1 2	Effect of Environmental Factors on the Degradation of Organic Dyes by Electro- Fenton Using Carbon Felt Cathode
3 4 5 6	Nguyen Trung Dung ¹ *, Le Thuy Duong ¹ , Nguyen Thi Hoa ¹ , and Nguyen Nhat Huy ^{2,3,*}
7 8	¹ Faculty of Physical and Chemical Engineering, Le Quy Don Technical University 236 Hoang Quoc Viet St., Bac Tu Liem District, Hanoi, Vietnam
9 10 11	² Faculty of Environment and Natural Resources Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet St., District 10, Ho Chi Minh City, Vietnam
12 13	³ Vietnam National University Ho Chi Minh City Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
14 15 16 17	Keywords: advanced oxidation process, carbon felt, Electro-Fenton process, organic dyes, wastewater treatment
18	ABSTRACT
19	In this study, an electro-Fenton (EF) process using carbon felt (CF) as the cathode
20	and titanium/platinum (Ti/Pt) as the anode was tested for removing Rhodamine
21	rhodamine B (RhB) and other organic dyes in water. Characterization of the CEcarbon
22	felt material was conducted by scanning electron microscopy (SEM) and X-ray powder
23	diffraction (XRD). The influence of various environmental factors (<i>i.e.</i> solution pH, current
24	density, catalyst dosage, RhB concentration, and type of dyes and electrolytes) on the
25	dye removal was investigated. The results show that the maximum removal efficiency of
26	RhB was 98% within 15 min at the optimal conditions of 50 mgRhB/L, 0.05 M Na $_2$ SO $_4$,
27	pH 3, 0.1 mM Fe ²⁺ , and 6.67 mA/cm ² . The decomposition of RhB follows a pseudo-first-

*Corresponding Author: nguyentrungdung1980@gmail.com nnhuy@hcmut.edu.vn

order model with the decomposition rate constant of 0.256 min⁻¹. Radical quenching
experiments show that superoxide plays a key role in RhB degradation. Finally, results
show that <u>CFcarbon felt</u> has high stability and degradation efficiency, which is suitable as
a cathode for the removal of organic dyes in wastewater.

32

33 INTRODUCTION

Textile wastewater is one of the most popular types of industrial wastewater in 34 35 developing countries such as Vietnam, which is characterized by high color, COD, BOD, and soluble dyes. Among the dyes, Rhodamine B (RhB) is an essential cationic xanthene 36 37 dye (**Fig. 1**), which is fast color, inexpensive, and widely used in the industry. Since RhB and other dyes are toxic and hazardous (Nidheesh et al. 2014), the removal of these 38 dyes is necessary before discharging them into the water environments. There are many 39 techniques to remove RhBRhodamine B in water, such as adsorption (Wu et al. 2020; 40 Xiao et al. 2020), membrane separation (Saja et al. 2020; Sundaran et al. 2019), and 41 42 advanced oxidation processes (AOPs) - including catalytic activation (Pang et al. 2019; Zhu *et al.* 2019), photocatalysis (Yang *et al.* 2020; Zhang *et al.* 2020a), Fenton (Hou *et* 43 al. 2011), photo-Fenton (Gao et al. 2015), UV/EFelectro-Fenton (Zhang et al. 2020b), and 44 EFelectro-Fenton (Yuan et al. 2011; Ai et al. 2008; Nidheesh and Gandhimathi 2014, b; 45 Nidheesh et al. 2014; Nidheesh and Gandhimathi 2014a; Tian et al. 2016). Among them, 46 47 electro-Fenton (the EF) process is one of the most effective methods for the fast degradation of persistent organic pollutants. Since EF is one of the Fenton processes, it 48 still has some similar limitations to the traditional Fenton process, such as low working 49 pH, consumption of acid for reaction and alkali for neutralization, as well as the 50

Formatted: Highlight

Formatted: Highlight

Formatted:	Highlight
Formatted:	Highlight

*Corresponding Author: nguyentrungdung1980@gmail.com nnhuy@hcmut.edu.vn

requirement of electricity use. However, the EF process has many advantages such as high flexibility, <u>easy_ease_tof</u> control, automation, high efficiency, and environmental compatibility. Moreover, the EF process is also better than the conventional Fenton process in terms of (i)_the <u>in_-situ</u> H₂O₂ production and (ii) the_continuous Fe²⁺ regeneration, which provides an easy chemical operation, improves the oxidation process, and reduces the sludge production.

57

58	Figure 1. Structure of <u>RhBrhodamine B</u> .		Formatted: Highlight
59	The principle of the EF process is similar to that of the conventional Fenton		
60	process, which is the generation of hydroxyl radicals (*OH, Reaction 1) and its		Formatted: Highlight
61	consumption by the organics (Reaction 2). Here, Fe ²⁺ is externally added and		Formatted: Highlight
62	regenerated by electrochemical reduction (Reaction 3), while H ₂ O ₂ is on-site supplied		Formatted: Highlight
63	from the cathode by the reduction of oxygen in water (Reaction 4). H_2O_2 can also be		Formatted: Highlight
64	decomposed into H ₂ O and O ₂ at high solution pH values (Reaction 5) or reacts with 'OH		Formatted: Highlight
65	(Reaction 6). The 'OH can also be consumed by Fe^{2+} under a high concentration of Fe^{2+}		Formatted: Highlight
66	but a low concentration of reductants (<i>e.g.</i> organics) (Reaction 7).	_	Formatted: Highlight
	$H_2O_2 + Fe^{2+} \rightarrow Fe^{3+} + OH^- + OH $ (1)		Formatted: Highlight

*Corresponding Author: nguyentrungdung1980@gmail.com nnhuy@hcmut.edu.vn

H₃C H₃C N H₃C N CH₃ CH Formatted: Font: Italic

RH + OH	\rightarrow	R' + H ₂ O
Fe ³⁺ + e	\rightarrow	Fe ²⁺
O ₂ + 2H ⁺ + 2e	\rightarrow	H_2O_2
2H ₂ O ₂	\rightarrow	2H ₂ O + O ₂
2 · OH + H ₂ O ₂	\rightarrow	2H ₂ O + O ₂
Fe ²⁺ + ` OH	\rightarrow	Fe ³⁺ + OH⁻

