
A GAN-based approach for password guessing
Bao Ngoc Vi

Le Quy Don Technical University
Hanoi, Vietnam

ngocvb@lqdtu.edu.vn

Nguyen Ngoc Tran
Le Quy Don Technical University

Hanoi, Vietnam
ngoctn@lqdtu.edu.vn

Trung Giap Vu The
Le Quy Don Technical University

Hanoi, Vietnam
vuthetrunggiap@lqdtu.edu.vn

Abstract—Password is the most widely used authenticate
method. Individuals ordinarily have numerous passwords for
their documents or devices, and, in some cases, they need
to recover them with password guessing tools. Most popular
guessing tools require a dictionary of common passwords to check
with password hashes. Thus, generative adversarial networks
(GANs) are suitable choices to automatically create a high-quality
dictionary without any additional information from experts or
password structures. One of the successful GAN-based models is
the PassGAN. However, existing GAN-based models suffer from
the discrete nature of passwords. Therefore, we proposed and
evaluated two improvement of the PassGAN model to tackle
this problem: the GS-PassGAN model using Gumbel-Softmax
relaxation and the S-PassGAN using a smooth representation
of a real password obtained by an additional Auto-Encoder.
Experiment results on three different popular datasets show that
the proposed method is better than the PassGAN both in the
standalone and combining cases. Moreover, the matching rate of
the proposed method can be increased by more than 5%.

Index Terms—generative adversarial network ; password
guessing; Gumbel-Softmax; Auto-Encoder

I. INTRODUCTION

Nowadays, textual password remains a common method
of authenticating users because of the easy implementation
and no special hardware requirements. Individuals ordinarily
have numerous passwords for their documents or devices
but sometimes a few of their passwords are forgotten, and
password guessing tools are required to recover them. Law
enforcement agencies, such as police and prosecutors are often
required to crack passwords whereas conducting examinations.
Meanwhile, multiple password database leaks have shown
that predictable passwords often chosen, which empowers
password guessing tools being developed.

Most common password guessing tools, such as HashCat [7]
and John the Ripper (JtR) [21] provide user ability to check
billions of passwords per second against password hashes. But
instead of trying all possible character’s combinations (brute-
force attack), these tools start with pre-defined dictionaries
or leak passwords then expand these using generation rules
(dictionary-based attack). Using rules to extend password
dictionary has some drawbacks. Firstly, creating the rules
requires the expert’s knowledge. Secondly, these methods
only generate limited wordlists. Therefore, researchers study
how to automatically analyze leak passwords then generate

candidates which are highly used. Recently, motivated by
the success of deep learning, there are some deep learning
- based method have been proposed to enhance dictionary.
There are two main deep learning approaches: recurrent neural
network (RNN)-based [14] and GAN-based [8], [16]). RNN-
based models like language models suffer from exposure bias
because at training time these models is exposed to gold
data only, but at test time they observe their own predictions.
Hence, wrong predictions quickly accumulate and result in
poor text generation quality. GAN-based models suffer less
from mentions above, but similar to other GAN-based text
generators, these are challenging due to the discrete nature of
the text. Back-propagation would not be feasible for discrete
outputs and it is not straightforward to pass the gradients
through the discrete output words of the generator.

Current works focus on dealing with the non-differentiable
issue brought by the discrete data either by considering the
Reinforcement Learning (RL) methods or by reformulating
the problem in continuous space. A large class of GANs for
text generation relies on the intensive RL heuristics [2], [23],
[24]. These model often require a pre-trained model. For non-
reinforcement approaches, some proposed methods used an
addtional Auto-Encoder (AE). AE can be used to derive a la-
tent space representation of the text then GAN model attempts
to learn data manifold of that space [13] or to get the smooth
representation of an input text before feeding it to GAN [5],
[6]. Experiment results show that learning from “smooth text”
is more efficient. However, these models require training an
additional AE, which is time consuming and make training
stage more complicated. Authors in [10] proposed the first
GAN model using Gumbel Softmax technique, but they only
provided experiment on the synthetic task, which generate the
string from a simple artificial context-free grammar. RelGAN
[18] is the first architecture to demonstrate that GANs with
Gumbel-Softmax relaxation are capable of generating realistic
text. However, they investigate under the relation memory
based generator and discriminator with multiple embedded
representations. Moreover, the generator and the discriminator
are word-level models and pre-trained via Maximum Like-
lihood Estimates in advanced. Experiments to compare the
performance of Gumbel-Softmax relaxation and the vanilla RL
methods show that the variance of generator gradients in the
vanilla RL methods is too large to provide any useful update
for generator.

