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Abstract—In a previous work, a clustering-based method had
been incorporated with the latent feature space of an autoencoder
to discover sub-classes of normal data for anomaly detection.
However, the work has the limitation in manually setting up
the numbers of clusters in the normal training data. Finding
a proper number of clusters in datasets is often ambiguous and
highly depends on the characteristics of datasets. This paper pro-
poses a novel data-driven empirical approach for automatically
identifying the number of normal sub-classes (clusters) without
human intervention. This clustering-based method, afterward,
is co-trained with an autoencoder to automatically discover the
appreciated number of clusters of normal training data in the
middle hidden layer of the autoencoder. The resulting clustering
centers are then used to identify anomalies in querying data. Our
approach is tested on four scenarios from the CTU13 datasets,
and the experimental results show that the proposed model often
perform better than those of the model in the previous work on
almost scenarios.

Index Terms—Deep Learning, Autoencoders, Clustering Tech-
niques, Anomaly Detection, Latent Representation

I. INTRODUCTION

Anomaly detection is a data analysis task distinguishing
patterns deviating so much from normal data [3]. This task
is critical for automatically identifying malicious activities
and other forms of network abuses from the normal be-
haviour of network usages. For the last three decades, many
machine learning techniques, especially deep learning, have
been employed for solving challenging issues in anomaly
detection domains [2]. Generally, these learning methods can
be classified into three main categories depending on the
availability of anomaly data such as supervised learning,
unsupervised learning and semi-supervised learning [3], [11].
Though supervised learning approach has been demonstrated
attractive performance on a wide range of problems it shows
critical drawbacks in anomaly detection problems. This is
because supervised learning techniques require the labels of
normal data and anomalies, and yield poor performance on
detecting novelties. Therefore, it tends to be not commonly
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used in anomaly detection as the two other approaches, semi-
supervised and unsupervised learning.

Recently, semi-supervised techniques, such as one-class
classification (OCC), have demonstrated many advantages in
network anomaly detection. They may require only normal
data for constructing anomaly detectors, which can eliminates
the tone of work in collecting and labelling anomaly examples.
More importantly, the models capturing the characteristics of
normal data can have the ability in detecting new/unknown
anomalies [10], [11]. Autoencoders (AEs) are typical deep
learning methods for anomaly detection in variety of do-
mains [4], [7], [15]. AEs learn to attempt reconstructing the
original data at its outputs. A trained AE on normal data will
represent normal data well resulting in small reconstruction er-
ror (RE) when evaluating normal data points. Thus, the RE can
be used as anomaly score in identifying anomalies regularized
AEs are alternative approaches of using AEs for identifying
anomalies. In this approach, regularizers are designed to learn
a “good feature representation” to benefit following classifiers.
Dirac Delta Variational AE (DVAE) and Shrink AE (SAE)
and [11] can be known as typical examples of learning latent
feature representations. The latent representation of AEs can
be employed to facilitate clustering algorithms [6], [9], [12],
[16]. In this combination, AEs learn to represent data in a more
meaningful feature space while clustering techniques aim to
reveal appropriate clusters in the feature space. For example,
a hybrid of Autoencoders and Self Organizing Maps (SOM)
was introduced for identifying smart phone users by DC Le
et al. [12].

When using one-class classification for network anomaly
detection, normal examples are often assumed to be similar
to each others, and belong to only one class (one cluster).
Thus, OCC often learns to represent normal data in a specific
region in feature space, such as One-class Support Vector
Machine (OCSVM), SAE and DVAE. In some scenarios,
however, normal observations can be collected from variety of
network services and applications. Thus, normal instances may
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belong to several different sub-clusters, which shares some
common characteristics amongst these sub-clusters and normal
data. Our previous work [9] introduced a co-training strategy
between an ordinary AE and a variation of K-mean technique
to discover sub-clusters of normal data. In other words, the
AE learn to compress the normal input data into a more
meaningful feature space of its bottleneck layer, whereas the
k-mean algorithm reveals a number of normal sub-classes in
the new feature space. This co-training is an iterative process
until the two methods convergence. The limitation of the study
is that the number of normal clusters is manually selected.
These clusters (sub-classes) of normal data should depend on
the characteristics of normal network traffic, e.g the number
of network services, applications, protocols, and differs from
dataset to dataset. Thus, fixing this number may result in a
decrease in the performance of the proposed model on some
anomaly detection problems. However, determining the proper
number of clusters in a given dataset is challenging and often
requires human intervention.