Several electro-FentonEF parameters affect its efficiency for water treatment, such 67 as electrode material, catalyst concentration, current density, and solution pH. Among 68 them, the cathode material is important because it determines the H_2O_2 production and, 69 70 therefore, affects the •OH generation rate (Reaction 1). Carbonaceous materials are 71 commonly used as cathodes, including carbon foam, CFcarbon felt, boron-doped 72 diamond, graphite, and graphite felt. With good stability, high conductivity, high surface 73 area, abundant resources, and low cost, carbon felt (CF) is a good candidate for use as cathode material in electrochemistry (Huong Le et al. 2017; Mi et al. 2019). There have 74 been several reports of using CF as a cathode for EFelectro-Fenton. In the work of 75 Pimentel et al. (2008), the EF process could remove 100% of total organic carbon (TOC) 76 in phenol treatment under optimum conditions of 10⁻⁴ M of FeSO₄. Sirés et al. (2007) also 77 using CF as cathode for EF treatment of antimicrobial triclosan and triclocarban. Dyes 78 such as triphenylmethane (e.g. malachite green, crystal violet, methyl green, and fast 79 green FCF) and azo (e.g. azobenzene, p-methyl red, and methyl orange) were effectively 80 treated by EF process using CF cathode (Sirés et al. 2008; Guivarch et al. 2003). 81 Moreover, the pesticide (Zazou et al. 2016; Tran et al. 2019) and antibiotics (Wu et al. 82 83 2012; El-Ghenymy et al. 2014) in water was also efficiently removed and mineralized by

Formatted: Highlight

Formatted: Highlight
Formatted: Highlight
Formatted: Highlight

Formatted: Highlight

/	Formatted: Highlight
-	Formatted: Highlight
/	Formatted: Highlight
	Formatted: Highlight
	Formatted: Highlight
	Formatted: Highlight

EF treatment using CF cathode. However, there is very limited information on the application of <u>CFcarbon felt</u> as cathode for removal of <u>RhBRhodamine B</u> in water and on the effect of environmental factors on the efficiency of the EFelectro-Fenton process.

In this work, we used commercially available <u>CFearbon felt</u> as a cathode electrode for the EF process and tested its performance for the removal of RhB as well as other dyes in water. The effects of environmental factors such as solution pH, applied current density, Fe²⁺ concentration, and RhB concentration were investigated. The role of electrolytes and reactive oxidation species were also determined.

92

84

85

86

93 MATERIALS AND METHODS

All chemicals used in this study are pure chemicals with a purity of \geq 99%. 94 Chemicals such as Rhodamine B (RhB), Tartrazine tartrazine (TTZ), Janus Green-green 95 B (JGB), Direct-direct Blue-blue 71 (DB71), Methylene-methylene Blue-blue (MB), p-96 benzoquinone (p-BQ), furfuryl alcohol (FFA), and tert-butanol alcohol (TBA) were 97 purchased from Shanghai Macklin (China). Other chemicals such as FeSO4.7H2O, 98 Na₂SO₄, NaCl, NaNO₃, H₂SO₄, and NaOH were obtained from Xilong (China). CFCarbon 99 felt was supplied by Hebei Xingshi (China). Double-distilled water was taken locally from 100 the lab. 101

The morphology of the <u>CFcarbon felt</u> was determined by <u>scanning electron</u>
 microscopy<u>SEM</u> (<u>SEM</u>, Hitachi S-4800, Japan)₁₇ The <u>X-ray powder diffraction</u> (XRD)
 pattern was collected by a Bruker D8 Advance X-ray diffractometer with Cu Ka radiation

*Corresponding Author: nguyentrungdung1980@gmail.com nnhuy@hcmut.edu.vn

105 $(\lambda_{=1.5406} \text{ Å})$ with a step scan of 0.02° and step time of 1 s. The absorbance of the solution was measured by a UV-Vis spectrophotometer (Biochrom SP-60, UK). 106

107 The experiments for EFelectro-Fenton degradation of RhB were conducted at room conditions in a 500--mL glass beaker (Fig. 2). In the reactor, CFcarbon felt with 108 a dimension of 12 cm × 5 cm was used as cathode and Pt/Ti material was used as an 109 anode. The anode and cathode were placed parallel and the distance between them was 110 111 set at 3 cm in all the experiments. Electrolyte (50 mM Na₂SO₄) was added into the dye (50 mg/L RhB) solution and stirred vigorously and the solution pH was adjusted to 3 by 112 using sulfuric acid. The solution was aerated 15 min before and kept aeration during the 113 experiment. FeSO₄ (0.1 mM) was used as a Fenton catalyst and a constant DC current 114 of 400 mA (BC 1830, LiOA, Vietnam) was used as a current supply. All the experiments 115 116 were repeated 3-three times and the average results, as well as their standard deviations, 117 were reported.

Oxygen Cathode: 😝 🕂 Anode: Ti/Pt Carbon Felt $(10x5cm^{2})$ $(12x5cm^{2})$ $RH + {}^{\bullet}OH \rightarrow {}^{\bullet}R + H_2O$ H₂O₂ Fenton reaction: $\text{Fe}^{2+} + \text{H}_2\text{O}_2 + \rightarrow \text{Fe}(\text{OH})^{2+} + {}^{\bullet}\text{OH}$ 118 119

Figure 2. Schematic presentation of the EFelectro-Fenton system.

*Corresponding Author: nguyentrungdung1980@gmail.com

nnhuy@hcmut.edu.vn

Formatted: Highlight

6

Formatted: Highlight

120

121	During the reaction, water samples with a volume of 4 mL were taken, centrifuged,
122	and sent for absorbance measurement at 554 nm to determine the RhB concentration. In
123	this study, the EF process was also applied for other dyes in different types of xanthene
124	(e.g. RhB), azo (e.g. TTZ, DB71, and JGB) and thiazine (e.g. MB) to evaluate the
125	possibility of the EF process for treatment of various types of dyes in practical
126	applications. The experiments for other dyes were conducted under the same condition
127	of RhBRhodamine B and the concentrations of the dyes were measured at wavelengths
128	of 428, 587, 654, and 664 nm for TTZ, DB71, JGB, and MB, respectively. The calculation
129	for removal efficiency and the fitting of the pseudo-first-order kinetic model for the removal
130	of RhB are as follows (<mark>Afanga <i>et al.</i> 2021</mark>):-

$$H(\%) = (1 - C_t/C_0) \times 100$$
(8)

$$\ln(C_t/C_0) = k_{app} \times t$$

where C_o and C_t (mg/L) are the concentration of RhB at the beginning and after the reaction, respectively, and k_{app} (min⁻¹) is the rate constant for the pseudo-first-order kinetic model.