Therefore, in the context of generating password, in this978-1-6654-0435-8/21/$31.00 ©2021 IEEE



paper, we proposed GS-PassGAN, S-PassGAN model which is
an improvement of PassGAN with Gumbel-Softmax relaxation
and smooth representation of real passwords. To the best of my
knowledge, GS-PassGAN is the first CNN-based GAN model
at character level, which applied Gumbel-Softmax relaxation
for generate real sequences. The cracking performance is
evaluated in cross-site scenarios. That is, the model is trained
on Rockyou dataset [20] and testing in the different datasets.
For testing phase, we use three different password datasets:
LinkedIn [11], MySpace [15] and phpBb [19].

The rest of this paper is organized as follows. Section II
shows the introduction of the traditional and deep learning
approaches in the password guessing field. Section III presents
our proposed models the GS-PassGAN and the S-PassGAN .
Section IV shows the experimental setup and results. Finally,
section V makes a conclusion and states future works.

II. RELATED WORK

A. Traditional Password Guessing Methods

In a secure system, the hashed value of passwords are stored
in stead of their plain text. Therefore, hashing password tools
such as HashCat [7] and JtR [21] are popular for recovering
passwords. There are multiple options of password cracking
method in both tools, such as brute-force attacks, dictionary-
based attacks and rule-based attacks.

Markov model was first utilized for guessing password in
2005 by Narayanan et al. [17] and its improvement has been
proposed recently [12]. They used given password rules, such
as which portion of the generated passwords is composed
of letters and numbers. Its improvement with Probabilistic
Context-Free Grammars (PCFGs) was introduced by Weir et
al. [22]. PCFG derives from word-mangling rules based on a
given leak passwords. A passwords’ dictionary then generated
by the grammar examples with the trained probabilistic model.

A neural network was first used in password guessing
by Ciaramella et al in [1]. Recently, Melicher et al. [14]
proposed a password cracking model FLA based on RNNs.
The experiment results show that a wordlist generated by FLA
outperforms the Markov model, PCFG, Hashcat and JtR at
guessing numbers above 1010. However, the main purpose
of these works consists in providing means for password
strength estimation. In contrast, PassGAN [8] and its variants
R-PassGAN [16] focus on the task of password guessing and
attempts to do so with no a prior knowledge or assumption on
the Markovian structure of user-chosen passwords.

B. GAN-based password guessing methods

GAN [3] has recently become an important generative
model. The GAN training strategy is to define a game between
two deep neural networks: a generator G and a discriminator
D. The generator take a random noise z, normaly generated
from normal distribution, as input. The generator then maps
this noise into target distribution Px. The discriminator try
to distinguish between a true data sample and a fake sample
created by generator. While the generator is trained to cre-
ated sample close to real data as much as possible to fool

discriminator. After Goodfellow et al. [3] proposed the first
GAN, various GAN models with better performance have been
suggested including IWGAN [4].

Authors [4] also showed that the CNN based IWGAN model
can be applied to a text generation area. PassGAN [8] was
derived from these experimental results. The experimental
results showed that PassGAN is competitive with the state-
of-the-art password generation tools without any additional
information such as rules or structure of passwords. Figure
1 shows the architecture of PassGAN’s. In [16], authors
proposed R-PassGAN which based on RNN. The experiment
results show that this combination model perform better than
PassGAN. However, the detailed structure of RNN was not
stated.