In this paper, we introduce a novel method that employs a
density measurement and a hierarchical clustering method for
automatically estimating the number of clusters in datasets.
This attempts to overcome the weakness of the co-training
hybrid of K-means and an AE, CAE [9]. The resulting
number of clusters is used for CAE to reveal clusters at
the middle hidden layer of the AE. In other words, the AE
can project normal data in a lower dimensional space with
more meaningful features, while clustering methods like K-
means can help the AE force normal data into sub-clusters
and discover them. This is operated in an iterative co-training
process. Our proposed model is evaluated on four scenarios
in the CTU13 datasets, and the results show that the proposed
model often out-performs the CAE model [9] and also SAE
and DVAE [11].

The rest of this paper is organized as follows. We briefly
introduce Autoencoders and Hierarchical clustering technique
in section II. In section III, we review some related works
that employed the latent representation of Autoencoders and
clustering-based techniques for anomaly detection. Our pro-
posed method is presented in Section III. Experiments, results
and discussion are shown in Section V and VI, respectively.
Finally, we conclude our paper and give future directions.

II. BACKGROUND

A. Autoencoders

An conventional autoencoder is a neural network, which
is aimed to reconstruct the input at the output layer [5].
It contains two components, which are called encoder and
decoder as shown in Figure 1. Where fy is the encoder, and
X = {1, 9, ...x, } be a dataset. The encoder fp aims to map
the input z; € X into a latent representation z; = fy(z;).
The decoder g4 aims to map the latent representation z; back
into the input space, so the reconstruction in calculated by
Z; = g4(zi). The encoder and decoder are represented in the
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Fig. 1. Autoencoder.

form of activation functions of linear functions with respect
to weights and bias as follow:

fg (l’) = Q/Jf (W:L‘ + b) (1)
96(2) =y (W2 +0) @

where 0=(W,b) and ¢ =(W’,b’) are (weights and biases) for
training encoder and decoder, respectively. ©); and 1), are the
activation functions of the encoder and decoder. The most
popular activation functions are logistic sigmoid or hyperbolic
tangent non-linear function, or a linear identity function. For a
single observation x;, the objective function of an Autoencoder
is the dissimilarity between x; and Z;. The objective function
over all training samples as in (3).

Lan(0:052) = = Y 1w i) = - Y Mo, 9ol fo(a)

" i=0
(3)
Choosing a loss function for autoencoder model is highly
depend on the assumption about given datasets. In the case, the
values of datapoints in dataset are real, the objective function
is determined as the mean squared error (MSE) over all data
points as in (4).
1 n .
Lag(0;x) = - z;( |z — 2 |*) @
1=
For binary data, a cross-entropy loss is commonly used, which
is shown in (5).
1< R .
Lag(0;z) = - Z (zilog(;) + (1 — ;) log(1 — &) (5)
i=1
B. Hierarchical Clustering

Hierarchical clustering is an algorithm that attempt to clas-
sify similar objects into appropriate groups called clusters [8].
The difficulty is how to find optimal set of clusters. Each
cluster is clearly separate from each other cluster as much
as possible, and the objects within each cluster are as much
as similar to each other. Hierarchical clustering might be
categorized into two main types :
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Fig. 2. Example of Dendrogram

o Agglomerative: Each object starts in its own cluster, at
each following step of algorithm two of clusters are
merged as one moves up the hierarchy.

« Divisive: All objects start in one cluster, at each following
step of algorithm, splits are performed recursively as one
moves down the hierarchy.

