vprech
up to themiddle level ofV t,l

SL,i(150mV ) to optimize the timing,
as detailed in [31]. The precharging time τprecharge is set to
0.5 ns (when SPE= 1). After boosting, V t,l

boost,i is maintained
for the duration of τboost = 4.5ns (when SBE = 1). During
that time, when the signal ENacc1 is activated, V t,l

boost,i is
connected to the gate of M1 transistor for charging C1 within
a fixed duration of time τcharge = 1ns. The additional amount
of charge in C1 hence is proportional to V

t,l
boost,i and to V t,l

SL,i.

The voltage level across C1 is equal to V t
acc1,i = Qtacc1,i

/
C ,

which indirectly represents the accumulation of V t,l
SL,i at time

step t .
Similarly, ACC2 is utilized for dynamic threshold accu-

mulation. Assume that ρ > 0, and Vρ represents the value of
ρ in the voltage domain. As shown in Fig. 5, when ENacc2p
is activated, Vρ is used to charge C2 through M2(ENacc2p ≡

ENacc1). The amount of additional charge corresponds to the
voltage increment at the outputV t

acc2,i of capacitor C2. In such
a way, V t

acc2,i represents the dynamic threshold accumulation
corresponding to the model in (11).

Finally, V t
acc1,i and V

t
acc2,i are fed into the current latched

sense amplifier (CLSA) [32] circuit for a voltage level com-
parison. If the firing condition in (11) is satisfied (V t

acc1,i >

V t
acc2,i), a spike is generated in the output of the CLSA

(Vout,CLSA), as an example shows in Fig. 5. Subsequently,
Vout,CLSA is shaped by two inverters before being fed into a
D-flip-flop (D-FF) for the postsynaptic generation of spike
ot,li . The frequency of the clock (CLK) signal determines
the postsynaptic spike period (Tspike = 6ns). Additionally,
after two inverters, a signal D, which is Vout,CLSA delayed by
two inverters, is used for resetting ACC1 and ACC2 before
starting the next step operation.

FIGURE 5. The IF neuron circuit simulation waveform within 2 time steps
for a row with 288 bitcells.

To reset the dynamic threshold (after firing and during
initialization), C2 is precharged by Vini,i, which represents the
threshold θ̂ li (see (11)) in the voltage domain. According to
Fig. 4, that C2 is precharged when both the STE and output
of the D-FF are equal to 1, where STE is a periodic signal that
enables the threshold precharging circuit for a fixed duration
within a time step. In the normal working mode, the STE
is activated when a generated postsynaptic spike occurs. For
example, V t

acc2,i is precharged to Vini,i (14.7mV ) within the
duration τini (0.5ns) after firing, as seen in Fig. 5. During
the initialization process, the D-FF output is manually set to
‘1’ to preset the threshold. After IF processing, the output
of the D-FF is fed into the SEW circuit to perform residual
connection according to the model in (6). Specifically, ot,li is
added with the spike from the previous layer st,l−1i using a
single inverter-AND gate, as shown in Fig. 4.
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Note that in some rare cases, if ρ < 0 (sign (ρ) ≡ 0)
(see (11)), ENacc2p is deactivated, and ENacc2n is active.
In such cases, Vρ accumulates in ACC1 instead of ACC2.
In other words, the output of ACC2 is fixed as Vini,i. This
switching mechanism recalls our discussion about ρ in
Section III.

The detailed charge-based accumulation, analysis and cir-
cuit implementation of the core functions are described
below.

2) CHARGE-BASED ACCUMULATION
As shown in Fig. 4, the charge-based accumulation architec-
ture consists of a PMOS transistor and a capacitor. According
to the well-known α-power law model [33], the charging
current I tds passing through transistors M1 and M2 is equal
to

I tds =
µCoxW

L
(VGS − VTH )α (14)

where α is the model power index, which ranges from 1-2
depending on the adopted technology. In our chosen tech-
nology (a 65-nm CMOS), the transistor is considered a short
channel; i.e., theoretically, α ≈ 1.
We further experimentally verify that the charging current

is quasi-linear and dependent on VGS in the range of interest
(VGS from−702mV to−443mV ). This fact is very important
and allows the proposed model in (11) to be directly mapped
to the circuit solution. Note that the value of V t,l