Fig. 1: Overview of PassGAN’s structure

Training GAN-based models is challenging due to the
discrete nature of passwords. In particular, a real password
is encoded as a sequence of one-hot representations of its
characters. However, a fake password, which is also encoded
using a one-hot representation, can be only sampled from a
multinomial distribution with probabilities given by the output
of a softmax layer in generator. The resulting sampling process
is not differentiable so in training time of PassGAN, output
of a softmax layer is directly fed to discriminator. Then, dis-
criminator is responsible for distinguishing the one-hot repre-
sentation of real password from the softmax representation of
the fake password. Thus discriminator is able to tell apart the
one-hot input from the softmax input very easily. Therefore,
it is difficult to generator to fool discriminator and vanishing
gradient problem is highly probable. As stated before, there are
some approaches to tackle this issue. Among these, Gumbel-
Softmax relaxation and learning from smooth representation
of password obtained from output of AE are time-saving and
competitive methods. A detail of these methods is represented
in the next section.



III. METHODOLOGY

A. Gumbel-Softmax relaxation

As stated above, PassGAN feeds output of a softmax vector
directly to discriminator, instead of one-hot representation
due to non-differentiable of sampling form multi nominal
distribution.

Let hj be the jth output logits n-dimension vector of the
generator where j = 0,m with m is length of generated
password and n is the number of characters in the vocabulary.
The one-hot representation of jth character yj will obtained
by sampling:

yj ∼ softmax(hj) (1)

This sampling operator is not differentiable. If using yj the
gradients of the generator loss cannot pass back to the gener-
ator via the discriminator. Then, PassGAN use softmax(hj)
instead. But it is not a good approximation of sampling oper-
ator. In [9], Gumbel-Max trick is proposed to re-parameterize
the sampling operator as below:

yj = one hot(argmax(hji + gi)) (2)

where the gi is an independent variable and follow a Gumbel
distribution with zero location and unit scale. But, “one hot
argmax” operator still non-differentiable, an approximation
using softmax with temperature is proposed. Denote g be the
vector which consists of n elements gi (i = 0,m), then the
approximation is represented as below:

ŷj = softmax(
1

τ
(hj + g)) (3)

where

softmax(
1

τ
(hj + g))i =

e
1
τ (h

j
i+gi)∑

k e
1
τ (h

j
k+gk)

and τ > 0 is a tunable parameter called temperature. As yj is
s differentiable with respect to hj , it can used instead of yj .
When τ → 0, ŷj is one-hot representation. However, authors
in [9] showed that the variance of gradients will be very large
as Var( ∂ŷ

j

∂hj ) ∝
1
τ2 thus the parameter updates will become

very sensitive to the input noise. Intuitively, this might cause
poor sample quality. In contrast, with larger temperature τ , the
generator will pay more attention to making sharp distribution
of entries in ŷt+1 due to the larger (initial) approximation gap
between ŷt+1 and yt+1.

B. Smooth representation of real passwords with Auto-
Encoder

This ideal inspires of the knowledge distillation model
in [5]. In this model, the generator (Student) tries to learn
the distribution of the reconstructed output representation of
an Auto-encoder (Teacher), which is continuous, instead of
the distribution of one-hot representations. Overview of S-
PassGAN is showed in Figure 2. The softmax output of the
generator still feeds to the discriminator. However, rather than
directly feeding to the discriminator, the one-hot representation
of a password is firstly fed to the AE, then its output is sent

to the discriminator.S-PassGAn train AE and GAN alternately
with AE reconstruction loss and min-max loss of GAN.

Fig. 2: S-PassGAN with smooth representation from AE

IV. EXPERIMENTS

A. Datasets

To evaluate our proposed model, we train the models with
Rockyou [20], and evaluate the caracking performance in three
differen datasets including Myspace [15], phpBB [19] and
LinkedIn [11]. Rockyou is chosen as training dataset because
it is a rich dataset with frequency counts. We selected all
passwords of length 10 characters or less with printable ACSII
characters (95 characters in total). Detail of all datasets is
represented in table I.

B. Experiment setup

For GS-PassGAN, during the training phase, we linearly
anneal the temperature τ of the Gumbel-softmax relaxation
from 0.1, and reaches 0.01 at iteration 100, 000 and then
kept at τ = 0.01 until training ends. For S-PassGAN, AE
is trained with one layer with 512 LSTM cells for both the
encoder and the decoder. The parameters of AE and GAN
are alternately updated. And difference from GS-PassGAN,
at each training step, the parameters of the discriminator is
updated 5 times in S-PassGAN. Other hyper-parameters are
the same with PassGAN as show in Table II.