Dendrogram is an effective tool to illustrate the results of
hierarchical clustering. A dendrogram contains lot of important
information about the distances between clusters and the
number of objects in each clusters. The instance of such
dendrogram is illustrated in Figure (2). Where horizontal lines
represents the distance between clusters, and the vertical lines
denote the objects and clusters. We must to find a apporach to
stop the clustering process and figure out the optimal number
of clusters, especially in a manner that highly depends on
nature of the datasets.

III. RELATED WORKS

In this section we will analysis various recent accom-
plishments in this area. Many existing anomaly detection
algorithms faced difficulty when dealing with high-volume
characteristics as well as high-velocity of datasets. Therefore
these algorithms do not retain sufficient accuracy in many
situations [14]. Such techniques rely on concepts of proximity
to detect anomalies that are based on relationships among
data observations. The proximity can be calculated by using
plenty of techniques, which are classified as cluster-based,
distance-based or density based. Autoencoders (AE) have been
becoming one of the most effective tools for anomaly detection
[9] [1] [10] [11] [13]. The study in [10] is one-class learning
solution, which is a combining autoencoder and density esti-
mation. Two cases for modelling density as a single Gaussian
and full kernel density estimation are investigated. Cao at [11]
introduced two types of regularized AEs, called Shrink AE
(SAE) and Dirac Delta VAE (DVAE) capturing the characteris-
tics of normal data.Afterward, the latent representation of SAE
and DVAE were used to assist simple one-class classifiers. The

researchers at [1] introduced hybrid model between clustering
technique K-means and Shrink Autoencoder (SAE) that is
called KSAE. By doing in such way, KSAE tries to force
normal training data into several clusters and then applying
SAE to explorer latent representation of data in each cluster.
The author in [12] introduced the method of using autoencoder
- Self Organizing Map (SOM) to explorer user behaviour
characterization based smart phone usage information. Such
solution consists of two steps. The Autoencoder aims to
explorer latent representation at bottleneck and after that used
SOM without AE. More recently, Nguyen in [9] proposed
an effective combination between clustering methods and AE
called CAE and training in a semi-supervised way. This work
assumes that normal sample data might have a set of common
characteristics and their own private characteristics. Therefore,
it might cause a number of sub-clusters in the normal data.
During training process an AE learns latent representation of
data. While a clustering method tries to explorer clusters in the
latent normal data and classify them into appropriate clusters.
The solution is tested with four scenarios of CTU13 dataset,
the results out-performs other methods on three of four cases.
The limitation of CAE is that model is built based on the
random of clusters at hidden layer. In this work, we attempt
to find a effective approach based on nature of data to estimate
the appropriate number of clusters of datasets and afterward
use this one for latter training clustering-based autoencoder in
one-class manner.

IV. PROPOSED METHOD

In this section, we present our proposed method for auto-
matically estimating and picking up the number of clusters
based on the hierarchical clustering technique. This method is
then employed for enhancing the productivity of the clustering-
based deep Autoencoder (CAE) introduced in [9]. Our pre-
vious clustering-based model, CAE, is faced the limitation
of randomly choosing the number of clusters for K-means
working in the latent feature space of Autoencoders. The
proposed method tries to overcome such obstacle. In fact, it
will attempt to estimate a proper number of clusters in the
normal training dataset beforehand the co-training process of
CAE operating.