SL,i and its
boosted value V t,l

boost,i = G·V t,l
SL,i (G ≈ 3.6) are constants

within a time step duration. The charging current I tds in (14)
can therefore be considered unchanged during the accumula-
tion time. Thus, the amount of charge accumulated in C1 in
the time step from t − 1 to t is equal to

1Qacc1,i ≈

t∫
t−1

I tdsdt

=
µCoxW τcharge

L

(
GV t,l

SL,i − VDD − VTH
)

= βV t,l
SL,i + ϕ (15)

Here, β = GµCoxW τcharge
L and ϕ = −

µCoxW τcharge
L

(VDD + VTH ). Accordingly, the amount of charge in C1 at
time step tequals to

Qtacc1,i ≈ Qt−1acc1,i +1Qacc1,i (16)

By replacing V t
acc1,i = Qtacc1,i

/
C and 1V t

acc1,i =

1Qacc1,i
/
C (in (16)), the accumulated voltage at the second

plate of the capacitor equals

V t
acc1,i ≈ V t−1

acc1,i +1V
t
acc1,i (17)

Note that 1V t
acc1,i represents the voltage increment in

ACC1whenV t,l
SL,i is applied to the input analog accumulation.

For a dynamic threshold, the circuit implementation is almost

the same, but V t,l
SL,i is replaced with Vρ in (15)-(17). We have

V t
acc2,i ≈ V t−1

acc2,i +
β

C
Vρ +

1
C
ϕ (18)

The dynamic threshold can be reformulated as follows

V t
acc2,i ≈ V t−1

acc2,i +1V
t
acc2,i (19)

where 1V t
acc2,i =

β
C Vρ +

1
C ϕ. The equations for V

t
acc1,i and

V t
acc2,i in (17) and (19), respectively, in the circuit domain

hence can be mapped to the model in (11).

3) THE EFFECTS OF NONLINEARITY AND PROCESS
VARIATION
As introduced in (17) and (19), the IF model in (11) can
be directly mapped to the charge-based accumulation circuit,
which is introduced in Fig. 4. However, this model suffers
from inevitable nonlinearity, and process variation comes
from both the CMOS and MTJ devices. These effects essen-
tially degrade the IF accuracy, as well as the overall sys-
tem performance. In this section, we quantify this non-ideal
impact based on actual circuit simulations, aiming to have
a realistic evaluation of the proposed BSNN model at the
system level in the subsequent section.

To capture the effect of process variation, we run Monte
Carlo simulations for a synaptic array (a row of STT-MRAM)
in Fig. 3(a) and the proposed IF neuron circuit in Fig. 4.
The variation in the CMOS device is set according to the
provided by foundry models. For the MTJ, the variability in
the MTJ resistance is approximately 5% according to [34].
The accumulated output 1V t

acc1,i depends on K (the number
of XNOR outputs that are equal to +1), as presented in
Section IV.A. Each IMC row is designed for 288 bitcells
that later fit with the BSNN inference model. Monte Carlo
simulations have been performed for 289 cases of K . Fig. 6
plots the results of mappingK to1V t

acc1,i(K ) under nonlinear
and variation effects. The capacitancesC in ACC1 and ACC2
are set to 150 fF and 100 fF for all capacitors in the booster
circuit. The PMOS sizes in ACC1 and ACC2 are set to W =
8 ×Wmin, L = 7 × Lmin. The NMOS size in the array is set
to W = 4×Wmin, L = Lmin.

From Fig. 6, we can see the effect of nonlinearity on
1V t

acc1,i(K ) (the solid line). As shown in Fig. 6, 1V t
acc1,i(K )

is quasi-linearly dependent on K . From the simulation data,
the difference δ1 (K ) = 1V t

acc1,i(K )−1V t
1(K ) between the

ideal linear value1V t
1(K ) (the dashed line) and the simulated

1V t
acc1,i(K ) is negligible in the middle but becomes signifi-

cant near the boundary. For example, δ1,max (0) = 7.27mV ,
and δ1,min (144) = 0.01mV .

In Fig. 6, we also present the statistical analysis of
1V t

acc1,i(K ). The statistical results show that the variations
of1V t

acc1,i(K ) can be approximately fit to Gaussian distribu-
tions with a standard deviation σ1(K ).