Batch size 64
Number of iterations 200,000
Ratio of update D/G 10:1
Number of residual blocks 5
Gradient penalty coefficient 10
Size of noise 128
Learning rate 1e-4
β1 (Adam optimizer) 0.5
β2 (Adam optimizer) 0.9

TABLE II: Hyper-parameters setting in our models

C. Results and Discussion

Our proposed models and PassGAN are compared in term
of the number of password cracked. Firstly, the number of
matched passwords after each 5, 000 iterations of generator’s
parameters updated are compared. For each step, 107 pass-
words is generated. Then the lists is enumerated if they were
listed in testing set and calculate the number of matched pass-
words. Before that, we remove passwords in three test datasets,
which is contained in training dataset. Thus, we obtained



Datasets Number of
password

Number of
unique

passwords

Number of password created from 95 printable ASCII characters

Number of
passwords

Number of
unique

password

Number of
passwords

with
length <= 10

Number of
unique

passwords
with

length <= 10
Rockyou 32,603,388 14,344,391 32,585,350 14,329,850 29,591,069 11,899,053
MySpace 41,545 37,144 41,537 37,136 39,145 34,808
PhpBB 255,421 184,389 255,376 184,344 245,268 174,922
LinkedIn 60,637,684 60,637,572 60,637,684 60,637,572 43,390,943 43,390,930

TABLE I: Leak passwords datasets

(a) (b)

(c)

Fig. 3: Number of matched passwords in three different testing datasets after each 5000 iterations of generator’s parameters
updated

three new test datasets: LinkeIn test set with 40, 255, 271
passwords, MySpace test set with 16, 734 passwords and
phpBB test set with 104, 288 passwords. Figure 3 show these
results. The results show that GS-PassGAN outperform other
models excepted when cracking MySpace dataset. However,
GS-PassGAN obtain higher number of matched passwords at
early step than other models. While the number of matched
passwords S-PassGAN only slightly higher than this of base-

line model.
Morever, similar to the work in [8], we also test the

performance when combining our models with Hashcat. For
each model a dictionary of 109 passwords are generated then it
is be combined with the dictionary created by HashCat Best64
to make new password dictionary. Table 3 show the results. It
can be seen that our model is better than the baseline model
both in the standalone and combining cases. The matching rate



Datasets HashCat only PassGAN
only

HashCat
+

PassGAN

S-PassGAN
only

HashCat
+

S-PassGAN

GS-PassGAN
only

HashCat
+

GS-PassGAN

LinkedIn 7,857,580
(19.52%)

2,893,152
(7.19%)

8,961,578
(22.26%)

3,316,644
(8.24%)

9,136,601
(22.70%)

4,265,046
(10.60%)

9,565,156
(23.76%)

PhpBB 30,238
(29.00%)

12,103
(11.61%)

33,204
(31.84%)

14,065
(13.49%)

33,613
(32.23%)

17,667
(16.94%)

34,945
(33.51%)

MySpace 6,067
(36.26%)

1,414
(8.45%)

6,425
(38.40%)

1,539
(9.20%)

6,453
(38.56%)

1,848
(11.04%)

6,524
(38.99%)

TABLE III: The number of matched passwords of the models when combining with HashCat

of the proposed method can be increased by more than 5%
from 11.61% to 16.94% in comparison to the one of baseline
model in the standalone case of PhpBb dataset. The highest
matching rate is archived on MySpace when combining with
Hashcat.

V. CONCLUSION AND FUTURE WORK

We proposed two improvements GS-PassGAN and S-
PassGAN of PassGAN with two different techniques to deal
with discrete nature of text in GAN model. GS-PassGAN uses
Gumbel-Softmax relaxation to get a continuous approximation
of sampling operation. While in stead of directly learning
the distribution of one-hot representation of passwords, S-
PassGAN tries to learn the distribution of “soft” represen-
tation which is a reconstruct output of an Auto-Encoder.
The experiment results show that, our models outperform the
baseline model in term of the number of guessed passwords.
GS-PassGAN, the model with simple improvements archived
the best performance when testing in three different common
datasets including LinkedIn, MySpace, and phpBb. However,
choosing suitable temperature and reduce the variance of
the gradient of Gumbell trick approximation are challenging
problems and need to be explored further in future.