Our approach consists of two stages: (1) we propose a
density-based measurement combining with the hierarchical
clustering technique to automatically picking up the number
of clusters in the normal training datasets; (2) the results from
the first stage is used to guide the co-training process of CAE
on the only normal training samples. The complete procedure
is illustrated in Figure 3. In this section, we will present in
details how to automatically pick up a optimal number of sub-
clusters in normal training datasets. For the details of the CAE
method, please find in our previous work [9]. By applying the
hierarchical clustering technique on a given normal dataset,
we will receive a dendrogram that split the dataset into as
many sub-clusters as possible. We must to find an optimal
point on the vertical lines of the dendrogram to prevent the
hierarchical clustering algorithm further splitting the dataset
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Fig. 3. Proposed Method: automatically estimating the number of clusters
and the co-training process of CAE.

into smaller sub-clusters. The approach is to determine a
horizontal line crossing the dendrogram. This can result in
a number of intersections (clusters) on the dendrogram. We
assume that the number of clusters in a given dataset is related
to the density of the dataset. Thus, we use the density as
a parameter to estimate the number of clusters in datasets.
Suppose we have a collection of m observations in dataset {
ala?,..2™} €R"™. The density parameter of the dataset can
be determined as the ratio of the number of data samples
to the supervolume of n-dimensional parallelepiped. The su-
pervolume of n-dimensional parallelepiped can be calculated
by multiplying n maximal distances over n dimensions. The
proposed calculation is presented as follows,
m

P = I, (e, (@) = Min, (@) ©
where D is density of the dataset, m is the number of
datapoints in the dataset, and Max and Min are the functions
calculating the maximum and minimum values of j-th feature
over all data points relatively. Our goal is to determine the
position of horizontal line crossing the dendrogram. The
number of vertical lines are crossed by the horizontal line
is equal to the number of clusters. Therefore, we propose
a formula to estimate the location of horizontal cutting the
vertical lines of the dendrogram:

h = ho.logh,

)

where h is the distance from the origin to intersections
between the horizontal line and the vertical lines of the den-
drogram, hy is coefficient selected for every dataset. Once the
number of clusters has estimated as in Eq. 7, a novel variation
of K-means is applied to iterative explorer sub-clusters in the
latent feature space of a conventional Autoencoder. In other
words, the model is force to learn to reconstruct the normal
training data at the output layer of the AE. In the meantime
K-means supports the AE represents the normal data into
appropriate clusters at the bottleneck layer of the AE. This
is happened in co-training manner.

V. EXPERIMENTS

This section describers the anomaly detection datasets cho-
sen for evaluating our proposed model, parameter settings and

TABLE I
FOUR DATASETS FOR EVALUATING THE PROPOSED MODELS

No  Dataset Dimension Training  Normal  Anomaly
set Test Test

1 Rbot (CTU13-10) 38 6338 9509 63812

2 Murlo (CTU13-8) 40 29128 43694 3677

3 Neris (CTU13-9) 41 11986 17981 110993

4 Virut (CTU13-13) 40 12775 19164 24002

our experiments.

A. Datasets

For evaluation purpose the performance of our proposed
method, we have conducted the experiments on four scenarios
in the CTU13 dataset as shown in the Table I. The CTU13
dataset consists of botnet traffic, which was captured in the
CTU University, Czech Republic,in 2011. This dataset is a
collection of a large number of real botnet traffic together with
normal and background traffic. It contains thirteen scenarios
of many botnet samples. In this paper, four scenarios (CTU13-
8, CTU13-9, CTU13-10 and CTU13-13) are employed. Each
of these datasets was splited into 40% for training (normal
samples) and 60% for evaluating purposes (both normal and
botnet traffic). In terms of categorical features, including dTos,
sTos and protocol are encoded by using the one-hot encoding
technique.

B. Experimental Settings

In this work, we conducted experiments consisting of two
steps. In the first step, the hyper-parameter /g in Eq. (7) is set
by a common value, 20, for all datasets. In the stage 2, We
have chosen the number of hidden layers is 5, and the size of
bottleneck layer by using the equation h = [1+ \/n], where n
is the number of input features [10].We have applied Xavier
initialization method to initialize the weights of CAE for
speeding up the convergence process. The activation function
is TAN H, and the batch size is set as 100. The optimization
algorithm is Adadelta with a learning rate of 10~1. The early
stopping method is employed with evaluation step at every
5 epochs. With the purpose of getting insights into the latent
feature spaces, we have visualized the latent representations of
normal training data, normal testing data and anomaly testing
data.