The results indicate that σ1(K ) is not the same for every
K . This effect is understandable from the circuit perspective,
where the working points of the M1 transistor for different
values of K are not the same. For example, σ1 (K ) reaches
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FIGURE 6. The effects of nonlinearity and variations on 1V t
acc1,i (K ) with

nonlinear errors δ1(K ) and standard deviations σ1(K ) with respect to the
number of XNOR outputs (equal to +1 (K ) in a row with 288 bitcells).

FIGURE 7. The effect of process variations on the output of the CLSA
within a single time step.

its maximum value at 3.60 mV for K = 2 and its minimum
value at 1.15 mV for K = 221.
The noise profile, represented by a normal distribution

n {0, σ1(K )} is added to the ideal value 1V t
acc1,i. The actual

voltage level in the output of ACC1 can be approximated as

1V t
acc1,i = 1V

t
1(K )+ δ1 (K )+ n {0, σ1(K )} (20)

A similar analysis and model are conducted for 1V t
acc2,i.

The difference is that the variation 1V t
acc2,i comes from the

ACC2 circuit itself without contributions from the synapse
circuits (i.e., the memory array). We have

1V t
acc2,i = 1V

t
2(ρ)+ δ2(ρ)+ n {0, σ2(ρ)} (21)

where 1V t
2(ρ) is the ideal linear; δ2(ρ) and n {0, σ2(ρ)}

are the ρ-dependent nonlinear errors and random variation
of 1V t

acc2,i. Finally, the nonlinear and variation effects on
1V t

acc1,i and 1V t
acc2,i are added into the accumulations

in (17) and (19). The effects of nonlinearity and process
variation on the full circuit simulation are studied in the
following subsection.

4) IF NEURON CIRCUIT SIMULATION
In this subsection, we conduct a full circuit simulation for
an IF neuron circuit, which is directly connected with the
M synapses of 288 STT memory cells. We extract the
trained network parameters (i.e., weights, BN parameters,
and threshold) from the PyTorch model and feed them to the
circuit model, which is encapsulated in the HSPICE netlist.

FIGURE 8. The effect of process variations on postsynaptic spike
generation: (a) a spike drift, (b) a missing spike, (c) adding an additional
spike.

The network hyperparameters are set so that the kernel size is
3× 3 and the number of input channels is 32, corresponding
to an IMC array size of 1 × 288. Fig. 7 shows an example
waveform of the CLSA output (Vout,CLSA) for a single time
step considering the process variation effect. From the figure,
the shift delay can fluctuate from τdelay,1 (∼170ps) to τdelay,2
(∼740ps). However, this variation barely affects the output
spike becauseVout,CLSA is shaped and latched in a fairly stable
position.

Furthermore, for multiple time steps, the process variation
also affects the spike position and the total number of spikes.
Fig. 8 presents the postsynaptic spike waveform for T =
8×Tspike corresponding to 288 input bitstrings. Frommultiple
Monte Carlo samples, it is very common that the positions of
the spikes in the output pattern ot,li,simulated are shifted back and
forth from the positions of the expected software simulation
output ot,li,expected . However, since we use rate encoding, this
effect does not affect the final result, which is determined
by the total number of spikes within T period. It can also
be observed that the output pattern may miss or introduce
one spike, as shown in Figs. 8(b) and 8(c). Nevertheless, the
undesirable missing or addition of one spike has little impact
on the final result also thanks to the use of the rate encoding.
In rare cases, we also observe two missing or introduced two
spikes, but that is the maximum number of incorrect spikes
observed thus far in our simulations.

To quantify the impact of process variation on the robust-
ness of the neuron implementation, we extracted the mean
square error (MSE) of the output bitstreams from the multiple
Monte Carlo simulations as follows

MSE=
1

NMonte

NMonte∑
j=1

1
T 2

(
T∑
t=1

ot,lij,expected −
T∑
t=1

ot,lij,simulated

)2

(22)
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where NMonte is the number of Monte Carlo simulations.
According to (22), theMSE for 500-Monte Carlo simulations
in this experiment has a value of 1.45%. Thus, process varia-
tion essentially has an impact on the classification accuracy,
but this impact is small and can be reasonably accepted. The
results obtained from the above analysis could be a solid
evidence for the SNN fault-tolerant nature [13].

