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Abstract—For clustering problems, each data sample has the
potential to belong to many different clusters depending on the
similarity. However, besides the degree of similarity and non-
similarity, there is a degree of hesitation in determining whether
or not a data sample belongs to a defined cluster. Besides the
fuzzy c-means algorithm (FCM), another popular algorithm is
fuzzy C-medoids clustering (FCMdd). FCMdd chooses several
existing objects as the cluster centroids, while FCM considers the
samples’ weighted average to be the cluster centroid. This subtle
difference causes the FCMdd is more resistant to interference
than FCM. Since noise samples will more easily affect the
center of centroids of the FCM, it is easier to create clustering
results with great accuracy. In this paper, the interval type-2
intuitionistic fuzzy c-medoids clustering algorithm (IT2IFCMdd)
is proposed by extending the fuzzy c-medoids clustering based on
interval type-2 intuitionistic fuzzy sets. With this combination,
the proposed algorithm can take advantage of both the fuzzy
c-medoids clustering (FCMdd) method and the interval type-
2 intuitionistic fuzzy sets applied to the clustering problem.
Experiments performed on data sets commonly used in machine
learning show that the proposed method gives better clustering
results in most experimental cases.

Index Terms—Fuzzy clustering, c-Medoids clustering, Interval
type-2 fuzzy set, Intuitionistic fuzzy set.

I. INTRODUCTION

Clustering is an unsupervised learning method widely used
in various fields like data mining, information retrieval, com-
puter vision, bio-informatics, so on. Clustering algorithms aim
to organize a set of objects into clusters such that items in a
given cluster have a high degree of similarity, while items
in different clusters have a high degree of dissimilarity [4],
[5]. The most common clustering techniques are hierarchy and
partitioning [12]: the methods of hierarchy yield a complete
hierarchy, that is, a nested series of partitions of the first data.
While the partitioning method seeks to take a single partition
of the input data into a fixed number of clusters, often by

optimizing an objective function. That is after clustering is
completed, the total distance from all points in the cluster to
the cluster’s centroid must be the minimum [16].

In the hard clustering approach, each object of the data set
must be assigned exactly one cluster. After the fuzzy set theory
came into being, clustering methods based fuzzy sets allowing
one data point to belong to more than one cluster. It provides a
fuzzy partition based on the idea of the partial membership of
each sample in a given cluster. Fuzzy clustering is considered
to be good method for capturing the uncertainty of real data
[11]. Other most common fuzzy clustering algorithms and
applications have been introduced in [6], [10], [20].

To define a data sample will belong to a certain cluster, the
membership functions are used. The value of the membership
function specified is in the range [0,1]. One point can be
divided into many clusters but the total value of membership
functions of a given object on all clusters is always 1.

There are many ways to determine the center of centroids
of a cluster, of which 2 are commonly used include : Based on
the average of the data samples [17] (computing by average
distance) such as K-means (KM), fuzzy C-means (FCM) [4]
and by medoid (representative points) such as k-Medoids
(KMdd), fuzzy c-Medoids (FCMdd) [8], [15], [25]. In the
second approach, each cluster will select a point representing
its cluster, called the medoid point, which acts as the centroid
where total distance of all objects in the cluster to its centroid
is the minimum.

The intuitionistic fuzzy set (IFS) was introduced by
Atanassov in [1] as an extension of the fuzzy set theory
[18]. In 2020, he was summarized and built up the basic
documents and expanded the details of the interval type-2
intuitionistic fuzzy set (IT2IFS) [2], which mentioned the
membership degree, the degree of non-membership and the
degree of hesitation. In the last decade, many scholars have
devoted themselves to the study of IFS, which are widely used
in a variety of fields and achieve valuable results.978-1-6654-0435-8/21/$31.00 ©2021 IEEE
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Charia et al. [7] proposed an edge detection method based
on IFS on the fuzzy c-mean clustering algorithm (IFCM)
which applied to detect medical images that combine local
information with the performance segment high. Ansari et
al. [3] proposed a new divergence and entropy measures for
IFS on edge detection. Hua Zhao et al. [24] introduced an
intuitionistic fuzzy clustering algorithm based on the Boole
matrix and association measure and gave a specific example
of the implementation method. Sahil et al. [19] introduced the
intuitionistic fuzzy metric space with properties. Dzung et al.
[9] proposed a new method by combining the advantages of
intuitionistic fuzzy sets and interval type-2 fuzzy clustering
algorithms to overcome the drawbacks of fuzzy clustering.