To investigate the key reactive oxygen species involved in RhB degradation, three scavengers (*i.e.* 50 mM TBA, 1 mM p-BQ, and 50 mM FFA) were added to quench hydroxyl radical ($k_{TBA-HO} = 3.8 - 7.6 \times 10^8 M = 1 - s = 1$), superoxide radical ($k_{pBQ-O2} = 9.8 \times 10^8 M = 1 - s = 1$), and singlet oxygen ($k_{FFA-1O2} = 1.2 \times 10^8 M = 1 - s = 1$) (Yu *et al.* 2020; Chen *et al.* 2020), respectively, before turning on the electricity for EF process.

Formatted: Highlight
Formatted: Highlight

*Corresponding Author: nguyentrungdung1980@gmail.com nnhuy@hcmut.edu.vn Formatted: Highlight

7

(9)

The recyclability of the electrodes was also conducted *via* <u>5-five</u> cycles of RhB treatment by the EF process. After each experiment, the used <u>CFearbon felt</u> electrode was washed thoroughly with distilled water and ethanol to remove the organics. After that, the electrodes were dried at 80 <u>°</u>C in an oven and then reused for the next cycle of RhB removal by the EF process.

144

145 RESULTS AND DISCUSSION

146 Characteristics of the Carbon FeltCF Cathode

147	As shown in Fig 3(a), the commercial CFs are fine fibers with a diameter of Formatted: Highlight
148	about 20 μ m. They have a clean and smooth surface, which is free of adhered organic
149	and inorganic impurities. The fibers are randomly dispersed with a relatively
150	homogeneous space between them. The XRD pattern of CF is displayed in Figure 3(b). Formatted: Highlight
151	There are two weak peaks observed at 2 θ of around 25 ^{θ} and 43 ^{θ} , which correspond to
152	the (002) and (100) crystal planes of the CF material. These results also indicate the
153	amorphous structure of CF, which is consistent with previous work (Ganiyu et al. 2017; Formatted: Highlight
154	Huong Le <i>et al.</i> 2017).

*Corresponding Author: nguyentrungdung1980@gmail.com nnhuy@hcmut.edu.vn

*Corresponding Author: nguyentrungdung1980@gmail.com nnhuy@hcmut.edu.vn

consumes a sustainably higher amount of acid than that at pH 3 and requires much more

170

alkali solution for neutralization after treatment. Also, a very low pH of 2 could easily cause 171 corrosion issues for the equipment in water treatment. Therefore, pH 3 was chosen as a 172 173 suitable pH for further EFelectro-Fenton experiments. The pH change according to the 174 175 was a slight pH increase during the first 3 min of reaction, which may be due to the 176 production of OH= by EF process. After that, there was a slight decrease in pH value, 177 which could be due to the formation of short-chain carboxylic acids during the EF process 178 (Nidheesh et al. 2014; Gao et al. 2015). Generally, it can be considered that the solution 179 pH value is relatively stable during the EF process.

(a) 1.00 5.5 (b) 5.0 -D- pH=2.0 0.8 - pH=2.5 - pH=3.0 4.5 0.6 0 0 0 pH=3.5 4.0 pH=4.0 H 3.5 0.4 3.0 0.2 2.5 2.0 0.0 1.5 6 9 Time(min) Ò ż 12 15 12 15 ò 6 ġ Time (min) 180 181 Figure 4. (a) Effect of initial solution pH on the EF removal of RhB and (b) pH change Formatted: Highlight with time during the EF process. Experimental conditions: 50 mgRhB/L, 0.1 mM Fe²⁺, 182 6.67 mA/cm², 50 mM Na₂SO₄. 183 184 The applied current density affects the formation rate of both H_2O_2 (Reaction 4) Formatted: Highlight and 'OH (Reaction 1). The experiments were conducted in the current density range from Formatted: Highlight 185 1.67—to-8.33 mA/cm² (Fig to 5(a)). The degradation of RhB well fitted with the first-order Formatted: Highlight 186

*Corresponding Author: nguyentrungdung1980@gmail.com nnhuy@hcmut.edu.vn

Formatted: Highlight

Formatted: Highlight Formatted: Highlight

187 kinetics equation (Fig. 5(b)) with $R^2 \ge 0.98$. The degradation rate constant of RhB increased by 3-three times (i.e. from 0.08324 to 0.255 min⁻¹) when the current density 188 increased from 1.67-to-6.67 mA/cm². After 15 min of the experiment (Fig 5(a)), the 189 RhB removal efficiencies were 76.57, 92.21, 96.51, 97.77, and 94.80% at 1.67, 3.33, 190 191 5.00, 6.67, and 8.33 mA/cm⁻², respectively, indicating a proportional relationship of RhB degradation and current density in the range of 1.67-to-6.67 mA/cm². This is due to an 192 193 increase in the electrochemical formation of H_2O_2 (Reaction 4), which increases the conversion of Fe³⁺ to Fe²⁺ with the increased current density (Annabi et al. 2016). Since 194 RhB is a cationic dye, it is more attracted towards the cathode under higher current 195 density. This increases the frequency of collisions between dyes molecule and reactive 196 197 oxygen species, thus improves the RhB removal in water. However, as the applied current 198 density continued to increase to 8.33 mA/cm², the RhB decomposition efficiency decreased. The cause may be due to the degradation reactions of H2O2 and other 199 200 reactive oxygen species (Reactions 5 and 6) at high current density (Lin et al. 2017), resulting in a reduced rate of RhB decomposition. Therefore, the current density of 6.67 201 202 mA/cm² was selected for the next experiments.