REFERENCES

[1] A. Ciaramella, P. D’Arco, A. De Santis, C. Galdi, and R. Tagliaferri.
Neural network techniques for proactive password checking. IEEE
Transactions on Dependable and Secure Computing, 3(4):327–339,
2006.

[2] W. Fedus, I. J. Goodfellow, and A. M. Dai. Maskgan: Better text
generation via filling in the . ArXiv, abs/1801.07736, 2018.

[3] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets.
In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Q.
Weinberger, editors, Advances in Neural Information Processing Sys-
tems, volume 27, pages 2672–2680. Curran Associates, Inc., 2014.

[4] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville.
Improved training of wasserstein gans. In Advances in Neural In-
formation Processing Systems, volume 30, pages 5767–5777. Curran
Associates, Inc., 2017.

[5] M. A. Haidar and M. Rezagholizadeh. Textkd-gan: Text generation using
knowledge distillation and generative adversarial networks. In Canadian
Conference on AI, 2019.

[6] M. A. Haidar, M. Rezagholizadeh, A. Do-Omri, and A. Rashid. La-
tent code and text-based generative adversarial networks for soft-text
generation. In NAACL-HLT, 2020.

[7] HashCat. https://hashcat.net/hashcat/. Accessed: 2020-04-18.
[8] B. Hitaj, P. Gasti, G. Ateniese, and F. Perez-Cruz. PassGAN: A Deep

Learning Approach for Password Guessing, pages 217–237. 2019.
[9] E. Jang, S. Gu, and B. Poole. Categorical reparameterization with

gumbel-softmax, 2017.

[10] M. J. Kusner and J. M. Hernández-Lobato. Gans for sequences
of discrete elements with the gumbel-softmax distribution. ArXiv,
abs/1611.04051, 2016.

[11] LinkeIn. https://hashes.org/leaks.php?id=68. Accessed: 2020-04-18.
[12] J. Ma, W. Yang, M. Luo, and N. Li. A study of probabilistic password

models. In 2014 IEEE Symposium on Security and Privacy, pages 689–
704. IEEE, 2014.

[13] A. Makhzani, J. Shlens, N. Jaitly, and I. J. Goodfellow. Adversarial
autoencoders. ArXiv, abs/1511.05644, 2015.

[14] W. Melicher, B. Ur, S. Segreti, S. Komanduri, N. Christin, and L. Crano.
Fast, lean, and accurate: Modeling password guessability using neural
networks. USENIX Security Symposium. 2016.

[15] MySpace. https://downloads.skullsecurity.org/passwords/. Accessed:
2020-04-18.

[16] S. Nam, S. Jeon, and J. Moon. A new password cracking model with
generative adversarial networks. In I. You, editor, Information Security
Applications, pages 247–258. Springer International Publishing, 2019.

[17] A. Narayanan and V. Shmatikov. Fast dictionary attacks on passwords
using time-space tradeoff. In Proceedings of the 12th ACM conference
on Computer and communications security, pages 364–372, 2005.

[18] W. Nie, N. Narodytska, and A. B. Patel. Relgan: Relational generative
adversarial networks for text generation. In ICLR, 2019.

[19] PhpBb. https://downloads.skullsecurity.org/passwords/. Accessed: 2020-
04-18.

[20] Rockyou. https://downloads.skullsecurity.org/passwords/. Accessed:
2020-04-18.

[21] J. the Ripper. https://www.openwall.com/john/. Accessed: 2020-04-18.
[22] M. Weir, S. Aggarwal, B. d. Medeiros, and B. Glodek. Password

Cracking Using Probabilistic Context-Free Grammars. 2009.
[23] L. Yu, W. Zhang, J. Wang, and Y. Yu. Seqgan: Sequence generative

adversarial nets with policy gradient. In AAAI, 2017.
[24] Y. Zhang, Z. Gan, K. Fan, Z. Chen, R. Henao, D. Shen, and L. Carin.

Adversarial feature matching for text generation. volume 70 of Proceed-
ings of Machine Learning Research, pages 4006–4015. PMLR, 06–11
Aug 2017.