Besides the fuzzy c-means algorithm (FCM), another pop-
ular algorithm is fuzzy C-medoids clustering (FCMdd). Both
the FCM and FCMdd algorithms try to minimize the target
function and give the partition array U and the set of V cluster
centers. The main difference between FCM and FCMdd is
only in the mechanism of forming cluster centroids. FCMdd
chooses a number of existing objects as the cluster center,
while FCM considers the weighted average of the objects to
be the cluster centroid. This subtle difference causes the two
algorithms to have different performance characteristics: the
FCMdd is more resistant to interference than FCM, and since
noise objects will more easily affect the center of centroids
of the FCM it is easier to create clustering results with
great accuracy. From these reasons, the paper proposes the
IT2IFCMdd algorithm to take advantage of the advantages of
IFS, IT2FS, and FCMdd.

The remainder of the paper is organized as follows: Sect.II
introduces related knowledge: summarizes some basic concept
about IFS, FCMdd, and IT2IFS; Sect.III proposed method;
Sect.IV shows some experimental results and discussion.
Sect.V some conclusions.

II. BACKGROUND

A. Intuitionistic Fuzzy Sets

An intuitionistic fuzzy set Ã is represented by: Ã =
{x, µÃ(x), vÃ(x)) : x ∈ X}

Where: X is an ordinary finite non-empty set, µÃ : X →
[0; 1] , vÃ : X → [0; 1] must satisfy µÃ (x) + vÃ (x) ≤
1 for ∀x ∈ X , with the element x in set Ã, µÃ (x): its degree
of membership and vÃ (x): its degree of non-membership.

IFSs(x) can be considered as the set of all the intuitionistic
fuzzy sets in X . For each IFS Ã in X , the value πÃ (x) =
1− µÃ (x)− vÃ (x) is called the uncertain degree of x to Ã.
One noteworthy issue with an IFS Ã, IF µÃ (x) = 0, THEN
vÃ (x) + πÃ (x) = 1, and IF µÃ (x) = 1 THEN vÃ (x) = 0
and πÃ (x) = 0.

B. The fuzzy c-medoids algorithm

The fuzzy c-medoids algorithm (FCMdd) [15] was proposed
by R. Krishnapuram at al, let X = {x1, x2, . . . , xN} with
N objects. Each object is represented by a property vector.
Let Dij = d (xi, xj) describe the difference between the xi
object and the xj object. Let Z = {Z1, Z2, . . . , ZK} , zi ∈ X

describe a subset of X with K parts, i.e., Z is a set K-subset
of X . Let XK represent the set of all K-subsets Z of X .
FCMdd minimum target function:

Jm (U, v) =

N∑
k=1

K∑
i=1

(uik)
m

(dik)
2 (1)

which minimizes each sub-cluster of Z in XK . In Eq. (1),
uij denotes the fuzzy degree [4] or the ability [12], [13], [14]
membership of xj in the cluster:

uij =
(1/d(xj , vi))

1/(m−1)

c∑
k=1

(1/d(xj , vk))
1/(m−1)

(2)

Algorithm 1: FCMdd
Step 1: Begin

1.1 Fixed number of clusters K; Set iter = 0;
1.2 Initialize Z = {z1, z2, . . . , zK} medoids from XK ;

Step 2: REPEAT
2.1 Compute fuzzy member matrix values uij for i =

1, 2, . . . ,K ; j = 1, 2, . . . , N , using Eq.(2);
2.2 Store current medoids: Zold = Z;
2.3 Compute new medoids: zi for i = 1, 2, . . . ,K:

2.3.1 q = arg min
1≤k≤N

N∑
j=1

umijd (xk, xj)

2.3.2 zi = xq
3.3 iter = iter + 1;

UNTIL
(
Zold = Z or iter = MAX ITER

)
.