VI. RESULTS AND DISCUSSION

We have conducted two core experiments. Firstly, the hier-
archical clustering algorithm is applied on the four datasets
to receive dendrograms and afterward pick up the number
of clusters as shown in Figures. 4 and 5. The height of
the deprograms indicates the order in which the clusters are
joined, and also represents the distance between the clusters.
Samples joined together below the line are located in clusters.
Afterward, our proposed empirical formulas presented in Eq. 6
and 7 are used to calculate the height of horizontal line for the
four datasets, and to estimate the number of clusters in each of
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Fig. 4. Dendrogram of CTU13-8 and CTU13-9
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Fig. 5. Dendrogram of CTU13-10 and CTU13-13

TABLE 11
THE ESTIMATING NUMBER OF CLUSTERS
CTU13-08 | CTU13-09 | CTU13-10 | CTUI13-13
ho 20 20 20 20
K 2 5 1 3

these datasets. The results of this step are shown in Table II.
Obviously, the number of clusters in all datasets are different
from dataste to dataset. It tends to reflect the characteristics of
these datasets. Normal data points might share some common
characteristics representing corresponding normal traffic, but
they can have some their own private features. Thus, normal
dataset may contain some sub-clusters

The second step is the co-training process of the CAE
model with the guidance from the first step. The most popular
metric, the Area Under the ROC Curve (AUC), is employed
to evaluate the performance of our model in comparison to
the original CAE (manually setting the number of subclusters,
K = 2). The latent representations of the normal training
sets and the testing sets of CTU13-8, CTU13-9, CTUI13-
10 and CTU13-13 are visualized in Figures 7, 8, 9 and 10
respectively. Performance of our proposed method is also
compared with those of SAE and DVAE in [1]. In this case,
two classifiers, such as CEN and MDIS, are selected because
these classifiers were reported as the best classifier and the
worse classifier respectively. All the resulting records are
shown in Table III. We also present visualizations of the
ROC curves when evaluating our proposed method on the four
scenarios as shown in Figure 6.

It can be seen that, with the appropriate number of clusters

shown in Table II, our proposed model shows performance
improvements in comparison to the original version of CAE on
three out of the four scenarios. Furthermore, the automatically
process of estimating the number of clusters has shown that
CTU13-10 contain only a single cluster in comparison with
two clusters in [9], and the AUC has been sharply improved
from 0.996 (CAE) to 0.999. Meanwhile, the increase in the
number of detected clusters for CTU13-09 from K = 2 to
K = 5 has greatly impact on AUC, increasing from 0.959
to 0.962. For CTU13-08, the AUC is unchanged due to the
fact that the number of clusters in data remaining K = 2.
Interestingly, with the changing number of subclusters from
K = 2to K = 3, the AUC on CTU13-13 seems to be a
constant value at 0.9790. This may reveal that these clusters
are much close at each other.

Overall, the results of these experiments clearly confirm that
our proposed method contribute to enhance the performance
of anomaly detection issues throughout one-class training
process.

VII. CONCLUSION AND FUTURE WORK

A new data-driven method is proposed with purpose of get-
ting the optimal number of clusters in datasets, and applying
to make the performance of the Clustering-based Autoencoder
method (CAE) better. This work tries to overcome the limita-
tion of previous study in [9]. Our method is divided into two
steps, the first one is to building dendrograms for datasets and
using our proposed empirical formula for choosing a proper
number of clusters. The second step is to combine K-mean
and Autoencoder in co-training manner with the guidance
from the first step. This work has revealed that the proper
number of clusters in dataset is very important parameter for
unsupervised-based anomaly detection problems, particularly
one-class learning-based methods. We have evaluated our
proposed model on four scenarios in the CTU13 dataset,
and the outcomes have illustrated that our model often per-
forms better than the previous ones such as CAE, SAE and
DVAE. Our future work is an extension on investigating other
methods in automatically estimating the number of clusters
and incorporating the process into a co-training process with
Autoencoders.
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