In fact, it is not possible to simulate the whole network
at the circuit level with massive input patterns. However,
as we have mentioned earlier, the statistical error models of
1V t

acc1,i and1V
t
acc2,i in (20) and (21) can be exactly injected

into the system model to realistically estimate the system
accuracy. The details of the model and evaluation process are
discussed in the next section.

V. SYSTEM-LEVEL EVALUATION
A. BSNN TRAINING MODEL
To evaluate the performance of the BSNN at the system
level, we use the training method proposed in Section II and
Appendix A. The network structures and major parameters
are shown in Table 2. The training and inference models are
written in the Python language using the PyTorch library.
We use the MNIST and CIFAR-10 [35] datasets for training
and evaluation. The networks are trained for 300 (50) epochs
with a batch size of 128 (100) for the CIFAR-10 (MNIST)
dataset. The base learning rate is set to 0.3, and the stochastic
gradient descent (SGD) optimizer has a momentum of 0.9.
The learning rate is scheduled with a decay factor of 10 at
50%, 70%, and 90% of the total epochs. For the CIFAR-10
dataset, we adopt BSNNs using 7 Conv layers for both net-
works (with and without the residual connections). Since
the Conv layers occupy most of the computational workload
and latency (more than 90%) [36], [37] in the deep neural
network, only the hidden Conv layers are binarized in the
BSNN to balance the accuracy with that of the conventional
SNN [16]. Therefore, in our work, the IMC XNOR-based
STT subarrays substitute for all hidden Conv layers in the
BSNN evaluation.

B. MAPPING THE BSNN TO THE CIRCUIT MODEL
Fig. 9 shows the mapping of a BSNN Conv layer to the
STT subarray. The main calculation workload to shift from
presynaptic spikes to postsynaptic spikes is done by the IMC
and IF circuits described in Section IV. As seen in the figure,
we unroll each sliding window calculation for the given input
into a vector of presynaptic spikes.

Then, the unrolled vector is passed to an N ×M subarray
through M BL decoders. The kernel is mapped and stored
in the M bitcells to perform convolution between unrolled
spikes and the kernel weights. If N output channels are
generated simultaneously, the N ×M subarray performs one
sliding window, as illustrated in Fig. 9. Furthermore, intra-
layer parallelism can be realized by utilizing P subarrays that
calculate P parallel sliding windows [38]. P hence indicates
the level of parallelism, which reflects the tradeoff between

TABLE 2. Three network structures and simulation parameters for two
different datasets.

FIGURE 9. Mapping BSNN Conv layers to STT-MRAM subarrays.

the hardware cost and the speed of computation. For the
practical implementation in this work, each Conv layer has
N = 32 input and output channels, and a kernel size of 3× 3
corresponds to a subarray size of 32× 288 (M = 288).

C. THE IMPACTS OF THE NUMBER OF TIME STEPS AND
PROCESS VARIATION ON CLASSIFICATION ACCURACY
We investigate the impact of the number of time steps on
the classification accuracy for both the MNIST and CIFAR-
10 datasets. The classification accuracies of the BSNN infer-
ences with six network configurations are shown in Table 3.

From the table, using more time steps essentially improves
accuracy. Specifically, for networks without SEW, increasing
the number of time steps from 4 to 8 results in an accu-
racy increase of 0.64% (3.24%) for MNIST (CIFAR-10).
Additionally, it is clear that the networks with SEW achieve
2.52% (1.82%) better accuracy with 4 (8) time steps for
CIFAR-10 than the conventional networks [27]. These results
confirm that the training method using a surrogate gradient
with SEW significantly reduces the required number of time
steps compared with the that of the ANN-SNN conversion
method [28].

Furthermore, the non-ideal charge increments in (20) (21)
are injected into the Python BSNN inference model to

VOLUME 9, 2021 151381



V.-T. Nguyen et al.: STT-BSNN: In-Memory Deep Binary Spiking Neural Network Based on STT-MRAM

TABLE 3. Classification accuracies of BSNN model on the MNIST,
CIFAR-10 datasets for four and eight time steps.