C. Interval type-2 intuitionistic fuzzy sets

Ã∗ represents a type-2 intuitionistic fuzzy set in X , and
µÃ∗ (x, u1) is membership grade x ∈ X with u1 ∈ J1

x ⊆
[0, 1], also vÃ∗ (x, u2) is non-membership grade x ∈ X with
u2 ∈ J2

x ⊆ [0, 1] .

The elements of domain of (x, u1) , (x, u2) are called pri-
mary membership and primary non-membership of x ∈ Ã∗, re-
spectively, memberships of primary memberships µÃ∗ (x, u1)
and non-memberships of primary memberships vÃ∗ (x, u1).
µÃ∗ (x, u2),vÃ∗ (x, u2) are called secondary memberships

and secondary non-memberships, respectively, of x ∈ Ã∗, with
u1 ∈ J1

x ⊆ [0, 1], u2 ∈ J2
x ⊆ [0, 1] which are intuitionistic

fuzzy sets.
When a type-2 intuitionistic fuzzy sets satisfies: the

secondary membership function µÃ∗ (x, u1) = 1 and
µ′Ã∗ (x, u2) = 1 (∀u1, u2 ∈ Jx) , then it is called an interval
type-2 intuitionistic fuzzy sets and it defined as follows:

Definition 1: Ã∗ is denoted of a type-2 intuitionistic
fuzzy set (IT2IFS), which is characterized by two type-2
intuitionistic membership functions, µÃ (x, u1) , µ′Ã (x, u2)
and two type-2 intuitionistic non-membership function
vÃ∗ (x, u1) , v′Ã∗ (x, u2) where x ∈ X and u1 ∈ J1

x ⊆
[0, 1] , u2 ∈ J2

x ⊆ [0, 1] i.e.



Ã∗ =


((x, u1) , µÃ∗ (x, u1) , vÃ∗ (x, u1)) ,
((x, u2) , µ′Ã∗ (x, u2) , v′Ã∗ (x, u2))∣∣∀x ∈ X,∀u1 ∈ J1

x ⊆ [0, 1] ,
∀u2 ∈ J2

x ⊆ [0, 1]

 (3)

where

0 ≤ µÃ∗ (x, u1) , µ′Ã∗ (x, u2) , vÃ∗ (x, u1) , v′Ã∗ (x, u2) ≤ 1
0 ≤ vÃ∗ (x, u1) + µÃ∗ (x, u1) ≤ 1
0 ≤ v′Ã∗ (x, u2) + µ′Ã∗ (x, u2) ≤ 1

(4)

Type-2 intuitionistic fuzzy sets are called an IT2IFS, if
the secondary membership function µÃ (x, u1) = 1 and
µ′Ã∗ (x, u2) = 1

(
∀u1 ∈ J1

x , u2 ∈ J2
x

)
i.e. an interval type-

2 intuitinistic fuzzy set is defined as follows:
Definition 2: An IT2IFS Ã∗ is characterized by membership

bounding functions µ̄Ã∗ (x) , µ
Ã∗ (x) and non-membership

bounding functions v̄Ã∗ (x) , vÃ∗ (x) where x ∈ X in which

0 ≤ µ̄Ã (x) + vÃ (x) ≤ 1 (5)

0 ≤ µ
Ã

(x) + v̄Ã (x) ≤ 1 (6)

Through describing foot of uncertainty (FOU), an Interval type
2 intuitionistic fuzzy set can be:

Ã =

{
x, ∀x ∈ X, µ̄Ã (x) , µ

Ã
(x) , v̄Ã (x) , vÃ (x) ,

∀µ̄Ã (x) , µ
Ã

(x) , v̄Ã (x) , vÃ (x) ∈ [0, 1]

}
(7)

III. FUZZY C-MEDOIDS CLUSTERING BASED ON
INTERVAL TYPE-2 INTUITIONISTIC FUZZY SETS

For interval type-2 fuzzy c-means clustering, we have two
objective function:{

Jm1 (U,Z) =
∑N

j=1

∑K
i=1 (uij)

m1d2ij
Jm2

(U,Z) =
∑N

j=1

∑K
i=1 (uij)

m2d2ij
(8)

Where dij = ‖xj − zi‖ is the Euclidean distance between xj
and medoid zi, K is the cluster number, N is the number of
members. m1 and m2 are optional constants. The upper and
lower margins (ūij and u

−ij
) of membership are determined as

follows:

ūij =

{
1∑K

k=1 (dij/dkj )2/(m1−1) if 1∑K
k=1 (dij/dkj )

< 1
K

1∑K
k=1 (dij/dkj )2/(m2−1) if 1∑K

k=1 (dij/dkj )
≥ 1

K

(9)
And

u
−ij

=

{ 1∑K
k=1 (dij/dkj )2/(m1−1) if 1∑K

k=1 (dij/dkj )
≥ 1

K
1∑K

k=1 (dij/dkj )2/(m2−1) if 1∑K
j=1 (dij/dkj )

< 1
K

(10)
where i = 1,K, j = 1, N . Type 2 fuzzy sets and intuitionistic
fuzzy sets have been applied to handle uncertainty, but both
their process of uncertainty is different. If the handling of the
uncertainty of type 2 fuzzy sets is based on an uncertain choice
of related functions, then that of the intuitionistic fuzzy sets
is based on the identification of membership functions, non-
membership functions with the hesitance assessment function.

The aggregate membership functions for interval type-2 intu-
itionistic fuzzy sets are defined as follow:

¯̃u
∗
ij = ūij +

πij

2
; ũ∗ij = uij +

π̄ij
2

(11)

To build the IT2IFSs, the choice of the interval membership
functions ũ∗ij and ¯̃u

∗
ij is conditioned by the interval hesitance

degree πj and π̄j of the jth data with the clusters as follows:

πj = ∧
(
1− ¯̃u

∗
1j , 1− ¯̃u

∗
2j , . . . , 1− ¯̃u

∗
Kj

)
π̄j = ∨

(
1− π∗1j , 1− π∗2j , . . . , 1− π∗Kj

) (12)

in which: Each
[
ũ∗ij , ¯̃u

∗
ij

]
, (1 ≤ i ≤ K) is the membership

functions of the jth data in the cluster i and K is the number
of clusters. Since each data jth has membership interval as
the upper ¯̃u

∗
ij and the lower ũ∗ij in the ith cluster. So when it

is as a centroid of the cluster (medoid) could be represented
by the interval between uL, and uR:

uij =
(
uRi (xj) + uLi (xj)

)
/2 , i = 1, . . . ,K, j = 1, . . . , N

(13)
uL, and uR are calculated according to Eq. (14) and Eq. (15)
respectively.

where:

uLi =
1

M

M∑
l=1

uil, uil =

{
ūi (xj) if xil uses ūi (xj) for zLi
ui (xj) otherwise

(14)

uRi =
1

M

M∑
l=1

uil, uil =

{
ūi (xj) if xil uses ūi (xj) for zRi
ui (xj) otherwise

(15)
The method of determining uil is the same as described in

Eq. (5).
Similar to the argument for calculating the objective func-

tion of the intuitionistic fuzzy cluster, the first term of the
objective function in this cluster is:

J1 =

K∑
i=1

N∑
j=1

ũ∗m1
ij d

(
xj , z

∗
j

)2
+

K∑
i=1

N∑
j=1

ũ∗m2
ij d

(
xj , z

∗
j

)2
(16)

A second term of the objective function is added via the
entropy of intuitionistic fuzzy (IFE):

J2 =
1

N

N∑
j=1

πj (17)

From Eqs. (16) and (17), the final objective function con-
tains two terms that need to be minimum as follows:

J̃ = J1 + J2 (18)

The objective function consists of 2 parts that need to be
optimized. J1 to be optimized as shown in [9] by FCM and
J2 is the reducer, via Entropy [23].