 Formatted: Highlight

 Formatted: Highlight

 Formatted: Highlight

 Formatted: Highlight

Formatted: Highlight
Formatted: Highlight
Formatted: Highlight
Formatted: Highlight
Formatted: Highlight

*Corresponding Author: nguyentrungdung1980@gmail.com nnhuy@hcmut.edu.vn

(a)

1.0

0.8

0.6

203

-D-1.67 mA.cm

-0-3.33 mA.cm

√-6.67 mA.cm
√-8.33 mA.cm

12

214

Figure 6. Effect of Fe²⁺) concentration on RhB degradation. Experimental conditions: 50 **Formatted**: Highlight

216

mgRhB /L, pH 3.0, 6.67 mA/cm², 50 mM Na₂SO₄.

Fig. 7 shows a decrease in RhB removal efficiency with the increasing initial RhB concentration. When the concentration increased from 25 to 50, 75, and 100 mg/L, the removal efficiency after 15 min of reaction decreased from 100 to 97.77, 95.64, and 90.91% respectively. This is due to the deficiency of reactive oxygen species for the removal of RhB under high concentrations.

222

223	Figure 7. Influence of initial RhB concentration on its degradation. Experimental	Formatted: Highlight
224	conditions: pH 3.0, 0.1 mM Fe ²⁺ , 6.67 mA/cm ² , 50 mM Na ₂ SO ₄ .	
225	UVVis spectra of RhB in the solution during the degradation time are plotted in	
226	Fig. 8. The characteristic absorption peak is observed at 554 nm. The peak at 517 nm	Formatted: Highlight
227	is attributed to the n- π^* transitions of C=N and C=O groups while the peak at 352 nm is	
228	ascribed to the naphthalene ring bonded to the -C=N- group. The shoulder peaks (<i>i.e.</i> at	
229	283 and 307 nm) of 257 nm peak corresponds to the $\pi\text{-}\pi^*$ transition associated with	
230	aromatic rings. The decline of the characteristic peak demonstrates the rapid degradation	

*Corresponding Author: nguyentrungdung1980@gmail.com nnhuy@hcmut.edu.vn 13

Formatted: Highlight

of RhB in the first 3 min. The disappearance of the adsorption band during reaction time

232 indicates the degradation in the structure of RhB molecules by the reactive oxygen

233 species produced during the EF process.

235	Figure 8. UV-Vis spectra of RhB at different degradation times. Experimental	Formatted: Highlight
236	conditions: 50 mg RhB/L, pH 3.0, 0.1 mM Fe ²⁺ , 6.67 mA/cm ² , 50 mM Na ₂ SO ₄ .	
237	To determine the applicability of the EF process in practical wastewater, the	
238	optimal condition of the EF process was applied for the decomposition of different groups	
239	of dyes such as azo dyes (i.e. TTZ, DB71, and JGB), phenothiazine (i.e. MB), and	
240	xanthene (<i>i.e.</i> RhB). Fig me 9 shows a decreasing order of decomposition efficiency as	Formatted: Highlight
241	RhB (98%) \approx TTZ (97%) > JGB (80%) \approx DB71 (79%) > MB (70%). The difference in the	
242	degradation efficiency of dyes can be attributed to the difference in their structures. The	
243	easy dissociation of $\pi\text{-bondings}$ (e.g. to form naphthalene ring) of TTZ, DB71, and JGB	
244	(with –N=N color centers) make them easier to be degraded (Oancea and Meltzer 2013;	Formatted: Highlight
245	Maleki et al. 2015). Regarding thiazine dye (MB), aromatic ring-bonded nitrogen atoms	Formatted: Highlight

*Corresponding Author: nguyentrungdung1980@gmail.com nnhuy@hcmut.edu.vn

were first degraded due to their electron-donating groups [(-N(CH₃)₂)] (Teng *et al.* 2020). Formatted: Highlight
On the other hand, the decomposition of conjugated structure and subsequent Ndemethylation in xanthene dye (RhB) is its main degradation mechanism (Gazi *et al.* Formatted: Highlight
249 2010). The results indicated that the EF process using <u>CF carbon felt</u> could be widely used
to degrade different dyes.

–D– RhB 1.0 TTZ JGB DB71 0.8 MB ပ္ပိ^{0.6} ပို _{0.4} 0.2 0.0 3 9 12 15 0 6 Time(min)

251

Figure 9. The degradation of different dyes by the EF process. Experimental conditions:	Formatted: Highlight
50 mg dye/L, pH 3.0, 0.1 mM Fe ²⁺ , 6.67 mA/cm ² , 50 mM Na ₂ SO ₄ .	
To find the effect of electrolyte types on the RhB degradation, 50 mM of sodium	
salts (<i>i.e.</i> chloride, nitrate, and sulfate) were added to the EF system. As seen in Fig.	Formatted: Highlight
10, a -complete removal of RhB can be observed within 15 min in the presence of Na ₂ SO ₄	
and NaCl. When using Na ₂ SO ₄ as an electrolyte, sulfate radicals (SO ₄ $-$) (E ^o = 2.6 $-$ -3.2	
V) are formed at the anode surface from the Reactions 10 12, which could contribute	Formatted: Highlight
	 Figure 9. The degradation of different dyes by the EF process. Experimental conditions: 50 mg dye/L, pH 3.0, 0.1 mM Fe²⁺, 6.67 mA/cm², 50 mM Na₂SO₄. To find the effect of electrolyte types on the RhB degradation, 50 mM of sodium salts (<i>i.e.</i> chloride, nitrate, and sulfate) were added to the EF system. As seen in Fig. 10, a-complete removal of RhB can be observed within 15 min in the presence of Na₂SO₄ and NaCl. When using Na₂SO₄ as an electrolyte, sulfate radicals (SO₄*=) (E° = 2.63.2 V) are formed at the anode surface from the Reactions 10 12, which could contribute

*Corresponding Author: nguyentrungdung1980@gmail.com nnhuy@hcmut.edu.vn Formatted: Highlight

 $NO_3 + 2H + 2e \rightarrow NO_2 + H_2O$

NO2 ⁻ + 5H2O + 6e	\rightarrow	NH₃ + 7HO⁻	(1 <u>9</u> 7)
2NH3 + 6HO'	\rightarrow	N ₂ + 6H ₂ O	(<u>20</u> 18)

271

272

Figure 10. (a) Effects of electrolyte on RhB degradation and (b) the degradation rate constant. Experimental conditions: 50 mg RhB/L, pH 3.0, 0.1 mM Fe²⁺, 6.67 mA/cm², 50 mM of electrolyte.