TABLE 4. The effect of process variation on the classification accuracy of
the BSNN model for 8 time steps.

evaluate the effect of process variation on the classification
accuracy. This is completed by replacing the linear models of
the membrane potential and threshold by the actual models
with an incorporated nonlinearity bias and aGaussian random
quantity,2 which are characterized by the Monte Carlo sim-
ulations in Section IV.B.3. The models are evaluated on the
test set multiple times (a 100-variation netlist) with different
variation seeds. The means (µBSNN ) and standard deviations
(σBSNN ) are reported in Table 4. From the table, the mean
classification accuracy is slightly reduced by 0.22% (0.91%)
for MNIST (CIFAR-10) with 8 time steps compared to the
reported accuracies for the models without variation. Addi-
tionally, the accuracies evaluated with different configura-
tions are not much different, with standard deviations of
0.23% (MNIST) and 0.03% (CIFAR-10). In the extreme case
at the 6×σBSNN point, the classification accuracy is degraded
by 1.38% (MNIST) and 0.18% (CIFAR-10). Overall, these
results permit us to conclude that process variation has a
minor impact on classification accuracy and the proposed
BSNN exhibits a very good level of fault tolerance.

D. EVALUATION OF THE ENERGY, THROUGHPUT, AND
AREA OF THE SUBARRAY
In the proposed STT-BSNN architecture, the energy per spik-
ing operation is provided by the energy for synapses and for
the IF neuron circuit:

Espike = Esynapses + Eneuron
= Ewl + Ebitcell + Eneuron (23)

where Esynapses is the energy consumed by the synapse oper-
ations of the IMC circuit (i.e., the MAC operations). This
includes the precharged energy required for the high-load
word lines Ewl and the energy consumed by the M bitcells
Ebitcell . The latter essentially accounts for the main portion

2To ensure high accurate model, we use look-up tables for storing the
nonlinear bias and standard deviation for 289 points in Fig. 6 to implement
the corresponding Python models.

TABLE 5. Comparison between the proposed BSNN and methods in
previous works.

of the total energy, which is proportional to the sampling
time and the accumulated current drawn from the BL source
voltage VBL . Eneuron is the energy spent on the IF neuron
circuit, which includes the energy needed for the CB, ACC1,
ACC2 and FS subcircuits in Fig. 4. Since these circuits are
all charge-based circuits, they consume energy only during
switching, i.e., without any direct currents. Therefore, their
energy proportions are small compared to Esynapses, which
normally accounts for the main contribution in Espike. Specif-
ically, for an IMC array row of size 288, the Esynapses for 288
synaptic elements is found to be 1.58 pJ (where Ewl =
0.064pJ and Ebitcell = 1.52pJ ), where the optimal sampling
time is set to 1nswhen using the precharged technique for the
booster [31]. Eneuron accounts for only 0.052pJ , which results
in a total spiking operation energy of Espike = 1.63pJ .
In this work, we define the number of operations to be

equal to the size of the MAC function. This means that 288
operations are executed within one time step. Therefore, the
energy efficiency Eeff (TOPS/W) for an IMC array row of
size 288 is estimated to be 288/1.63 = 176.6 TOPS/W.
The rough estimation of the subarray area is equal to

6083 µm2 for a single-row implementation with 288 bitcells.
The estimation area for a neuron is equal to 115 µm2. For a
subarray of size 32×288, the number of operations is equal to
32×288 = 9216 (operations) over 8 time steps with a period
of Tspike = 6ns. The throughput efficiency Tsubarray is equal
to (9216/8× 6) = 192 GOPS.

If P sliding windows are processed simultaneously, the
throughput efficiency increases by P times (P · Tsubarray).

3The area is estimated roughly in this work only because such design with
this emerging technology is not fully available for utilization in its current
state. In detail, the array size is equal to the size of a laid out bitcell multiplied
by the array length, the area of the IF circuit is taken as the areas of individual
devices.
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Algorithm 1 BSNN Training Model With a Surrogate Gra-
dient and Residual Connections
Input: input X , label vector Y , set threshold θ = 1
Output: update weights W 1,W L ,W b,l

1: IF function:
2: function O = IF (u, I )
3: for t = 1 to T do
4: ut = ut−1(1− Ot )+ I (t)
5: if ut > θ then
6: Ot = 1
7: else
8: Ot = 0
9: end if
10: end for
11: end function
12: Forward:
13: for l = 1 do
14: for t = 1 to T do
15: X t = Poisson Generator(X )
16: yt,l = BN

(
W 1
∗ X t

)
17: end for
18: Ol ← IF (ul, yl)
19: end for
20: for l = 2 to L − 1 do
21: for t = 1 to T do
22: yt,l = BN