The given parameters of the problem are the number of clus-
ters K (1 < K < N), the fuzzy coefficient m (1 < m < +∞)
and the error threshold ε. Fuzzy C-medoids Clustering



Algorithm using Interval Type-2 Intuitionistic Fuzzy Sets
(IT2IFCMdd) can be briefly described as follows:

Algorithm 2: IT2IFCMdd
Input: Database X , cluster number K

Fixed number of clusters K; Set iter = 0; Select S (the
number of samples for which it has the highest membership
value per a cluster)

Using Procedure 1 to initialize medoids Z =
{z1, z2, . . . , zK} from XK

REPEAT
Step 1. iter = iter + 1;
Step 2. Store current medoids: Zold = Z;
Step 3. Using Procedure 2 to get ũ∗ij and πj
Step 4. Take a list of S with top ũ∗ij scores in each cluster,

then consider the top scores Pi = X(p)i, i = 1, 2, . . . ,K with
the number of S ×K medoids.

Step 5. Calculate and update K medoids Z = zi, i =
1, ..,K:

q = arg minxk∈X(p)i
J̃

zi = xq;Z → update {zi}
(19)

UNTIL
∥∥Zold − Z

∥∥
f
< ε||iter = MAX ITER

Calculate the target function J̃ by Eq.(18)
Output Z, J̃ , ũ∗ij , πj

The procedures to initialize medoids for clusters and com-
pute ũ∗ij and πj values are performed as follows:

Procedure 1. Initialize set of medoids for K clusters
Step 1. Random initialization zi.
Step 2. Calculate the distance matrix D: zi to the xj .
Step 3. Select from xj to get zi+1 so that the distance

d(zi, zj+1) is the second largest or largest.
Step 4. Calculate Z = unique (Z) to make sure the

elements of Z are not the same
Step 5. Go back to Step 3 to get the desired amount K

of potential medoids.
Procedure 2. Calculating ũ∗ij and πj

Step 1. Calculate ūij and uij .
Step 2. Calculate uL, uR using Eq. (14) and Eq. (15),

then uij using Eq. (13)
Step 3. Calculate πj :

πj = ∧ (1− u1j , 1− u2j , . . . , 1− uKj) (20)

Step 4. Calculate
[
ũ∗ij , ¯̃u

∗
ij

]
¯̃u
∗
ij = uij +

πj
2

; ũ∗ij = ūij −
πj
2
. (21)

Step 5. Calculate
[
πj , π̄j

]
using Eq. (12)

Step 6. Compute ũ∗ij and πj :

ũ∗ij = (¯̃u
∗
ij + ũ∗ij)/2;πj = (πj + π̄j)/2 (22)

The complexity of the FCMdd algorithm is O(nCTmax),
where n is the number of input objects, C is number of clus-
ters. The computational complexity of IT2IFCMdd algorithm
is O(n2).

IV. EXPERIMENT

The proposed algorithm is implemented with m = 2,m1 =
1.5,m2 = 3.5, the number of iterations L = 500 and the error
ε < 0.00001. To evaluate the effectiveness of the proposed
algorithm, the experimental paper on data clustering on a
number of data sets was taken from the UCI machine learn-
ing library (https://archive.ics.uci.edu/ml/index.php) including
Contraceptive Method Choice (Data1), Dermatology (Data2),
Hayes-Roth (Data3), Lymphography (Data4), Zoo (Data5),
and Balance Scale (Data6). Details of the experimental data
sets are shown in Table I.