As illustrated in Fig 11, the RhB degradation efficiency decreased from 98% to 85%, 81%, and 36% when using TBA, FFA, and p-BQ, respectively. Therefore, the role of the reactive species is in the other of $O_2^{\bullet} = > {}^1O_2 \approx HO^{\bullet}$, proving the role of oxygen in the formation of reactive oxygen species. When replacing air with pure nitrogen gas, the degradation efficiency decreased from 98% to 68%. Thus, oxygen plays an important role in forming active oxygen species (*e.g.* O_2^{\bullet} , 1O_2 , and HO^{\bullet}), which determine the degradation efficiency of RhB.

*Corresponding Author: nguyentrungdung1980@gmail.com nnhuy@hcmut.edu.vn Formatted: Highlight

17

Formatted: Highlight

Dung *et al.*: Degradation of Organic Dyes by Electro-Fenton Date Received: 04 Jan 2021

291 electrode for practical wastewater treatment using the <u>EFelectro-Fenton</u> system.

18

*Corresponding Author: nguyentrungdung1980@gmail.com nnhuy@hcmut.edu.vn

Cathode	Organic	EE conditions	Efficiency	Deference
electrode	pollutants	Er conulions	Enciency	Reference
Carbon faltCE	Bhadamina B	[DbD] 50 mg/l	Degradation of 08%	Dragant
	RI louanine B	[KIIB] = 50 IIIg/L		Present
(12 cm × 5	(RhB,	pH = 3.0	RnB in 15 min of	study
cm)	C ₂₈ H ₃₁ CIN ₂ O ₃)	$[E_0(II)] = 0.1 \text{ mM}$	electrolysis	
			Oxidation rate	
		[Na ₂ SO ₄] = 50 mM	constant: 0.255 min-1	
		Anode: Ti/Pt (10 cm × 5	Order of reactive	
		cm);	oxygen species: Ω_2^*	
		Applied current density:	$> 10_2 \approx H0^{\circ}$	
		6.67 mA.cm ⁻²		
Carbon feltCF	Orange II	[Orange II] = 50 mg/L	Degradation of	Lin <i>et al.</i>
(16 cm x 7	(C16H11N2NaO4S)	pH = 3.0	97.8% Orange II in	<mark>(2014)</mark>
cm)	(010111112110040)	pri – 0.0	10 min of electrolysis	
,		[Fe(III)] = 0.2 mM	HO• played an	
		Anode: RuO2-IrO2	important role in the	
			oxidation process.	
		[Na ₂ SO ₄] = 50 mM	·	
		Applied current density:		
		1.78 mA.cm ⁻²		
Carbon felt <u>CF</u>	Glyphosate	[Gly] = 0.1 M	Degradation of	Tran <i>et al.</i>
(10 cm × 5	(Gly, C₃H ₈ NO₅P)	pH = 3	91.91% Gly in 40	(2019)
cm)			min of electrolysis	
Citi)				

*Corresponding Author: nguyentrungdung1980@gmail.com nnhuy@hcmut.edu.vn

Dung <i>et al.</i> : D Date Receive	egradation of Organi d: 04 Jan 2021	c Dyes by Electro-Fenton		21		
		Anode: Pt (8 cm × 4 cm)	Oxidation rate			
		Applied current density:	constant: 0.063 min ⁻¹			
		10 mA.cm ⁻²	HO• played an			
			important role in the			
			oxidation process.			
Carbon Felt <u>CF</u>	Benzoic acid	[Benzoic acid] = 0.2 mM	Degradation of 89%	Sennaoui <i>et</i>	 Formatted: Highlight	
(8 cm x 6 cm)	$(C_7H_8O_2)$	pH = 3	Benzoic acid in 60	<i>al.</i> (2019)		
	(0/11002)	pri = 0	min and 95% in 120			
		[Fe(II)] = 0.3 mM Anode:	min of electrolysis			
		BDD (8 cm × 5 cm)				
		Applied current density:				
		6.25 mA.cm ⁻²				
Carbon felt <u>CF</u>	Paraaminosalicyli	[PAS] = 0.1 mM (15.3	Degradation of 100%	Oturan <i>et al.</i>	Formatted: Highlight	
$(15 \text{ cm} \times 4 \text{ cm})$	c acid	mg/L)	PAS in 7 min of	<mark>(2018)</mark>		
(15 cm x 4 cm)		р Н – 3	electrolysis using			
	(FAG, C/11/NO3)	pri – 3	Pt/carbon-felt cell			
		[Fe(II)] = 0.1 mM	and in 10 min using			
		[Na ₂ SO ₄] = 50 mM	BDD/carbon-felt cell			
		Applied current density:	Oxidation rate			
		8.33 mA.cm ⁻²	constant: 4.17 × 10^9			
			M ⁻¹ s ⁻¹			
		Anode [.] Pt and BDD				

	eu. 04 Jan 2021				
			HO• played an		
			important role in the		
			oxidation process.		
Carbon Felt <u>CF</u>	Sucralose	[SUC] = 80 mg/L	Remove 96.1 % TOC	Lin <i>et al</i> .	Formatted: Highlight
(17.5 cm × 6	(SUS,	pH = 3	of SUC in 120 min of	<mark>(2017)</mark>	
cm)	C ₁₂ H ₁₉ Cl ₃ O ₈)	[Fe(II)] = 0.2 mM	electrolysis		
		$[Na_2SO_4] = 50 \text{ mM}$	HO• played an		
		Anode: BDD (25 cm ²)	important role in the oxidation process.		
		Applied current density:			
		1.9 mA.cm ⁻²			
Carbon felt <u>CF</u>	Enoxacin (ENXN,	[ENXN] = 50mg/L pH = 3	Degradation of 98%	Annabi <i>et al.</i>	Formatted: Highlight
(70 cm²)	C ₁₅ H ₁₇ FN ₄ O ₃)	[Fe(II)] = 0.2 mM	ENXN in 60 min of	<mark>(2016)</mark>	
		[Na ₂ SO ₄] = 50 mM	electrolysis		
		Anode: BDD (5 cm × 4	HO• played an		
		cm)	important role in the		
		Applied current density:	oxidation process.		
		4.286 mA.cm ⁻²			
				Özcan et al	Formatted, Highlight
Carbon felt <u>CF</u>	Norfloxacin	[Nor] = 0.25 mM	Remove 98 % TOC	ozoan or an	Formatteu. mignight
Carbon felt <u>CF</u>	Norfloxacin	[Nor] = 0.25 mM	of Nor in 5 h of	(2016)	Pormatted. ingringit