(
α ·W b,l

∗ g
(
Ot,l−1, S t,l−2

))
23: end for
24: Ol ← IF (ul, yl)
25: end for
26: for l = L do
27: for t = 1 to T do
28: ut,l = ut−1,l +W L

∗ Ot,l−1

29: end for
30: end for
31: Calculate the loss and backpropagation:
32: Lp← ComputeLoss

(
Y , uT ,L

)
E. COMPARISON WITH RELATED WORKS
Table 5 summarizes a comparison with previous work on
IMC architectures for SNNs. Although there aremany similar
works [14]–[19] on this topic, we have selected the most
relevant studies with using spintronic memory and spiking
networks for comparison.

Regarding accuracy, using a deeper network and direct
training method, the accuracy level of BSNN in this work is
∼13.8% higher than that in [16], evaluated using CIFAR-10
dataset. The implementation in [17] with spintronic synapse
and digital neuron also achieves lower accuracy (by 6.3%
for MNIST dataset) compared to our work. This is partly
because their results are reported for a fully connected net-
work. An all-spin SNN in [19] exhibits similar accuracy for
MNIST dataset, though their spiking rate is much lower than
ours. The reason is that their method requires a large sampling
time to convert synaptic current into a spike duty cycle in each
time step.

Algorithm 2 BSNN Inference With a Dynamic Threshold

Input: presynaptic spike st,l−1j , initialize θ̂ t=0,ldyn,i = θ̂
l
i ,

ût=0,lxnor,i = 0
Output: postsynaptic spike ot,li
1: In-memory MAC computation:
2: for t = 1 to T do

3:
M∑
j=1

wu,lij ⊕ s
t,l−1
j

4: end for
5: Accumulation:
6: for t = 1 to T do

7: ût,lxnor,i = ût−1,lxnor,i +
M∑
j=1

wu,lij ⊕ s
t,l−1
j

8: θ̂
t,l
dyn,i = θ̂

t−1,l
dyn,i + ρ

9: end for
10: Firing and resetting:
11: for t = 1 to T do
12: if ût,lxnor,i > θ̂

t,l
dyn,i then

13: ot,li = 1
14: θ̂

t,l
dyn,i = θ̂

l
i

15: ût,lxnor,i = 0
16: else
17: ot,li = 0
18: end if
19: end for

Regarding the energy, the energy consumption per synapse
calculated for our BSNN is ∼6.5 times lower than that of the
MTJ synapse reported in [16], not considering their synapse
is implemented in a smaller technology node (45nm). Sim-
ilarly, our work is still 1.6X more energy-efficient than the
reported synapse energy in [17], even though their work is
implemented on a 28nm CMOS, theoretically∼2 times more
energy-efficient than the same 65nm implementation.

Finally, for area comparison reported in F2 (F is the
technology feature size), the area per neuron of our model
is essentially much better than digital implementation [17].
Still, it is not as good as all spintronic one in [19]. That
advantage comes with the clear trade-offs in energy and
latency, as mentioned earlier.

VI. CONCLUSION
This paper presents an in-memory BSNN based on
STT-MRAM for low-power, low-latency on-edge AI appli-
cations. We propose a direct BSNN training approach using
a surrogate gradient with residual connections that achieves
high classification accuracy with much fewer time steps than
the number of steps required in prior works. Furthermore,
we propose a full-circuit solution for IMC MAC opera-
tions based on a STT-MRAM array, which allows ultrafast
vector multiplication to be performed within one memory
access phase. Furthermore, we propose a dynamic threshold
approach for the IF circuit that mimics the neuron spiking
behavior and consumes very low power. The BSNN system
model is then re-evaluated using realistic circuit parameters
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and exact circuit simulations. The results indicate that device
mismatches and nonlinearity essentially affect the misclas-
sification accuracy of the model. Nonetheless, the accuracy
degradation is insignificant, and the proposed BSNN still
offers decent performance in comparison with other methods.
The proposed design approach with a practical circuit solu-
tion could potentially pave the way for ultralow-power DNNs
to be applied in on-edge AI applications. We are working
forward to improve the architecture and design to fit deeper
and larger networks.

APPENDIX A
See Algorithm 1.

APPENDIX B
See Algorithm 2.
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