TABLE I
EXPERIMENTAL DATA

Dataset Number of Instances Number of Attributes Date Donated
Data1 1473 9 1997-07-07
Data2 366 33 1998-01-01
Data3 160 5 1989-03-01
Data4 148 18 1988-11-01
Data5 101 17 1990-05-15
Data6 625 4 1994-04-22

The results were measured on the basis of several validity
indexes to assess the performance of the algorithms. Indicators
used include the Beni’s index (XB), the Classification Entropy
index (CE), the Bezdeks partition coefficient (PC) [21], [22].
The accuracy of clustering results by IT2IFCMdd algorithm
is compared with FCMdd, IFCM and FCM algorithms. The
better algorithm has smaller XB, CE and larger PC and the best
results are marked bold. Furthermore, the paper also evaluates
accuracy by calculating the correct classification ratio (Acc).

The detailed values of the indicators according to the
IT2IFCMdd, FCMdd, IFCM and FCM algorithms are shown
in Table II.

Table II shows that the proposed algorithm IT2IFCMdd
gives better results than the three algorithms FCMdd, IFCM
and FCM on most indicators. Only the CE index in the Hayes-
Roth dataset gives the best results for the FCMdd algorithm.
These results indicate that the IT2IFCMdd algorithm is able
to significantly improve clustering results compared to the
FCMdd, IFCM and FCM algorithms.

IT2IFCMdd algorithm gives the highest correct classifica-
tion rate on all 6 data sets. The highest value reaches 97.048%
on the Zoo dataset. While the lowest rate is 94.786% on
Dermatology data set. The FCM algorithm gives the lowest
accuracy of most indicators including the correct classification
ratio.

V. CONCLUSION

This paper presented the interval type-2 intuitionistic fuzzy
c-medoid clustering algorithm by expanding fuzzy c-medoid
clustering based on interval type-2 intuitionistic fuzzy set. The
results showed that IT2IFCMdd algorithm can give better clus-
tering results than the algorithms FCM, IFCM and FCMdd.

In the future, the paper will be developed based on the
optimization algorithm to optimize the objective function. This



TABLE II
THE VALUE OF THE INDEXES ON THE ALGORITHMS

Dataset Indexes FCM IFCM FCMdd IT2IFCMdd
PC 0.3301 0.3298 0.3652 0.3921

Data1 CE 0.4872 0.3716 0.2896 0.2875
XB 4.8102 3.8261 3.8036 2.5663
Acc 89.874% 92.785% 94.723% 95.351%
PC 0.1888 0.2075 0.2218 0.2277

Data2 CE 0.5601 0.5623 0.4879 0.3861
XB 3.4832 3.2751 2.5482 1.0027
Acc 92.765% 93.675% 94.082% 94.786%
PC 0.2874 0.3872 0.3809 0.3862

Data3 CE 0.6189 0.6805 0.5892 0.5982
XB 2.3764 2.0993 2.1973 1.0118
Acc 91.673% 94.037% 93.879% 95.872%
PC 0.2182 0.2287 0.2765 0.2833

Data4 CE 0.7582 0.5983 0.5673 0.4885
XB 1.1983 1.0845 0.8734 0.4371
Acc 92.514% 92.883% 94.764% 96.261%
PC 0.5873 0.5629 0.6168 0.6585

Data5 CE 0.9813 0.7209 0.6571 0.5826
XB 0.3721 0.3673 0.2789 0.2400
Acc 93.889% 95.187% 94.762% 97.048%
PC 0.4459 0.5462 0.6251 0.7271

Data6 CE 0.8995 0.8752 0.6898 0.6824
XB 3.0338 2.4875 1.6342 0.3728
Acc 94.982% 95.217% 95.739% 96.872%

is to improve the accuracy of clustering results as well as speed
up computation when applied on large data sets.
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