		Anode: Pt and BDD (5 cm			
		× 4 cm)			
		Applied current density:			
		4.2% mÅ cm ⁻²			
		4.200 ma.cm			
Carbon feltCF	Levofloxacin	[Levo] = 83.6 mg/L	Remove 85 % TOC	Barhoumi <i>et</i>	Formatted: Highlight
(60 cm^2)	(Levo,	n∐ _ 2	of Levo in 8 h of	<i>al.</i> (2015)	
(00 cm-)	C ₁₈ H ₂₀ FN ₃ O ₄)	ρπ = 5	electrolysis		
		[Fe(II)] = 0.2 mM			
			HO• played an		
		Anode: BDD (6 cm ²)	important role in the		
		Applied current density: 5	oxidation process.		
		mA.cm ⁻²			
Carbon felt <u>CF</u>	Tetracycline	[TC] = 80 mg/L	Remove 83.9 %	Chen <i>et al.</i>	Formatted: Highligh
(00 1			TOC of TC in 8 h of	<mark>(2019)</mark>	
(20 cm × 4	(TC, C22H24N2O8)	рн = 3	electrolysis		
cm)		[Fe(II)] = 0.1 mM			
			HO• played an		
		[Na ₂ SO ₄] = 50 mM	important role in the		
		Anode: Ti/RuO2-IrO2 (36	oxidation process.		
		cm²)			
		Applied current density: 5			
		mA.cm ⁻²			

302

303 CONCLUSIONS

*Corresponding Author: nguyentrungdung1980@gmail.com nnhuy@hcmut.edu.vn

A comprehensive study was conducted to investigate the effect of environmental 304 305 factors on the removal of RhB via the EFelectro-Fenton process using CFcarbon felt as the cathode material. The suitable condition was determined at RhB concentration of 50 306 mg/L, pH 3.0, Fe2+ concentration of 0.1 mM, current density of 6.67 mA/cm2, and 307 electrolyte of 50 mM Na₂SO₄. The effect of radical scavenger was also conducted, 308 showing a decisive role of superoxide radical. The durability of the CF carbon felt cathode 309 was also tested by cycle test, which proves its stability for practical applications in 310 311 wastewater treatment.

312

313 REFERENCES

314 AFANGA H, ZAZOU H, TITCHOU FE, GAAYDA JE, SOPAJ F, AKBOUR RA, HAMDANI 315 M. 2021. Electrochemical oxidation of Naphthol Blue Black with different supporting electrolytes using a BDD /carbon felt cell. J Environ Chem Eng 9(1): 104498. 316 317 AIZ, XIAOH, MEIT, LIUJ, ZHANGL, DENGK, QIUJ. 2008. Electro-Fenton Degradation of Rhodamine B Based on a Composite Cathode of Cu₂O Nanocubes and Carbon 318 Nanotubes. J Phys Chem C 112(31): 11929-11935. 319 320 ANNABI C, FOURCADE F, SOUTREL I, GENESTE F, FLONER D, BELLAKHAL N, 321 AMRANE A. 2016. Degradation of enoxacin antibiotic by the electro-Fenton process: Formatted: Highlight optimization, biodegradability improvement and degradation mechanism. J Environ 322

Manage 165: 96-105. 323

> *Corresponding Author: nguyentrungdung1980@gmail.com nnhuy@hcmut.edu.vn

_	Formatted: Highlight
	Formatted: Highlight
_	Formatted: Highlight
	Formatted: Highlight
	Formatted: Highlight

2	5
2	J

324	BARHOUMI N, LABIADH L, OTURAN MA, OTURAN N, GADRI A, AMMAR S, BRILLAS		Formatted: Highlight
325	E. 2015. Electrochemical mineralization of the antibiotic levofloxacin by electro-		Formatted: Highlight
326	Fenton-pyrite process. Chemosphere 141: 250–257.		
327	CHEN S, TANG L, FENG H, ZHOU Y, ZENG G, LU Y, YU J, REN X, PENG B, LIU X.		Formatted: Highlight
328	2019. Carbon felt cathodes for electro-Fenton process to remove tetracycline via	_	Formatted: Highlight
329	synergistic adsorption and degradation. Sci Total Environ 670: 921–931.		
330	CHEN Z, BI S, ZHAO G, CHEN Y, HU Y. 2020. Enhanced degradation of triclosan by		Formatted: Highlight
331	cobalt manganese spinel-type oxide activated peroxymonosulfate oxidation process		Formatted: Highlight
332	via sulfate radicals and singlet oxygen: mechanisms and intermediates identification.		
333	Sci Total Environ 711: 134715.		
334	EL-GHENYMY A, RODRÍGUEZ RM, BRILLAS E, OTURAN N, OTURAN MA. 2014.	_	Formatted: Highlight
335	Electro-Fenton degradation of the antibiotic sulfanilamide with Pt/carbon-felt and		Formatted: Highlight
336	BDD/carbon-felt cells: kinetics, reaction intermediates, and toxicity assessment.		
337	Environ Sci Pollut Res 21(14): 8368–8378.		
338	GANIYU SO, HUONG LE TX, BECHELANY M, ESPOSITO G, VAN HULLEBUSCH ED,		Formatted: Highlight
339	OTURAN MA, CRETIN M. 2017. A hierarchical CoFe-layered double hydroxide		Formatted: Highlight
340	modified carbon-felt cathode for heterogeneous electro-Fenton process. J Mater		
341	Chem A 5(7): 3655–3666.		
342	GAO Y, WANG Y, ZHANG H. 2015. Removal of Rhodamine B with Fe-supported		Formatted: Highlight
343	bentonite as heterogeneous photo-Fenton catalyst under visible irradiation. Appl		Formatted: Highlight
344	Catal, B 178: 29–36.		

26

GAZI S, RAJAKUMAR A, SINGH NDP. 2010. Photodegradation of organic dyes in the 345 Formatted: Highlight Formatted: Highlight presence of [Fe(III)-salen]Cl complex and H₂O₂ under visible light irradiation. J Hazard 346 Mater 183(1): 894-901. 347 GUIVARCH E, TREVIN S, LAHITTE C, OTURAN MA. 2003. Degradation of azo dyes in Formatted: Highlight 348 Formatted: Highlight water by electro-Fenton process. Environ Chem Lett 1(1): 38-44. 349 HAI H, XING X, LI S, XIA S, XIA J. 2020. Electrochemical oxidation of sulfamethoxazole 350 Formatted: Highlight Formatted: Highlight in BDD anode system: Degradation kinetics, mechanisms and toxicity evaluation. Sci 351 Total Environ 738: 139909. 352 353 HOU M-F, LIAO L, ZHANG W-D, TANG X-Y, WAN H-F, YIN G-C. 2011. Degradation of Formatted: Highlight Formatted: Highlight rhodamine B by Fe(0)-based Fenton process with H₂O₂. Chemosphere 83(9): 1279-354 1283. 355 HUONG LE TX, BECHELANY M, CRETIN M. 2017. Carbon felt based-electrodes for 356 Formatted: Highlight Formatted: Highlight energy and environmental applications: a review. Carbon 122: 564-591. 357 358 LIN H, OTURAN N, WU J, ZHANG H, OTURAN MA. 2017. Cold incineration of sucralose Formatted: Highlight Formatted: Highlight in aqueous solution by electro-Fenton process. Sep Purif Technol 173: 218-225. 359 LIN H, ZHANG H, WANG X, WANG L, WU J. 2014. Electro-Fenton removal of Orange II 360 Formatted: Highlight Formatted: Highlight in a divided cell: reaction mechanism, degradation pathway and toxicity evolution. Sep 361 Purif Technol 122: 533-540. 362 363 MALEKI A, DARAEI H, HOSSEINI EA, AZIZI S, FAEZ E, GHARIBI F. 2015. Azo Dye Formatted: Highlight Formatted: Highlight DB71 Degradation Using Ultrasonic-Assisted Fenton Process: Modeling and Process 364 Optimization. Arab J Sci Eng 40(2): 295-301. 365

366	MI X, HAN J, SUN Y, LI Y, HU W, ZHAN S. 2019. Enhanced catalytic degradation by		Formatted: Highlight	
367	using RGO-Ce/WO3 nanosheets modified CF as electro-Fenton cathode: influence		Formatted: Highlight	
368	factors, reaction mechanism and pathways. J Hazard Mater 367: 365–374.			
369	NIDHEESH PV, GANDHIMATHI R. 2014a. Comparative Removal of Rhodamine B from		Formatted: Highlight	
370	Aqueous Solution by Electro-Fenton and Electro-Fenton-Like Processes. CLEAN-Soil	\langle	Formatted: Highlight Formatted: Highlight	
371	Air Water 42(6): 779–784.			
372	NIDHEESH PV, GANDHIMATHI R. 2014b. Removal of Rhodamine B from aqueous		Formatted: Highlight	
373	solution using graphite-graphite electro-Fenton system. Desalin Water Treat 52(10-	$\overline{\ }$	Formatted: Highlight Formatted: Highlight	
374	12): 1872–1877.			
375	NIDHEESH PV, GANDHIMATHI R, SANJINI NS. 2014. NaHCO₃ enhanced Rhodamine	<	Formatted: Highlight	
376	B removal from aqueous solution by graphite-graphite electro Fenton system. Sep		Formatted: Highlight	
377	Purif Technol 132: 568–576.			
378	OANCEA P, MELTZER V. 2013. Photo-Fenton process for the degradation of Tartrazine		Formatted: Highlight	
379	(E102) in aqueous medium. J Taiwan Inst Chem E 44(6): 990–994.	\langle	Formatted: Highlight Formatted: Highlight	
380	OTURAN N, ARAVINDAKUMAR CT, OLVERA-VARGAS H, SUNIL PAUL MM, OTURAN		Formatted: Highlight	
381	MA. 2018. Electro-Fenton oxidation of para-aminosalicylic acid: degradation kinetics		Formatted: Highlight	
382	and mineralization pathway using Pt/carbon-felt and BDD/carbon-felt cells. Environ			
383	Sci Pollut Res 25(21): 20363–20373.			
384	ÖZCAN A, ATILIRATILIR ÖZCAN A, DEMIRCI Y. 2016. Evaluation of mineralization	<	Formatted: Highlight	
385	kinetics and pathway of norfloxacin removal from water by electro-Fenton treatment.		Formatted: Highlight	
386	Chem Eng J 304: 518–526.			

*Corresponding Author: nguyentrungdung1980@gmail.com nnhuy@hcmut.edu.vn

387	PANG Y, RUAN Y, FENG Y, DIAO Z, SHIH K, HOU LA, CHEN D, KONG L. 2019.	Formatted: Highlight
388	Ultrasound assisted zero valent iron corrosion for peroxymonosulfate activation for	Formatted: Highlight
389	Rhodamine-B degradation. Chemosphere 228: 412–417.	
390	PIMENTEL M, OTURAN N, DEZOTTI M, OTURAN MA. 2008. Phenol degradation by	Formatted: Highlight
391	advanced electrochemical oxidation process electro-Fenton using a carbon felt	Formatted: Highlight
392	cathode. Appl Catal, B 83(1): 140–149.	
393	SAJA S, BOUAZIZI A, ACHIOU B, OUADDARI H, KARIM A, OUAMMOU M, AADDANE	Formatted: Highlight
394	A, BENNAZHA J, ALAMI YOUNSSI S. 2020. Fabrication of low-cost ceramic	Formatted: Highlight
395	ultrafiltration membrane made from bentonite clay and its application for soluble dyes	
396	removal. J Eur Ceram Soc 40(6): 2453–2462.	
397	SENNAOUI A, ALAHIANE S, SAKR F, TAMIMI M, AIT ADDI EH, HAMDANI M,	Formatted: Highlight
398	ASSABBANE A. 2019. Comparative degradation of benzoic acid and its hydroxylated	Formatted: Highlight
399	derivatives by electro-Fenton technology using BDD/carbon-felt cells. J Environ Chem	
400	Eng 7(2): 103033.	
401	SIRÉS I, GUIVARCH E, OTURAN N, OTURAN MA. 2008. Efficient removal of	Formatted: Highlight
402	triphenylmethane dyes from aqueous medium by in situ electrogenerated Fenton's	Formatted: Highlight
403	reagent at carbon-felt cathode. Chemosphere 72(4): 592–600.	
404	SIRÉS I, OTURAN N, OTURAN MA, RODRÍGUEZ RM, GARRIDO JA, BRILLAS E. 2007.	Formatted: Highlight
405	Electro-Fenton degradation of antimicrobials triclosan and triclocarban. Electrochim	Formatted: Highlight
406	Acta 52(17): 5493–5503.	
407	SUNDARAN SP, RESHMI CR, SAGITHA P, MANAF O, SUJITH A. 2019. Multifunctional	Formatted: Highlight
408	graphene oxide loaded nanofibrous membrane for removal of dves and coliform from	Formatted: Highlight
409	water. J Environ Manage 240: 494–503.	

*Corresponding Author: nguyentrungdung1980@gmail.com nnhuy@hcmut.edu.vn

410	TENG X, LI J, WANG Z, WEI Z, CHEN C, DU K, ZHAO C, YANG G, LI Y. 2020.	Formatted: Highlight
411	Performance and mechanism of methylane blue degradation by an electrochemical	Formatted: Highlight
411	renormance and mechanism of methylene blue degradation by an electrochemical	
412	process. RSC Adv 10(41): 24712–24720.	
413	TIAN J, OLAJUYIN AM, MU T, YANG M, XING J. 2016. Efficient degradation of	Formatted: Highlight
414	rhodamine B using modified graphite felt gas diffusion electrode by electro-Fenton	Formatted: Highlight
415	process. Environ Sci Pollut Res 23(12): 11574–11583.	
416	TRAN MH, NGUYEN HC, LE TS, DANG VAD, CAO TH, LE CK, DANG T-D. 2019.	Formatted: Highlight
	De sus de l'an effectuels andré de la completion de la fair de la completion de la fair	Formatted: Highlight
41/	Degradation of glyphosate herbicide by an electro-renton process using carbon feit	
418	cathode. Environ Technol 42(8): 1–10.	
419	WU J, YANG J, HUANG G, XU C, LIN B. 2020. Hydrothermal carbonization synthesis of	Formatted: Highlight
		Formatted: Highlight
420	cassava slag blochar with excellent adsorption performance for Rhodamine B. J	
421	Cleaner Prod 251: 119717.	
422	WU J. ZHANG H. OTURAN N. WANG Y. CHEN L. OTURAN MA. 2012, Application of	Formatted: Highlight
		Formatted: Highlight
423	response surface methodology to the removal of the antibiotic tetracycline by	
424	electrochemical process using carbon-felt cathode and DSA (Ti/RuO2-IrO2) anode.	
425	Chemosphere 87(6): 614–620.	
426	XIAO W, GARBA ZN, SUN S, LAWAN I, WANG L, LIN M, YUAN Z. 2020. Preparation	Formatted: Highlight
		Formatted: Highlight
427	and evaluation of an effective activated carbon from white sugar for the adsorption of	
428	rhodamine B dye. J Cleaner Prod 253: 119989.	
429	YANG J, SUN X, YANG W, ZHU M, SHI J. 2020. The Improvement of Coralline-Like	Formatted: Highlight
	Za Ca Ca bu Caracterization for the Directoretak dia Danas define (Dir k in D	Formatted: Highlight
430	ZnGa2O4 by Cocatalysts for the Photocatalytic Degradation of Rhodamine B.	

Catalysts 10(2).

*Corresponding Author: nguyentrungdung1980@gmail.com nnhuy@hcmut.edu.vn

432	YU G, WANG Y, CAO H, ZHAO H, XIE Y. 2020. Reactive Oxygen Species and Catalytic	_	Formatted: Highlight
433	Active Sites in Heterogeneous Catalytic Ozonation for Water Purification. Environ Sci		Formatted: Highlight
434	Technol 54(10): 5931–5946.		
435	YUAN S, FAN Y, ZHANG Y, TONG M, LIAO P. 2011. Pd-Catalytic In Situ Generation of		Formatted: Highlight
436	H_2O_2 from H_2 and O_2 Produced by Water Electrolysis for the Efficient Electro-Fenton		Formatted: Highlight
437	Degradation of Rhodamine B. Environ Sci Technol 45(19): 8514–8520.		
438	ZAZOU H, OTURAN N, SÖNMEZ-ÇELEBI M, HAMDANI M, OTURAN MA. 2016.		Formatted: Highlight
439	Mineralization of chlorobenzene in aqueous medium by anodic oxidation and electro-		Formatted: Highlight
440	Fenton processes using Pt or BDD anode and carbon felt cathode. J Electroanal		
441	Chem 774: 22–30.		
442	ZHANG J, ZHANG Z, ZHU W, MENG X. 2020a. Boosted photocatalytic degradation of		Formatted: Highlight
443	Rhodamine B pollutants with Z-scheme CdS/AgBr-rGO nanocomposite. Appl Surf Sci		Formatted: Highlight
444	502: 144275.		
445	ZHANG Y, LUO G, WANG Q, ZHANG Y, ZHOU M. 2020b. Kinetic study of the		Formatted: Highlight
446	degradation of rhodoming Pluging a flow through LIV/alastra Fonton process with the		Formatted: Highlight
446	degradation of modamine B using a now-through ov/electro-renton process with the		
447	presence of ethylenediaminetetraacetic acid. Chemosphere 240: 124929.		
448	ZHU J, ZHU Z, ZHANG H, LU H, QIU Y. 2019. Calcined CoAl-layered double hydroxide		Formatted: Highlight
449	as a heterogeneous catalyst for the degradation of acetaminophen and rhodamine B:		Formatted: Highlight
450	activity, stability, and mechanism. Environ Sci Pollut Res 26(32): 33329–33340.		
451			

*Corresponding Author: nguyentrungdung1980@gmail.com nnhuy@hcmut.edu.vn